首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently reported alkoxyl biphenyl derivatives bearing dibenzo[c,e]azepine scaffold as novel P-glycoprotein (P-gp, ABCB1) inhibitors. In this study, their ability to reverse breast cancer resistance protein (BCRP, ABCG2)-mediated multidrug resistance was tested in HEK293/BCRP cells which was BCRP-transfected stable HEK293 cells. It was observed that compounds 4d, 4h, 4i increased mitoxantrone accumulation in HEK293/BCRP cells via inhibiting BCRP efflux function. Notably, the inhibitory activity of 4i was comparable to that of the classical BCRP inhibitor Ko143 at an equimolar concentration. Interestingly, 4i had little inhibitory effect on multidrug resistance-associated protein 1 (MRP1, ABCC1), another drug efflux transporter. These results, together with the previous findings, suggest that 4i may be a dual inhibitor of P-gp and BCRP to warrant further investigation.  相似文献   

2.
3.
Aiming at generating a library of bioactive indole alkaloid derivatives as multidrug resistance (MDR) reversers, two epimeric indole alkaloids (1 and 2) were submitted to chemical transformations, giving rise to twenty-four derivatives (5-28), bearing new aromatic or aliphatic azine moieties. The structure of the compounds was established by 1D and 2D NMR (COSY, HMBC, HMQC and NOESY) experiments. Two different strategies were employed for assessing their anti-MDR potential, namely through the evaluation of their activity as inhibitors of typical MDR ABC transporters overexpressed by cell transfection, such as ABCB1 (P-gp), ABCC1 (MRP1), and ABCG2 (BCRP), or by evaluating their ability as collateral sensitivity (CS) agents in cells overexpressing MRP1. A considerable MDR reversing activity was observed for compounds bearing the aromatic azine moiety. The strongest and most selective P-gp inhibition was found for the epimeric azines 5 and 6, bearing a para-methylbenzylidene moiety. Instead, compounds 17 and 18 that possess a di-substituted benzylidene portion with methoxy and hydroxyl groups, selectively inhibited MRP1 drug-efflux. None of these compounds inhibited BCRP. Compounds 5, 6 and 18 were further investigated in drug combination experiments, which corroborated their anti-MDR potential. Moreover, it was observed that compound 12, with an aromatic azine moiety, and compounds 23-26, sharing a new aliphatic substituent, displayed a CS activity, selectively killing MRP1-overexpressing cells. Among these last compounds, it could be established that addition of 19, 23 and 25 to MRP1-overexpressing cells led to glutathione depletion triggering cell death through apoptosis.  相似文献   

4.
Breast cancer resistant protein (BCRP/ABCG2), a 72 kDa plasma membrane transporter protein is a member of ABC transporter superfamily. Increased expression of BCRP causes increased efflux and therefore, reduced intracellular accumulation of many unrelated chemotherapeutic agents leading to multidrug resistance (MDR). A series of 31 benzamide and phenyltetrazole derivatives with amide and urea linkers has been synthesized to serve as potential BCRP inhibitors in order to overcome BCRP-mediated MDR. The target derivatives were tested for their cytotoxicity and reversal effects in human non-small cell lung cancer cell line H460 and mitoxantrone resistant cell line H460/MX20 using the MTT assay. In the benzamide series, compounds 6 and 7 exhibited a fold resistance of 1.51 and 1.62, respectively at 10 µM concentration which is similar to that of FTC, a known BCRP inhibitor. Compounds 27 and 31 were the most potent analogues in the phenyltetrazole series with amide linker with a fold resistance of 1.39 and 1.32, respectively at 10 µM concentration. For the phenyltetrazole series with urea linker, 38 exhibited a fold resistance of 1.51 which is similar than that of FTC and is the most potent compound in this series. The target compounds did not exhibit reversal effect in P-gp overexpressing resistant cell line SW620/Ad300 suggesting that they are selective BCRP inhibitors.  相似文献   

5.
Multidrug resistance (MDR) has been shown to reduce the effectiveness of chemotherapy. Strategies to overcoming MDR have been widely explored in the last decades, leading to a generation of numerous small molecules targeting ABC and MRP transporters. Among the ABC family, ABCB1 plays key roles in the development of drug resistance and is the most well studied. In this work, we report the discovery of a non-toxic [1,2,4]triazolo[1,5-a]pyrimidin-7-one (WS-10) from our structurally diverse in-house compound collection that selectively modulates ABCB1-mediated multidrug resistance. WS-10 enhanced the intracellular accumulation of paclitaxel in SW620/Ad300 cells, but did not affect the expression of ABCB1 Protein and ABCB1 localization. The cellular thermal shift assay (CETSA) showed that WS-10 was able to bind to ABCB1, which could be responsible for the reversal effect of WS-10 toward paclitaxel and doxorubicin in SW620/Ad300 cells. Docking simulations were performed to show the possible binding modes of WS-10 within ABCB1 transporter. To conclude, WS-10 could be used as a template for designing new ABCB1 modulators to overcome ABCB1-mediated multidrug resistance.  相似文献   

6.
Multidrug resistance (MDR) has been shown to reduce the effectiveness of chemotherapy. Strategies to overcoming MDR have been widely explored in the last decades, leading to a generation of numerous small molecules targeting ABC and MRP transporters. Among the ABC family, ABCB1 plays key roles in the development of drug resistance and is the most well studied. In this work, we report the discovery of non-toxic [1,2,4]triazolo[1,5-a]pyrimidin-7-one (WS-10) from our structurally diverse in-house compound collection that selectively modulates ABCB1-mediated multidrug resistance. WS-10 enhanced the intracellular accumulation of paclitaxel in SW620/Ad300 cells, but did not affect the expression of ABCB1 Protein and ABCB1 localization. The cellular thermal shift assay (CETSA) showed that WS-10 was able to bind to ABCB1, which could be responsible for the reversal effect of WS-10 toward paclitaxel and doxorubicin in SW620/Ad300 cells. Docking simulations were performed to show the possible binding modes of WS-10 within ABCB1 transporter. To conclude, WS-10 could be used as a template for designing new ABCB1 modulators to overcome ABCB1-mediated multidrug resistance.  相似文献   

7.
8.
The ability of cells to acquire resistance to multiple pharmaceuticals, namely multidrug resistance (MDR), is often mediated by the over-expression of efflux transporters of the ATP-binding cassette (ABC) superfamily; for example P-glycoprotein (P-gp or MDR1), breast cancer resistance protein (BCRP or ABCG2), and multidrug resistance-associated protein MRP1. ABCs pump drug molecules out of cells against a concentration gradient, reducing their intracellular concentration. The ability of polymeric amphiphiles to inhibit ABCs as well as the cellular pathways involved in the inhibition has been extensively investigated. This work investigated for the first time the effect of branched poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamines) on the levels of mRNA encoding for MDR1, BCRP and MRP1, in a human hepatoma cell line (Huh7). Copolymers with a broad range of molecular weights and hydrophilic-lipophilic balances were assayed. Results confirmed the down-regulation of mdr1 and abcg2 genes. Conversely, the mrp1 gene was not affected. These findings further support the versatility of these temperature- and pH-responsive copolymers to overcome drug resistance in cancer and infectious diseases.  相似文献   

9.
Overexpression of breast cancer resistance protein (BCRP) plays a crucial role in the acquired multidrug resistance (MDR) in breast cancer. The elucidation of molecular events that confer BCRP-mediated MDR is of major therapeutic importance in breast cancer. Epithelial cell adhesion molecule (EpCAM) has been implicated in tumor progression and drug resistance in various types of cancers, including breast cancer. However, the role of EpCAM in BCRP-mediated MDR in breast cancer remains unknown. In the present study, we revealed that EpCAM expression was upregulated in BCRP-overexpressing breast cancer MCF-7/MX cells, and EpCAM knockdown using siRNA reduced BCRP expression and increased the sensitivity of MCF-7/MX cells to mitoxantrone (MX). The epithelial–mesenchymal transition (EMT) promoted BCRP-mediated MDR in breast cancer cells, and EpCAM knockdown partially suppressed EMT progression in MCF-7/MX cells. In addition, Wnt/β-catenin signaling was activated in MCF-7/MX cells, and the inhibition of this signaling attenuated EpCAM and BCRP expression and partially reversed EMT. Together, this study illustrates that EpCAM upregulation by Wnt/β-catenin signaling induces partial EMT to promote BCRP-mediated MDR resistance in breast cancer cells. EpCAM may be a potential therapeutic target for overcoming BCRP-mediated resistance in human breast cancer.  相似文献   

10.
To identify new potent multidrug resistance modulators, we have synthesized a series of novel thieno[2,3-b]pyridines and furo[2,3-b]pyridines, and examined their stucture–activity relationships. All synthesized compounds were tested to determine BCRP1, P-gp, and MRP1 inhibitor activity, and most potent MDR modulators were also screened for their toxicity, cytotoxicity and Ca2+ channel antagonist activity. Among these compounds, thieno[2,3-b]pyridine (6r) was found to exhibit a potent P-gp inhibitory action with EC50 = 0.3 ± 0.2 μM, MRP1 inhibitory action with EC50 = 1.1 ± 0.1 μM and BCRP1 inhibitory action with EC50 = 0.2 ± 0.05 μM and may represent suitable candidate for further pharmacological studies.  相似文献   

11.
Chemotherapy is one of the major forms of cancer treatment. Unfortunately, tumors are prone to multidrug resistance leading to failure of treatment. Breast cancer resistance protein (BCRP), the second member of ABC transporter subfamily G, has been found to play a major role in drug efflux and hence multidrug resistance. Until now, very few potent and selective BCRP inhibitors like Ko143 have been identified. In the search for more potent and selective BCRP inhibitors, we synthesized and investigated a series of differently substituted quinazoline compounds. Several variations at positions 2, 4, 6 and 7 of the quinazoline scaffold were carried out to develop a structure–activity-relationship analysis for these compounds. It was found that compounds bearing a phenyl substituent at position 2 of the 4-anilinoquinazoline scaffold were most potent. On the aniline ring at position 4 of the quinazoline moiety substituents like NO2, CN, CF3 led to very high BCRP inhibition potencies. The most potent compounds were further investigated for their intrinsic cytotoxicity and their ability to reverse the multidrug resistance. Compound 20, an anilinoquinazoline bearing a phenyl ring at position 2 and meta-nitro substitution on the 4-anilino ring, was found to have the highest therapeutic ratio. The most active compounds from each variation were also investigated for their effect on BCRP expression. It was found that compound 20 has no significant effect on BCRP expression, while compound 31 decreased the surface BCRP expression. The only difference in the two compounds was the presence of a 3,4-dimethoxyphenyl ring in compound 31 instead of phenyl substitution at position 2 of the quinazoline moiety. From the study of all target compounds, compound 20 was the most prominent compound having inhibitory potency even higher than Ko143, the most potent BCRP inhibitor known. Compound 20 was also found to be selective towards BCRP with a very high therapeutic ratio.  相似文献   

12.
Breast cancer resistance protein (BCRP) is an ATP-binding cassette multidrug transporter that confers resistance to various anticancer drugs like Mitoxantrone. Overexpression of BCRP confers multidrug resistance (MDR) in cancer cells and is a frequent impediment to successful chemotherapy. For stable reversal of BCRP-depending MDR by RNA interference technology, a hU6-RNA gene promoter-driven expression vector encoding anti-BCRP short hairpin RNA (shRNA) molecules was constructed. By treating endogenously and exogenously expresses high levels of BCRP cells with these constructs, expression of the targeted BCRP-encoding mRNA, and transport protein was inhibited completely. Furthermore, the accumulation of mitoxantrone in the anti-BCRP shRNA-treated cells increased. And the sensitivity to mitoxantrone of anti-BCRP shRNA-treated cells is increased 14.6-fold and 2.44-fold respectively compared to their control (P < 0.05). These data indicated that stable shRNA-mediated RNAi could be tremendously effective in reversing BCRP-mediated MDR and showed promises in overcoming MDR by gene therapeutic applications.  相似文献   

13.
COX‐2 (cyclo‐oxygenase 2), an inducible form of the enzyme that catalyses the first step in the synthesis of prostanoids, is associated with inflammatory diseases and carcinogenesis, which is suspected to promote angiogenesis and tissue invasion of tumours and resistance to apoptosis. COX‐2 is also involved in drug resistance and poor prognosis of many neoplastic diseases or cancers. The activation of the COX‐2/PGE2 (prostaglandin E2)/prostaglandin E receptor signal pathway can up‐regulate the expression of all three ABC (ATP‐binding‐cassette) transporters, MDR1/P‐gp (multidrug resistance/P‐glycoprotein), MRP1 (multidrug‐resistance protein 1) and BCRP (breast‐cancer‐resistance protein), which encode efflux pumps, playing important roles in the development of multidrug resistance. In addition, COX inhibitors inhibit the expression of MDR1/P‐gp, MRP1 and BCRP and enhance the cytotoxicity of anticancer drugs. Therefore we can use the COX inhibitors to potentialize the effects of chemotherapeutic agents and reverse multidrug resistance to facilitate the patient who may benefit from addition of COX inhibitors to standard cytotoxic therapy.  相似文献   

14.
Herein, we investigated efflux pumps-mediated talazoparib-resistance in the treatment of triple-negative breast cancer (TNBC). Furthermore, we produced a novel talazoparib-solid lipid nanoparticles (SLNs) and then explored in vitro therapeutic efficacy of talazoparib-SLNs to overcome talazoparib-resistance in TNBC cells. Talazoparib-SLNs formulation was produced and then characterized. Calcein and Rho-123 were used to analyze the functional activity of drug efflux pumps in these cells. Additionally, RT-PCR, western blot and immunofluorescence analysis were used to detect the messenger RNA, and protein expression level, and cellular localization of the multidrug resistance (MDR1), breast cancer resistance protein (BCRP), and MRP1. We found that talazoparib efflux was mediated by BCRP and MRP1 pumps in TNBC cells. Talazoparib-SLNs could significantly enhance therapeutic efficacy of talazoparib. Furthermore, talazoparib-SLNs were more effective in the suppression of MDR1, BCRP, and MRP1 gene and protein expression levels than talazoparib. Consequently, this study suggests that talazoparib-SLNs formulation represents a promising therapeutic carrier to reverse MDR-mediated resistance in TNBC.  相似文献   

15.
《Phytomedicine》2008,15(9):754-758
Multidrug resistance (MDR) can limit efficacy of chemotherapy. The best studied mechanism involves P-gp (P-glycoprotein) mediated drug efflux. This study focuses on MDR reversal agents from medicinal plants, which can interfere with P-gp. Rhodamine 123 accumulation assay and flow cytometry analysis were employed to screen for P-gp dependant efflux inhibitors. Lobeline, a piperidine alkaloid from Lobelia inflata and several other Lobelia species, inhibited P-gp activity. MDR reversal potential of lobeline could be demonstrated in cells treated with doxorubicin in that lobeline can sensitize resistant tumor cells at non-toxic concentrations. However, lobeline cannot block BCRP (Breast Cancer Resistance Protein) dependent mitoxantrone efflux. Lobeline could be a good candidate for the development of new MDR reversal agents.  相似文献   

16.
The overexpression of P-glycoprotein plays an important role in the process of multidrug resistance (MDR). P-gp inhibitors are one of the effective strategies to reverse tumor MDR. Novel P-gp inhibitors with phthalazinone scaffolds were designed, synthesized and evaluated. Compound 26 was found to be the most promising for further study. Compound 26 possessed high potency (EC50 = 46.2 ± 3.5 nM) and low cytotoxicity.26 possessed high MDR reversal activity towards doxorubicin-resistant K56/A02 cells. Reversal fold (RF) value reach to 44.26. 26 also increased accumulation of doxorubicin (DOX or ADM) or other MDR-related anticancer drugs with different structures. In conclusion, compound 26 deserves more research for its good features as P-gp inhibitor.  相似文献   

17.
We present a novel lead for inhibitors of multidrug resistance-associated proteins (MRPs). Compound 1 (4-[(5,6,7,8-tetrahydro-4-oxo-4H-[1]benzothieno[2,3-d][1,3]thiazin-2-yl)amino]benzoic acid) was about six times more potent than the known inhibitor MK571 at MRP1, while at MRP2 its effect was similar to that of MK571. Structural analogs were also evaluated. Among them, compound 2, sharing the 4-aminobenzoic acid substructure with 1, also inhibited MRP1. Both derivatives were inactive against P-gp. It can be concluded that their carboxyl group is needed for inhibition of MRPs and accounts for the selectivity of these compounds.  相似文献   

18.
Dihydro-β-agarofuran sesquiterpenes from Celastraceae have been recently shown to bind to human P-glycoprotein (Pgp), functioning as specific, mixed-type inhibitors of its drug transport activity, as well as multidrug resistance (MDR) modulators in vitro. However, nothing is known about whether such compounds are themselves transported by Pgp, or whether they affect Pgp expression as well as its activity, or about the location of their binding site within the protein. We performed transport experiments with a newly synthesized fluorescent sesquiterpene derivative, which retains the anti-Pgp activity of its natural precursor. This probe was poorly transported by Pgp, MRP1, MRP2 and BCRP transporters, compared with classical MDR substrates. Moreover, Pgp did not confer cross-resistance to the most potent dihydro-β-agarofurans, which did not affect Pgp expression levels in several MDR cell lines. Finally, we observed competitive and non-competitive interactions between one of such dihydro-β-agarofurans (Mama12) and classical Pgp modulators such as cyclosporin A, verapamil, progesterone, vinblastine and GF120918. These findings suggest that multidrug ABC transporters do not confer resistance to dihydro-β-agarofurans and could not affect their absorption and biodistribution in the body. Moreover, we mapped their binding site(s) within Pgp, which may prove useful for the rational design of improved modulators based on the structure of dihydro-β-agarofurans.  相似文献   

19.
Lapatinib, a tyrosine kinase inhibitor, is used in the treatment of advanced or metastatic breast cancer overexpressing human epidermal receptor 2 (HER2). Lapatinib can modulate the function of ATP-binding cassette (ABC) transporters (ABCB1 and ABCG2), which are the major mechanism responsible for multidrug resistance (MDR) in cancer. In this study, we investigated the effect of lapatinib on multidrug resistance–associated protein 1 (MRP1 [ABCC1]), MRP2 (ABCC2), MRP4 (ABCC4) and lung relative resistance protein (LRP) drug efflux pumps. We demonstrated that lapatinib could enhance the efficacy of conventional chemotherapeutic agents in MRP1-overexpressing cells in vitro and in vivo, but no effect in MRP2-, MPR4- and LRP-overexpressing cells. Furthermore, lapatinib significantly increased the accumulation of rhodamine 123 (Rho123) and doxorubicin (DOX) in MRP1-overexpressing cells. However, lapatinib did not alter the protein or mRNA expression levels of MRP1. Further studies showed that the level of phosphorylation of AKT and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) were not altered at the indicated concentrations of lapatinib. In conclusion, lapatinib enhanced the efficacy of conventional chemotherapeutic agents in MRP1-overexpressing cells by inhibiting MRP1 transport function without altering the level of AKT or ERK1/2 phosphorylation. These findings will encourage the clinical research of lapatinib combined with conventional chemotherapeutic drugs in MRP1-overexpressing cancer patients.  相似文献   

20.
Molecular interactions of tumor cells with the microenvironment are regarded as onset of chemotherapy resistance, referred to as cell adhesion mediated drug resistance (CAM-DR). Here we elucidate a mechanism of CAM-DR in breast cancer cells in vitro. We show that human MCF-7 and MDA-MB-231 breast cancer cells decrease their sensitivity towards cisplatin, doxorubicin, and mitoxantrone cytotoxicity upon binding to collagen type 1 (COL1) or fibronectin (FN). The intracellular concentrations of doxorubicin and mitoxantrone were decreased upon cell cultivation on COL1, while cellular cisplatin levels remained unaffected. Since doxorubicin and mitoxantrone are transporter substrates, this refers to ATP binding cassette (ABC) efflux transporter activities. The activation of the transporters BCRP, P-gp and MRP1 was shown by fluorescence assays to distinguish the individual input of these transporters to resistance in presence of COL1 and related to their expression levels by western blot. An ABC transporter inhibitor was able to re-sensitize COL1-treated cells for doxorubicin and mitoxantrone toxicity. Antibody-blocking of β1-integrin (ITGB1) induced sensitization towards the indicated cytostatic drugs by attenuating the increased ABC efflux activity. This refers to a key role of ITGB1 for matrix binding and subsequent transporter activation. A downregulation of α2β1 integrin following COL1 binding appears as clear indication for the relationship between ITGB1 and ABC transporters in regulating resistance formation, while knockdown of ITGB1 leads to a significant upregulation of all three transporters. Our data provide evidence for a role of CAM-DR in breast cancer via an ITGB1 – transporter axis and offer promising therapeutic targets for cancer sensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号