首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human mitotic kinesins are potential anticancer drug targets because of their essential role in mitotic cell division. The kinesin Eg5 (Kinesin-5, kif11) has gained much attention in this regard and has many inhibitors in different phases of clinical trials. All drug candidates considered for Eg5 so far binds to the binding site (Site 1) formed by the loop L5, helices α2 and α3 and are uncompetitive to ATP/ADP. Recently, it has been reported that Eg5 also has a second binding site (Site 2) formed by helices α4 and α6. In the current work, we have screened the compounds in the diversity set-III from National Cancer Institute (NCI) and Zinc database to identify potential inhibitors for Eg5 that specifically binds to the site 2. The compounds were ranked based on the glide extra precision docking scores and the top ranked compounds were found to have pyridazine scaffold. The top five compounds were further evaluated for other drug like properties. Stability of protein-ligand complexes were analyzed using molecular dynamic simulations. Our studies suggest that pyridazine analogs have good MDCK, permeability properties and high binding affinity to the human Eg5.  相似文献   

2.
The microtubule motor protein kinesin‐5 (Eg5) provides an outward force on centrosomes, which drives bipolar spindle assembly. Acute inhibition of Eg5 blocks centrosome separation and causes mitotic arrest in human cells, making Eg5 an attractive target for anti‐cancer therapy. Using in vitro directed evolution, we show that human cells treated with Eg5 inhibitors can rapidly acquire the ability to divide in the complete absence of Eg5 activity. We have used these Eg5‐independent cells to study alternative mechanisms of centrosome separation. We uncovered a pathway involving nuclear envelope (NE)‐associated dynein that drives centrosome separation in prophase. This NE‐dynein pathway is essential for bipolar spindle assembly in the absence of Eg5, but also functions in the presence of full Eg5 activity, where it pulls individual centrosomes along the NE and acts in concert with Eg5‐dependent outward pushing forces to coordinate prophase centrosome separation. Together, these results reveal how the forces are produced to drive prophase centrosome separation and identify a novel mechanism of resistance to kinesin‐5 inhibitors.  相似文献   

3.
Pyrenocine A, a phytotoxin, was found to exhibit cytotoxicity against cancer cells with an IC50 value of 2.6–12.9 μM. Live cell imaging analysis revealed that pyrenocine A arrested HeLa cells at the M phase with characteristic ring-shaped chromosomes. Furthermore, as a result of immunofluorescence staining analysis, we found that pyrenocine A resulted in the formation of monopolar spindles in HeLa cells. Monopolar spindles are known to be induced by inhibitors of the kinesin motor protein Eg5 such as monastrol and STLC. Monastrol and STLC induce monopolar spindle formation and M phase arrest via inhibition of the ATPase activity of Eg5. Interestingly, our data revealed that pyrenocine A had no effect on the ATPase activity of Eg5 in vitro, which suggested the compound induces a monopolar spindle by an unknown mechanism. Structure-activity relationship analysis indicates that the enone structure of pyrenocine A is likely to be important for its cytotoxicity. An alkyne-tagged analog of pyrenocine A was synthesized and suppressed proliferation of HeLa cells with an IC50 value of 2.3 μM. We concluded that pyrenocine A induced monopolar spindle formation by a novel mechanism other than direct inhibition of Eg5 motor activity, and the activity of pyrenocine A may suggest a new anticancer mechanism.  相似文献   

4.
Kinesins comprise a superfamily of molecular motors that drive a wide variety of cellular physiologies, from cytoplasmic transport to formation of the bipolar spindle in mitosis. These differing roles are reflected in corresponding polymorphisms in key kinesin structural elements. One of these is a unique loop and stem motif found in all kinesins and referred to as loop 5 (L5). This loop is longest in the mitotic kinesin Eg5 and is the target for a number of small molecule inhibitors, including ispinesib, which is being used in clinical trials in patients with cancer. In this study, we have used x-ray crystallography to identify a new structure of an Eg5-ispinesib complex and have combined this with transient state kinetics to identify a plausible sequence of conformational changes that occur in response to ispinesib binding. Our results demonstrate that ispinesib-induced structural changes in L5 from Eg5 lead to subsequent changes in the conformation of the switch II loop and helix and in the neck linker. We conclude that L5 in Eg5 simultaneously regulates the structure of both the ATP binding site and the motor''s mechanical elements that generate force.  相似文献   

5.
The mitotic kinesin Eg5 plays an essential role in establishing the bipolar spindle. Recently, several antimitotic inhibitors have been shown to share a common binding region on Eg5. Considering the importance of Eg5 as a potential drug target for cancer chemotherapy it is essential to understand the molecular mechanism, by which these agents block Eg5 activity, and to determine the "key residues" crucial for inhibition. Eleven residues in the inhibitor binding pocket were mutated and the effects were monitored by kinetic analysis and mass spectrometry. Mutants R119A, D130A, P131A, I136A, V210A, Y211A and L214A abolish the inhibitory effect of monastrol. Results for W127A and R221A are less striking, but inhibitor constants are still considerably modified compared to wild-type Eg5. Only one residue, Leu214, was found to be essential for inhibition by STLC. W127A, D130A, V210A lead to increased K(i)(app) values, but binding of STLC is still tight. R119A, P131A, Y211A and R221A convert STLC into a classical rather than a tight-binding inhibitor with increased inhibitor constants. These results demonstrate that monastrol and STLC interact with different amino acids within the same binding region, suggesting that this site is highly flexible to accommodate different types of inhibitors. The drug specificity is due to multiple interactions not only with loop L5, but also with residues located in helices alpha2 and alpha3. These results suggest that tumour cells might develop resistance to Eg5 inhibitors, by expressing Eg5 point mutants that retain the enzyme activity, but prevent inhibition, a feature that is observed for certain tubulin inhibitors.  相似文献   

6.
Eg5 is a kinesin whose inhibition leads to cycle arrest during mitosis, making it a potential therapeutic target in cancers. Circular dichroism and isothermal titration calorimetry of our pyrrolotriazine-4-one series of inhibitors with Eg5 motor domain revealed enhanced binding in the presence of adenosine 5′-diphosphate (ADP). Using this information, we studied the interaction of this series with ADP-Eg5 complexes using a thermal shift assay. We measured up to a 7 °C increase in the thermal melting (Tm) of Eg5 for an inhibitor that produced IC50 values of 60 and 130 nM in microtubule-dependent adenosine triphosphatase (ATPase) and cell-based cytotoxicity assays, respectively. In general, the inhibitor potency of the pyrrolotriazine-4-one series in in vitro biological assays correlated with the magnitude of the thermal stability enhancement of ADP-Eg5. The thermal shift assay also confirmed direct binding of Eg5 inhibitors identified in a high-throughput screen and demonstrated that the thermal shift assay is applicable to a range of chemotypes and can be useful in evaluating both potent (nM) and relatively weakly binding (μM) leads. Overall, the thermal shift assay was found to be an excellent biophysical method for evaluating direct binding of a large number of compounds to Eg5, and it complemented the catalytic assay screens by providing an alternative determination of inhibitor potency.  相似文献   

7.
Taxanes are powerful chemotherapy agents that target the microtubule cytoskeleton, leading to mitotic arrest and cell death; however, their clinical efficacy has been hampered due to the development of drug resistance. Therefore, other proteins involved in spindle assembly are being examined as potential targets for anticancer therapy. The mitotic kinesin, Eg5 is critical for proper spindle assembly; as such, inhibition of Eg5 leads to mitotic arrest making it a potential anticancer target. We wanted to validate Eg5 as a therapeutic target and determine if Eg5 inhibitors retain activity in Taxol-resistant cells. Using affinity chromatography we first show that the compound HR22C16 is an Eg5 inhibitor and does not interact with other microtubule motor proteins tested. Furthermore, HR22C16 along with its analogs, inhibit cell survival in both Taxol-sensitive and -resistant ovarian cancer cells with at least 15-fold greater efficacy than monastrol, the first generation Eg5 inhibitor. Further analysis with HR22C16-A1, the most potent HR22C16 analog, showed that it retains efficacy in PgP-overexpressing cells, suggesting that it is not a PgP substrate. We further show that HR22C16-A1 induces cell death following mitotic arrest via the intrinsic apoptotic pathway. Interestingly, the combination of HR22C16-A1 with Taxol results in an antagonistic antiproliferative and antimitotic effect, possibly due to the abrogation of Taxol-induced mitotic spindles by HR22C16-A1. Taken together, our results show that Eg5 inhibitors have promising anticancer activity and can be potentially used to overcome Taxol resistance in the clinical setting.  相似文献   

8.
The mitotic kinesin Eg5 (or KSP) is a crucial player in the development and function of the mitotic spindle. Inhibition of this protein leads to cell cycle arrest and apoptosis without interfering with other microtubule-dependent processes. Therefore, it is a potential target in cancer therapy. Here, we report the synthesis and biological evaluation of a small library of molecules based on the structure of the known Eg5 inhibitor HR22C16. One of these derivatives (compound trans-24) proved to be a potent and specific Eg5 inhibitor.  相似文献   

9.
Small-molecule inhibitors of kinesin-5 (refs. 1-3), a protein essential for eukaryotic cell division, represent alternatives to antimitotic agents that target tubulin. While tubulin is needed for multiple intracellular processes, the known functions of kinesin-5 are limited to dividing cells, making it likely that kinesin-5 inhibitors would have fewer side effects than do tubulin-targeting drugs. Kinesin-5 inhibitors, such as monastrol, act through poorly understood allosteric mechanisms, not competing with ATP binding. Moreover, the microscopic mechanism of full-length kinesin-5 motility is not known. Here we characterize the motile properties and allosteric inhibition of Eg5, a vertebrate kinesin-5, using a GFP fusion protein in single-molecule fluorescence assays. We find that Eg5 is a processive kinesin whose motility includes, in addition to ATP-dependent directional motion, a diffusive component not requiring ATP hydrolysis. Monastrol suppresses the directional processive motility of microtubule-bound Eg5. These data on Eg5's allosteric inhibition will impact these inhibitors' use as probes and development as chemotherapeutic agents.  相似文献   

10.
Earlier studies have established two unusual features in the cell division cycle of Entamoeba histolytica. First, microtubules form a radial assembly instead of a bipolar mitotic spindle, and second, the genome content of E. histolytica cells varied from 1x to 6x or more. In this study, Eh Klp5 was identified as a divergent member of the BimC kinesin family that is known to regulate formation and stabilization of the mitotic spindle in other eukaryotes. In contrast to earlier studies, we show here that bipolar microtubular spindles were formed in E. histolytica but were visible only in 8-12% of the cells after treatment with taxol. The number of bipolar spindles was significantly increased in Eh Klp5 stable transformants (20-25%) whereas Eh Klp5 double-stranded RNA (dsRNA) transformants did not show any spindles (< 1%). The genome content of Eh Klp5 stable transformants was regulated between 1x and 2x unlike control cells. Binucleated cells accumulated in Eh Klp5 dsRNA transformants and after inhibition of Eh Klp5 with small molecule inhibitors in control cells, suggesting that cytokinesis was delayed in the absence of Eh Klp5. Taken together, our results indicate that Eh Klp5 regulates microtubular assembly, genome content and cell division in E. histolytica. Additionally, Eh Klp5 showed alterations in its drug-binding site compared with its human homologue, Hs Eg5 and this was reflected in its reduced sensitivity to Eg5 inhibitors - monastrol and HR22C16 analogues.  相似文献   

11.
Cyclin-dependent kinase inhibition is considered a promising target for cancer treatment for its crucial role in cell cycle regulation. Pyrazolo pyrimidine derivatives were well established for their antitumor activity via CDK2 inhibition. In this research, new series of pyrazolopyrimidine derivatives (4–15) was designed and synthesised as novel CDK2 inhibitors. The anti-proliferative activities against MCF-7, HCT-116, and HepG-2 were used to evaluate their anticancer activity as novel CDK2 inhibitors. Most of the compounds showed superior cytotoxic activity against MCF-7 and HCT-116 compared to Sorafenib. Only compounds 8, 14, and 15 showed potent activity against HepG-2. The CDK2/cyclin A2 enzyme inhibitory activity was tested for all synthesised compounds. Compound 15 showed the most significant inhibitory activity with IC50 0.061 ± 0.003 µM. It exerted remarkable alteration in Pre G1 and S phase cell cycle progression and caused apoptosis in HCT cells. In addition, the normal cell line cytotoxicity for compound 15 was assigned revealing low cytotoxic results in normal cells rather than cancer cells. Molecular docking was achieved on the designed compounds and confirmed the two essential hydrogen binding with Leu83 in CDK2 active site. In silico ADMET studies and drug-likeness showed proper pharmacokinetic properties which helped in structure requirements prediction for the observed antitumor activity.  相似文献   

12.
Members of the kinesin superfamily are involved in key functions during intracellular transport and cell division. Their involvement in cell division makes certain kinesins potential targets for drug development in cancer chemotherapy. The two most advanced kinesin targets are Eg5 and CENP-E with inhibitors in clinical trials. Other mitotic kinesins are also being investigated for their potential as prospective drug targets. One recently identified novel potential cancer therapeutic target is the Mitotic kinesin-like protein 2 (MKLP-2), a member of the kinesin-6 family, which plays an essential role during cytokinesis. Previous studies have shown that inhibition of MKLP-2 leads to binucleated cells due to failure of cytokinesis. We have previously identified compound 1 (paprotrain) as the first selective inhibitor of MKLP-2. Herein we describe the synthesis and biological evaluation of new analogs of 1. Our structure–activity relationship (SAR) study reveals the key chemical elements in the paprotrain family necessary for MKLP-2 inhibition. We have successfully identified one MKLP-2 inhibitor 9a that is more potent than paprotrain. In addition, in vitro analysis of a panel of kinesins revealed that this compound is selective for MKLP-2 compared to other kinesins tested and also does not have an effect on microtubule dynamics. Upon testing in different cancer cell lines, we find that the more potent paprotrain analog is also more active than paprotrain in 10 different cancer cell lines. Increased selectivity and higher potency is therefore a step forward toward establishing MKLP-2 as a potential cancer drug target.  相似文献   

13.
Inhibition of Eg5 represents a novel approach for the treatment of cancer. Here, we report the synthesis and structure-activity relationship of S-trityl-L-cysteine (STLC) derivatives as Eg5 inhibitors. Some of these derivatives such as 4f demonstrated enhanced inhibitory activity against Eg5 and induced mitotic arrest with characteristic monoastral spindles in HeLa cells.  相似文献   

14.
Although histone deacetylase inhibitors (HDACi) have shown promising antitumor effects in specific types of blood cancer, their effects on solid tumors are limited. Previously, we developed LMK235 (5), a class I and class IIb preferential HDACi with chemosensitizing effects on breast cancer, ovarian cancer and HNSCC. Based on its promising effects on solid tumor cells, we modified the cap group of 5 to improve its anticancer activity. The tri- and dimethoxy-phenyl substituted compounds 13a and 13d turned out to be the most potent HDAC inhibitors of this study. The isoform profiling revealed a dual HDAC2/HDAC6 inhibition profile, which was confirmed by the acetylation of α-tubulin and histone H3 in Cal27 and Cal27CisR. In combination with cisplatin, both compounds enhanced the cisplatin-induced cytotoxicity via caspase-3/7 activation. The effect was more pronounced in the cisplatin resistant subline Cal27CisR. The pretreatment with 13d resulted in a complete resensitisation of Cal27CisR with IC50 values in the range of the parental cell line. Therefore, 13d may serve as an epigenetic tool to analyze and modulate the cisplatin resistance of solid tumors.  相似文献   

15.
Success of mitosis depends upon the coordinated and regulated activity of many cellular factors, including kinesin motor proteins, which are required for the assembly and function of the mitotic spindle. Eg5 is a kinesin implicated in the formation of the bipolar spindle and its movement prior to and during anaphase. We have determined the crystal structure of the Eg5 motor domain with ADP-Mg bound. This structure revealed a new intramolecular binding site of the neck-linker. In other kinesins, the neck-linker has been shown to be a critical mechanical element for force generation. The neck-linker of conventional kinesin is believed to undergo an ordered-to-disordered transition as it translocates along a microtubule. The structure of Eg5 showed an ordered neck-linker conformation in a position never observed previously. The docking of the neck-linker relies upon residues conserved only in the Eg5 subfamily of kinesin motors. Based on this new information, we suggest that the neck-linker of Eg5 may undergo an ordered-to-ordered transition during force production. This ratchet-like mechanism is consistent with the biological activity of Eg5.  相似文献   

16.
Eg5 is a slow, plus-end-directed microtubule-based motor of the BimC kinesin family that is essential for bipolar spindle formation during eukaryotic cell division. We have analyzed two human Eg5/KSP motors, Eg5-367 and Eg5-437, and both are monomeric based on results from sedimentation velocity and sedimentation equilibrium centrifugation as well as analytical gel filtration. The steady-state parameters were: for Eg5-367: k(cat) = 5.5 s(-1), K(1/2,Mt) = 0.7 microm, and K(m,ATP) = 25 microm; and for Eg5-437: k(cat) = 2.9 s(-1), K(1/2,Mt) = 4.5 microm, and K(m,ATP) = 19 microm. 2'(3')-O-(N-Methylanthraniloyl)-ATP (mantATP) binding was rapid at 2-3 microm(-1)s(-1), followed immediately by ATP hydrolysis at 15 s(-1). ATP-dependent Mt.Eg5 dissociation was relatively slow and rate-limiting at 8 s(-1) with mantADP release at 40 s(-1). Surprisingly, Eg5-367 binds microtubules more effectively (11 microm(-1)s(-1)) than Eg5-437 (0.7 microm(-1)s(-1)), consistent with the steady-state K(1/2,Mt) and the mantADP release K(1/2,Mt). These results indicate that the ATPase pathway for monomeric Eg5 is more similar to conventional kinesin than the spindle motors Ncd and Kar3, where ADP product release is rate-limiting for steady-state turnover.  相似文献   

17.
A series of twenty-one 3,4-dihydropyrimidine derivatives bearing the heterocyclic 1,3-benzodioxole at position 4 in addition to different substituents at positions 2, 3 and 5 were designed and synthesized as monastrol analogs. The novel synthesized compounds were screened for their cytotoxic activity towards 60 cancer cell lines according to NCI (USA) protocol. Compounds 10b and 15 showed the best antitumor activity against most cell lines. Compound 15 was subsequently tested in 5-doses mode and displayed high selectivity towards CNS, prostate and leukemia subpanel with selectivity ratios of 22.30, 15.38 and 12.56, respectively at GI50 level. The IC50 of compounds 9d, 10b, 12, 15 and 16 against kinesin enzyme were 3.86 ± 0.12, 10.70 ± 0.35, 3.95 ± 0.12, 4.36 ± 0.14, and 14.07 ± 0.45 μM respectively, while the prototype compound, monastrol, reported IC50 value of 20 ± 0.42 μM. The safest compound among test compounds against normal cell line (HEK 293) is 10b with IC50 value of 62.02 ± 2.42 µM/ml in comparison to doxorubicin (IC50 = 11.34 ± 0.44 µM/ml). Cell cycle analysis of SNB-75 cells treated with compound 15 showed cell cycle arrest at G2/M phase. Further, the assay of levels of active caspase-3 and caspase-9 was investigated. Moreover, Molecular docking of compounds, 9d, 10b, 12, 15, 16, monastrol and mon-97 was performed to study the interaction between inhibitors and the kinesin spindle protein allosteric binding site.  相似文献   

18.
A novel series of 1,3,4-thiadiazole-thiazolone hybrids 5av were designed, synthesized, characterized, and evaluated against the basal and the microtubule (MT)-stimulated ATPase activity of Eg5. From the evaluated derivatives, 5h displayed the highest inhibition with an IC50 value of 13.2?µM against the MT-stimulated Eg5 ATPase activity. Similarly, compounds 5f and 5i also presented encouraging inhibition with IC50 of 17.2?µM and 20.2?µM, respectively. A brief structure–activity relationship (SAR) analysis indicated that 2-chloro and 4-nitro substituents on the phenyl ring of the thiazolone motif contributed significantly to enzyme inhibition. An in silico molecular docking study using the crystal structure of Eg5 further supported the SAR and reasoned the importance of crucial molecular protein–ligand interactions in influencing the inhibition of the ATPase activity of Eg5. The magnitude of the electron-withdrawing functionalities over the hybrids and the critical molecular interactions contributed towards higher in vitro potency of the compounds. The drug-like properties of the synthesized compounds 5av were also calculated based on the Lipinski’s rule of five and in silico computation of key pharmacokinetic parameters (ADME). Thus, the present work unveils these hybrid molecules as novel Eg5 inhibitors with promising drug-like properties for future development.  相似文献   

19.
During early embryonic cycles, the time required for mitotic spindle assembly must match the autonomous cell cycle oscillations because a lack of coordination between these two processes will result in chromosome segregation errors. Members of the widely conserved BimC kinesin family are essential for spindle formation in all eukaryotes, and complete loss of BimC function results in monopolar spindles that have two spindle poles that are not separated. However, the precise roles of BimC motor activity in the spindle assembly process are not known. To examine the contribution of BimC kinesin's motor activity to spindle assembly, we generated and characterized mutants of Eg5, a vertebrate BimC kinesin, with reduced in vitro microtubule-gliding velocities. In Xenopus egg extracts, we replaced endogenous Eg5 with recombinant wild-type or mutant motor proteins. By using centrosome-dependent and centrosome-independent spindle assembly assays, we found that mechanisms that determine spindle size and shape were robust to approximately 6-fold reductions in Eg5 motility. However, the spindle assembly process was slower when Eg5 motor function was impaired. This role of Eg5 was independent of its contribution to centrosome separation. We provide evidence that Eg5 is a rate-limiting component of the cellular machinery that drives spindle assembly in vertebrates.  相似文献   

20.
The mitotic kinesin KSP (kinesin spindle protein, or Eg5) has an essential role in centrosome separation and formation of the bipolar mitotic spindle. Its exclusive involvement in the mitotic spindle of proliferating cells presents an opportunity for developing new anticancer agents with reduced side effects relative to antimitotics that target tubulin. Ispinesib is an allosteric small-molecule KSP inhibitor in phase 2 clinical trials. Mutations that attenuate ispinesib binding to KSP have been identified, which highlights the need for inhibitors that target different binding sites. We describe a new class of selective KSP inhibitors that are active against ispinesib-resistant forms of KSP. These ATP-competitive KSP inhibitors do not bind in the nucleotide binding pocket. Cumulative data from generation of resistant cells, site-directed mutagenesis and photo-affinity labeling suggest that they compete with ATP binding via a novel allosteric mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号