首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Inorganica chimica acta》1988,149(2):193-208
The reactions of Fe(CO)3(R-DAB; R1, H(4e)) (1a: R = i-Pr, R1 = H; 1b: R = t-Bu, R1 = H; 1c: R = c-Hex, R1 = H; 1e: R = p-Tol, R1 = H; 1f: R = i-Pr, R1 = Me) with Ru3(CO)12 and of Ru(CO)3(R-DAB; R1, H(4e)) (2a: R = i-Pr, R1 = H; 2d: R = CH(i-Pr)2, R1 = H) with Fe2(CO)9 in refluxing heptane both afforded FeRu(CO)6(R-DAB; R1, H(6e)) (3) in yields between 50 and 65%.The coordination mode of the ligand has been studied by a single crystal X-ray structure determination of FeRu(CO)6(i-Pr-DAB(6e)) (3a). Crystals of 3a are monoclinic, space group P21/a, with four molecules in a unit cell of dimensions: a = 22.436(3), b = 8.136(3), c = 10.266(1) Å and β = 99.57(1)°. The structure was refined to R = 0.049 and Rw = 0.052 using 3045 reflections above the 2.5σ(I) level. The molecule contains an FeRu bond of 2.6602(9) Å, three terminally bonded carbonyls to Fe, three terminally bonded carbonyls to Ru and bridging 6e donating i-Pr-DAB ligand. The i-Pr-DAB ligand is coordinated to Ru via N(1) and N(2) occupying an apical and equatorial site respectively (RuN(1) = 2.138(4) RuN(2) = 2.102(3) Å). The C(2)N(2) moiety of the ligand is η2-coordinated to Fe with C(2) in an apical and N(2) in an equatorial site (FeC(2) = 2.070(5) and FeN(2) = 1.942(3) Å).The 1H and 13C NMR data indicate that in all FeRu(CO)6(R-DAB(6e)) complexes (3a to 3f) exclusively η2-CN coordination to the Fe atom and not to the Ru atom is present irrespective of whether 3 was prepared by reaction of Fe(CO)3(R-DAB(4e)) (1) with Ru3(CO)12 or by reaction of Ru(CO)3(R-DAB(4e)) (2) with Fe2(CO)9. In the case of FeRu(CO)6(i-Pr-DAB; Me, H(6e)) (3f) the NMR data show that only the complex with the C(Me)N moiety of the ligand σ-N coordinated to the Ru atom and the C(H)N moiety η2-coordinated to the Fe atom was formed. Variable temperature NMR experiments up to 140 °C showed that the α-diimine ligand in 3a is stereochemically rigid bonded.FeRu(CO)6(R-DAB(6e)) (3a and 3e) reacted with allene to give FeRu(CO)5(R-DAB(4e))(C3H4) (4a and 4e). A single crystal X-ray structure determination of FeRu(CO)5(i-Pr-DAB(4e))(C3H4) (4a) was performed. Crystals of 4a are triclinic, space group P1, with two molecules in a unit cell of dimensions: a = 9.7882(7), b = 12.2609(9), c = 8.3343(7) Å, α = 99.77(1)°, β = 91.47(1)° and γ = 86.00(1)°. The structure was refined to R = 0.028 and Rw = 0.043 using 4598 reflections above the 2σ(I) level. The molecule contains an FeRu bond of 2.7405(7) Å and three terminally bonded carbonyls to iron. Two carbonyls are terminally bonded to the Ru atom together with a chelating 4e donating i-Pr-DAB ligand [RuN = 2.110(1) (mean)]. The allene ligand is coordinated in an η3-allylic fashion to the Fe atom while the central carbon of the allene moiety is σ-bonded to the Ru atom (FeC(14) = 2.166(3), FeC(15) = 1.970(2), FeC(16) = 2.127(3) and RuC(15) = 2.075(2) Å). The 1H and 13C NMR data show that in solution the coordination modes of the R-DAB and the allene ligands are the same as in the solid state.Thermolysis reactions of 3a with R-DAB or carbodiimides gave decomposition and did not afford C(imine)C(reactant) coupling products. Thermolysis reactions of 3a with M3(CO)12 (M = Ru, Os) and Me3NO gave decomposition. When the reaction of 3a with Me3NO was performed in the presence of dimethylacetylenedicarboxylate (DMADC) the known complex FeRu(CO)4(i-Pr-DAB(8e))(DMADC) (5a) was formed in low yield. In 5a the R-DAB ligand is in the 8e coordination mode with both the imine bonds η2-coordinated to iron. The acetylene ligand is coordinated in a bridging fashion, parallel with the FeRu bond.  相似文献   

2.
Three new dammarane-type sapogenins (1, 3, and 5) together with two known ones (2 and 4) were isolated from the total hydrolyzed saponins extracted from Panax ginseng berry. Their structures were elucidated using a combination of 1D and 2D 1H and 13C NMR spectra and mass spectroscopy as 20(R)-25-methoxyl-dammarane-3β,12β,20-triol (1), 20(R)-25-methoxyl-dammarane-3β,6α,12β,20-tetrol (2), 20(R)-20-methoxyl-dammarane-3β,12β,25-triol (3), 20(R)-20,25-dimethoxyl-dammarane-3β,12β-diol (4), and (12R,20S,24S)-20,24-; 12,24-diepoxy-dammarane-3β-ol (5). Their antitumor activities were evaluated in six human cancer cell lines. The novel compounds 1 and 3 showed significant cytotoxic activity against the six cell lines. The IC50 values of 3 against HepG2, Colon205, and HL-60 were the lowest (8.78, 8.64, and 3.98 μM, respectively). Compounds 1 and 20(S)-25-OCH3-PPD, which are a pair of configuration isomers, showed a 10- to 100-fold greater growth inhibition than ginsenoside-Rg3 (an anti-cancer clinical agent in China). The data presented here may be useful for the development of novel anti-cancer agents.  相似文献   

3.
An unusual lanostane-type triterpenoid, spiroinonotsuoxodiol (1), and two lanostane-type triterpenoids, inonotsudiol A (2) and inonotsuoxodiol A (3), were isolated from the sclerotia of Inonotus obliquus. Their structures were determined to be (3S,7S,9R)-3,7-dihydroxy-7(8  9)abeo-lanost-24-en-8-one (1), lanosta-8,24-dien-3β,11β-diol (2), and (22R)-3β,22-dihydroxylanosta-8,24-dien-11-one (3) on the basis of NMR spectroscopy, including 1D and 2D (1H–1H COSY, NOESY, HMQC, HMBC) NMR, and FABMS. Compounds 13 showed moderate activity against cultured P388, L1210, HL-60 and KB cells.  相似文献   

4.
Phytochemical investigation of the rhizomes of Smilax trinervula led to isolation and structure elucidation of eight lignan glycosides, including five new lignans, namely, (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4′-O-β-d-glucopyranoside (1), (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4-O-β-d- glucopyranoside (2) (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-4′, 7-epoxy-8, 5′-neolignan 9′-O-β-d-glucopyranoside (3), (7R, 8R)-4, 9, 9′-trihydroxy-3, 5-dimethoxy-7.O.4′, 8.O.3′- neolignan 9′-O-β-d-glucopyranoside (4), and (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-8, 4′-oxy-neolignan 4-O-β-d-glucopyranoside (5), along with three known compounds (6-8). Their structures were established mainly on the basis of 1D and 2D NMR spectral data, ESI–MS and comparison with the literature. Compounds 1-8 were tested in vitro for their cytotoxic activity against four human tumor cell lines (SH-SY5Y, SGC-7901, HCT-116, Lovo). Compounds 3 and 5 exhibited cytotoxic activity against Lovo cells, with IC50 value of 10.4 μM and 8.5 μM, respectively.  相似文献   

5.
In a continuing investigation into the pharmacophores and structure–activity relationship (SAR) of (3′R,4′R)-3′,4′-di-O-(S)-camphanoyl-(+)-cis-khellactone (DCK) as a potent anti-HIV agent, 2′-monomethyl substituted 1′-oxa, 1′-thia, 1′-sulfoxide, and 1′-sulfone analogs were synthesized and evaluated for inhibition of HIV-1 replication in H9 lymphocytes. Among them, 2′S-monomethyl-4-methyl DCK (5a)3 and 2′S-monomethyl-1′-thia-4-methyl DCK (7a) exhibited potent anti-HIV activity with EC50 values of 40.2 and 39.1 nM and remarkable therapeutic indexes of 705 and 1000, respectively, which were better than those of the lead compound DCK in the same assay. In contrast, the corresponding isomeric 2′R-monomethyl-4-methyl DCK (6) and 2′R-monomethyl-1′-thia-4-methyl DCK (8) showed much weaker inhibitory activity against HIV-1 replication. Therefore, the bioassay results suggest that the spatial orientation of the 2′-methyl group in DCK analogs can have important effects on anti-HIV activity of this compound class.  相似文献   

6.
Three novel macrocyclic diorganotin(IV) compounds of the type: {[R10(SnO)3(SnOH)2]HnXOm}2 · L (n=1, m=4, R=PhCH2, X=P, L=0, 1; n=0, m=4, R=PhCH2, X=S, L=4H2O, 2; n=0, m=3, R=n-Bu, X=N, L=0, 3) were synthesized by the reaction of (PhCH2)2SnCl2 with Na2HnXO4 (n=1, X=P; n=0, X=S) or (n-Bu)2SnCl2 with NaNO3. All the compounds 1, 2 and 3 are characterized by elemental, IR and X-ray diffraction analyses. X-ray data reveal that a macrocyclic structure with two centrosymmetric ladders of hydrolysis exists in the crystals of the three compounds. The geometry about each tin atom involved is trigonal bipyramidal.  相似文献   

7.
Microbial transformation of the steroidal sapogenin diosgenin (1) by resting cells of the filamentous fungus, Cunninghamella echinulata CGMCC 3.2716 was studied. Four metabolites were isolated and unambiguously characterized as (25R)-spirost-5-ene-3β,7β-diol-11-one (2), (25R)-spirost-5-ene-3β,7β-diol (3), (25R)-spirost-5-ene-3β,7β,11α-triol (4), and (25R)-spirost-5-ene-3β,7β,12β-triol (5), by various spectroscopic methods (1H, 13C NMR, DEPT, 1H–1H COSY, HMBC, HSQC and NOESY). Compound 2 is a new metabolite. The NMR data and full assignment for the known metabolites (25R)-spirost-5-ene-3β,7β-diol (3) and (25R)-spirost-5-ene-3β,7β,11α-triol (4) are described here for the first time. The biotransformation characteristics observed included were C-7β, C-11α and C-12β hydroxylations. Compounds 1–5 exhibited no significant cytotoxic activity to human glioma cell line U87.  相似文献   

8.
The preparation is reported of [(NH3)3Pt(9- MeA)] X2 (9-MeA = 9-methyladenine) with XCl (1a) and XClO4 (1b) and of trans-[(OH)2Pt(NH3)3- (9-MeA)]X2 with XCl (2a) and XClO4 (2b), and the crystal structure of 1b. [(NH3)3Pt(C6H7N5)](ClO4)2 crystallizes in space group P21/n with a = 20.810(7) Å, b = 7.697(3) Å, c = 10.567(4) Å, β = 91.57(6)°, Z = 4. The structure was refined to R = 0.054, Rw = 0.063. In all four compounds Pt coordination is through N7 of 9-MeA, as is evident from 3J coupling between H8 of the adenine ring and 195Pt. Pt(II) and Pt(IV) complexes can be differentiated on the basis of different 3J values, larger for Pt(II) than for Pt(IV) by a factor of 1.57 (av). In Me2SO-d6, hydrogen bonding occurs between Cl? and C(8)H of 9-MeA as weil as between Cl? and the NH3 groups in the case of the Pt(II) complex 1a. Protonation of the 9-MeA ligands was followed using 1H NMR spectroscopy and pKa values for the N1 protonated 9-MeA ligands were determined in D2O. They are 1.9 for 1a and 1.8 for 2a, which compares with 4.5 for the non-platinated 9-MeA. Possible consequences for hydrogen bonding with the complementary bases thymine or uracil are discussed briefly. Protonation of the OH groups in the Pt(IV) complexes has been shown not to occur above pH 1.  相似文献   

9.
Ligands containing the 2-organochalcogenomethylpyridine motif with substituents in the 4- or 6-position of the pyridyl ring, R4,R6-pyCH2ER1 [R4 = R6 = H, ER1 = SMe (1), SeMe (2), SPh (6), SePh (7); R4 = Me, R6 = H, ER1 = SMe (3), SPh (8), SePh (9); R4 = H, R6 = Me, ER1 = SMe (4), SPh (10), SePh (11); R4 = H, R6 = Ph, ER1 = SMe (5), SPh (12), SePh (13)] are obtained on the reaction of R4,R6-pyMe with LiBun followed by R1EER1. On reaction with PdCl2(NCMe)2, the ligands with a 6-phenyl substituent form cyclopalladated species PdCl{6-(o-C6H4)pyCH2ER1-C,N,E} (5a, 12a, 13a) with the structure of 13a (ER1 = SePh) confirmed by X-ray crystallography; other ligands form complexes of stoichiometry PdCl2(R4,R6-pyCH2ER1). Complexes with R6 = H are monomeric with N,E-bidentate configurations, confirmed by structural analysis for 3a (R4 = Me, ER1 = SMe), 7a (R4 = H, ER1 = SePh) and 9a (R4 = Me, ER1 = SePh). Two of the 6-methyl substituted complexes examined by X-ray crystallography are oligomeric with trans-PdCl2(N,E) motifs and bridging ligands, trimeric [PdCl2(μ-6-MepyCH2SPh-N,S)]3 (10a) and dimeric [PdCl2(μ-6-MepyCH2SePh-N,Se)]2 (11a). This behaviour is attributed to avoidance of the Me···Cl interaction that would occur in the cis-bidentate configuration if the pyridyl plane had the same orientation with respect to the coordination plane as observed for 3a, 7a and 9a [dihedral angles 8.0(2)-16.8(2)°]. When examined as precatalysts for the Mizoroki-Heck reaction of n-butyl acrylate with aryl halides in N,N-dimethylacetamide at 120 °C, the complexes exhibit the anticipated trends in yield (ArI > ArBr > ArCl, higher yield for electron withdrawing substituents in 4-RC6H4Br and 4-RC6H4Cl). The most active precatalysts are PdCl2(R4-pyCH2SMe-N,S) (R = H (1a), Me (3a)); complexes of the selenium containing ligands exhibit very low activity. For closely related ligands, the changes SMe to SPh, 6-H to 6-Me, and 6-H to 6-Ph lead to lower activity, consistent with involvement of both the pyridyl and chalcogen donors in reactions involving aryl bromides. The precatalyst PdCl2(pyCH2SMe-N,S) (1a) exhibits higher activity for the reaction of aryl chlorides in Bun4NCl at 120 °C as a solvent under non-aqueous ionic liquid (NAIL) conditions.  相似文献   

10.
The benzothiazoline (1, R1 = R2 = H) formed by the reaction of d-galactose with o-aminobenzenethiol gives bis[o-(α-d-galactofuranosylamino)benzenethiol]-mercury(II) (2, R = H) on treatment with mercury(II) acetate in refluxing acetic acid. O-Acetylation of the chelate occurs smoothly, and demercuration of the product with hydrogen sulphide gives the thiol (3, R1 - Ac, R2 = R3 = H) which, with catalytic acid or when kept in chloroform solution, isomerises to the thiazoline compound (1, R1 = Ac, R2 = H). Under mild acetylating conditions, this product (and the starting material) gives diastereoisomeric 2,3,4,5,6-penta-acetates (1, R1 = R2 = Ac), but appreciable reversion to thiol occurs with acyl chlorides, with the consequence that thioesters (3, R1 = R2 = Ac, R3 = H; R1 = Ac, R2 = Bz, R3 = H) were major products. The value of the tetraester (1, R1 = Ac; R2 = H) as a means of obtaining galactose derivatives specifically modified at C-4 is therefore limited.  相似文献   

11.
In this work, we describe the regioselective synthesis of some new dispiro[indene-2,3′-pyrrolidine-2′,3″-indoline]-1,2″(3H)-dione 4-29 attributable to the previously described methods. All the new chemical entities were assessed in-vitro as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes; while no significant inhibitory activity for the tested compounds were assigned on AChE, compounds 4, 27, 29, 28 and 15 were the most active against BChE enzyme with IC50 = 13.7 µM, 21.8 µM, 22.1 µM, 22.9 µM and 24.9 µM respectively compared to Donepezil (IC50 = 0.72 µM). Compound 4 was found to have a mixed type mode of inhibition, the bioactivity of the new chemical entities (N = 26, n = 5, R2 = 0.893, R2 cvOO = 0.831, R2 cvMO = 0.838, F = 33.32, s2 = 0.003) was elucidated via a statistically significant QSAR model utilizing CODESSA-Pro software that validated the observed results.  相似文献   

12.
13.
The reaction between Zn(OAc)2 · 2H2O (1) and the 3-iminoisoindolin-1-ones H2NCNC(O)C6R1R2R3R4 (R1-R4 = H 2; R1, R4 = H, R2, R3 = Cl 3; R1, R3, R4 = H, R2 = Me 4) in EtCN at 70 °C for ca. 12 h affords the novel family of complexes [Zn{H2NCNC(O)C6R1R2R3R4}2(OAc)2] (R1-R4 = H 5; R1, R4 = H, R2, R3 = Cl 6; R1, R3, R4 = H, R2 = Me 7) in excellent (90% and 93% for 5 and 6, correspondingly) to good (64% for 7) yields. The isolated compounds were characterized by elemental analyses (C, H, N), IR, NMR and ESI+-MS. X-ray diffraction data for 2 and 5 indicate that both free (2) and ligated (5) 3-iminoisoindolin-1-ones exist in the zwitterionic form.  相似文献   

14.
The cytotoxicities against cancer cells (HL-60, HeLa) and insect cells (Sf9) of four stereoisomers of 6-(2-hydroxy-6-phenylhexyl)− 5,6-dihydro-2H-pyran-2-one (1) were evaluated, and then their structure-activity relationships examined. The 2′-dehydroxy derivative 5 of (6 R,2′R)- and (6 R,2′S)-1 showed the highest activity against HeLa cells (IC50 = 1.4 μM). To evaluate the effect of the 2′-hydroxy group of 1, 6R-and 6S-oxetane derivatives were also synthesized and their activities examined. Against HeLa and HL-60 cells, the activities of the less potent stereoisomers were enhanced 3–4-fold by the introduction of the oxetane moieties at the 2′-position. Against the insect cell line (Sf9), phenyl derivative 7 showed the highest activity with an IC50 value of 8.0 μM.  相似文献   

15.
The crystal structures of the title compounds, M(S2COiC3H7)3, M = As(III), (1); Sb(III), (2); and Bi(III), (3) have been determined by three dimensional X-ray diffraction techniques and refined by a least square method. Crystals of (1) and (2) are isomorphous and both crystallize in the rhombohedral space group R3, with unit cell parameters for (1) ahex = 11.559(2), chex = 28.131(3) Å and for (2) ahex = 11.696(2) and chex = 28.135(2) Å, Z = 6. The central metal atom in both (1) and (2) is coordinated by three asymmetrically chelating xanthate ligands [AsS 2.305(2) and 2.978(2) Å and SbS 2.508(1) and 3.006(1) Å] which form a distorted octahedral environment consistent with the presence of a stereochemically active lone pair of electrons. Crystals of (3) are orthorhombic, space group Pnma, Z = 4 with dimensions a = 11.003(3), b = 20.833(4) and c = 9.428(2) Å. The environment of the bismuth atom in (3) is seven coordinate and is comprised of six sulphur atoms, derived from three asymmetrically coordinating xanthate ligands, and a bridging sulphur atom from a neighbouring molecule which results in the formation a polymeric array. For (1) final R and RW 0.050 and 0.047 respectively for 936 reflections [I ? 3σ(I); (2) R 0.040, Rw 0.040 for 1455 reflections I ? 2σ(I)]; and (3) R 0.052, Rw 0.039 for 1796 reflections [I ? 2σ(I).  相似文献   

16.
The copper(II) complex [Cu{(R,R)-1}] in which (R)-H21 is 1,6-bis(3-ethoxy-2-hydroxyphenyl)-(3R,4R)-(?)-cyclohexane-1,2-diyl-2,5-diazahexa-1,5-diene possesses an O4-donor cavity that can bind Pb2+, Cd2+ and Eu3+. The single crystal structures of [Cu(OH2){(R,R)-1}Pb(ONO2)2], {[Cu{(R,R)-1}Cd(ONO2)(OH2)2][NO3].MeOH}.[Cu{(R,R)-1}] and [Cu{(R,R)-1}Eu(O2NO)3] are presented. The co-crystallization of [Cu{(R,R)-1}Cd(ONO2)(OH2)2][NO3] and [Cu{(R,R)-1}] appears to be driven by hydrogen-bonded host–guest interactions between each axial water ligand in [Cu{(R,R)-1}Cd(ONO2)(OH2)2]+ with the O4-domain of [Cu{(R,R)-1}]. When the ligand scaffold is changed from cyclohexane-1,2-diyl to 1,1′-binaphthyl to give (R)-H22, the N2O2-cavity is unable to bind copper(II) in its preferred square planar environment. The single crystal structure of [Zn{(R)-2}] confirms the presence of tetrahedral zinc(II). As a result, the spatial properties of the ethoxy arms in [Zn{(R)-2}] and [Cu{(R)-2}] are not suited to the facile formation of dimetallic complexes.  相似文献   

17.
In the present study, a series of new hybrid compounds containing chalcone and methanoisoindole units 7a-n ((3aR,4S,7R,7aS)-2-(4-((E)-3-(3-aryl)acryloyl) phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione) were synthesized, characterized and investigated for their anticancer activity against C6 gliocarcinoma cell in rats, and antimicrobial activity against some human pathogen microorganisms. The compounds 7e, 7h, 7j, 7k, 7L and 7n showed very high anticancer activity with the inhibition range of 80.51–97.02% compared to 5-FU. Some of the compounds exhibited anti-microbial activity. Also, they evaluated for inhibition effects against human carbonic anhydrase I, and II isoenzymes (hCA I and II) with Ki values in the range of 405.26–635.68 pM for hCA I, and 245.40–489.60 pM for hCA II, respectively. These results demonstrated that 3aR,4S,7R,7aS)-2-(4-((E)-3-(3-aryl)acryloyl)phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione derivatives could be used in different biomedical applications.  相似文献   

18.
Phytochemical investigation of the fresh leaves of Friesodielsia discolor (Craib) D. Das led to the isolation of four new flavonoids, 3′-formyl-2′,4′-dihydroxy-6′-methoxychalcone (1), 8-formyl-7-hydroxy-5-methoxyflavanone (2), 8-formyl-5,7-dihydroxyflavanone (3) and 5,3′-dihydroxy-7-methoxyflavone (6), together with two known compounds, lawinal (4) and tectochrysin (5). The structures of the compounds were elucidated by spectroscopic analysis, mainly 1D and 2D NMR techniques (1H, 13C, COSY, HMQC and HMBC), as well as comparison with literature data. The isolates were tested for antiplasmodial, antimycobacterial and cytotoxic activities. Compounds 1, 2, 5 and 6 exhibited cytotoxicity against human tumor cell lines, KB and MCF-7 with the IC50 values in the range of 3.45–14.82 μg/ml. Compounds 1, 2, and 5 also showed significant antiplasmodial activity with respective IC50 values of 2.75, 2.78 and 2.08 μg/ml.  相似文献   

19.
Two new eudesmane sesquiterpenoids artanoate (1) and eudesmanomolide (2) were isolated from the aerial parts of Artemisia anomala S. Moore. Their structures were elucidated as methyl (4R, 5S, 6S, 7S, 10R)-1-oxo-4, 6-dihydroxy-eudesma-2, 11 (13)-dien-12-oate (1) and (1R, 5R, 6R, 10R)-3, 13-diacetoxy-1-hydroxy-3, 7(11)-diene-12, 6-olide (2) on the basis of extensive spectroscopic analyses. Compound 1 showed cytotoxicity against HCT-8 cell lines with IC50 value of 9.13 μM, and compound 2 exhibited inhibitory activities against HCT-8 and A549 cell lines with IC50 values of 3.76 and 5.49 μM, respectively.  相似文献   

20.
Three artificial triterpenoids, (20R)-20,25-epoxy-dammaran-2-en-6α,12β-diol (1), (20R)-20,25-epoxy-3-methyl-28-nordammaran-2-en-6α,12β-diol (2) and isodehydroprotopanaxatriol (3), were isolated from an acidic hydrolysate of Panax ginseng C.A. Meyer, along with three known triterpenes, (20R)-panaxadiol (4), (20R)-panaxatriol (5) and oleanolic acid (6). Compounds 13 and 6 showed inhibitory activity against HIV-1 protease with IC50 of 10.5, 10.3, 12.3 and 6.3 μM, respectively. The results indicated that acid treatment of Ginseng extract could produce diverse structures with interesting bioactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号