首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
植物样品包埋脱水法超低温保存的研究进展   总被引:15,自引:0,他引:15  
包埋脱水法是植物材料超低温保存的新技术, 从1990 年至今, 已有30 多篇文献报道。本文介绍了包埋脱水法的研究历史、技术要点和主要优点  相似文献   

3.
Long-term cultures of somatic testicular cells derived from immature and pubertal rats were used to study the synthesis of proteoglycans (PG) and hyaluronic acid (HA). Labelled PG and HA in the culture medium, membrane-associated and intracellular pools were characterized by gel filtration, ion exchange chromatography and selected enzymatic and chemical treatments. Somatic cells synthesize a PG containing both heparan and chondroitin/dermatan sulfate (CS/DS) chains and a PG containing only CS/DS chains. No major qualitative changes in the type of PG were observed in cells derived from immature and pubertal animals. However, significant age-dependent differences in the cell distribution pattern of PG and HA were determined. This may have implications in the regulation of spermatogenesis.  相似文献   

4.
The preservation of the genetic diversity of captive populations of rhesus monkeys is critical to the future of biomedical research. Cryopreservation of rhesus macaque sperm is relatively simple to perform, yields high post-thaw motility, and theoretically, provides via artificial insemination (AI) a way to easily transfer genetics among colonies of animals. In the interest of optimizing semen cryopreservation methods for use with vaginal AI, we evaluated the ability of frozen-thawed rhesus sperm to penetrate periovulatory cervical mucus (CM). Motile sperm concentration of pre-freeze (“fresh”) and post-thawed (“thawed”) samples from five different males were normalized for both computer assisted sperm motion analysis and CM penetration experiments. Sperm samples were deposited into slide chambers containing CM or gel composed of hyaluronic acid (HA) as a surrogate for CM and numbers of sperm were recorded as they entered a video field a preset distance from the sperm suspension-CM (or HA) interface. Fresh and thawed sperm were dried on glass slides, “Pap”-stained, and assessed for changes in head dimensions and head and flagellar shape. While retaining better than 80% of fresh sperm progressive motility, thawed sperm from the same ejaculate retained on average only 18.6% of the CM penetration ability. Experiments using HA gel yielded similar results only with reduced experimental error and thus improved detection of treatment differences. Neither the percentage of abnormal forms nor head dimensions differed between fresh and thawed sperm. While findings suggests that sperm-CM interaction is a prominent factor in previous failures of vaginal AI with cryopreserved macaque sperm, neither sperm motility nor morphology appears to account for changes in the ability of cryopreserved sperm to penetrate CM. Our data points to a previously unidentified manifestation of cryodamage which may have implications for assessment of sperm function beyond the cervix and across mammalian species.  相似文献   

5.
Immune rejection and scarcity of donor tissues are the restrictions of islets transplantation. In this study, the cytoprotection of chitosan hydrogels in xenogeneic islet transplantation was demonstrated. Wistar rat islets encapsulated in chitosan hydrogels were performed glucose challenge test and live/dead cell staining in vitro. Islets/chitosan hydrogels were transplanted into the renal subcapsular space of diabetic C57BL/6 mice. Non-fasting blood glucose level (NFBG), body weight, intraperitoneal glucose tolerance test (IPGTT), and glucose disappearance rate were determined perioperatively. The serum insulin level was analyzed, and the kidney transplanted with islets/chitosan hydrogels were retrieved for histological examination after sacrifice. The present results showed that islets encapsulated in chitosan hydrogels secreted insulin in response to the glucose stimulation as naked islets with higher cell survival. The NFBG of diabetic mice transplanted with islets/chitosan hydrogels decreased from 487 ± 46 to 148 ± 32 at one day postoperation and maintained in the range of 201 ± 36 mg/dl for four weeks with an increase in body weight. IPGTT showed the glucose disappearance rate of mice transplanted with islets/chitosan hydrogels was significant faster than that of mice transplanted with naked islets; the serum insulin level increased from 0.29 ± 0.06 to 1.69 ± 0.65 μg/dl postoperatively. Histological examination revealed that the islets successfully engrafted at renal subcapsular space with positive insulin staining. The immunostain was negative for neither the T-cell lineages nor the monocyte/macrophages. This study indicates that the chitosan hydrogels deliver and protect encapsulated islets successfully in xenotransplantation.  相似文献   

6.
Embryogenic tissue of nine sweet potato [Ipomoea batatas (L.) Lam] genotypes from Asia, Africa and the Americas was established from in vitro axillary buds on Murashige and Skoog medium supplemented with 2,4-dichlorophenoxyacetic acid or 2,4,5-trichlorophenoxyacetic acid. Embryogenic aggregates, 1.0–2.0 mm in diameter, were encapsulated in alginate gel, precultured on medium containing elevated levels of sucrose and dehydrated prior to rapid freezing in liquid nitrogen. The maximum survival of embryogenic tissue ranged from 4% to 38%, depending on the genotype. With the incorporation of a slow-cooling step, survival was generally much higher than that obtained after rapid freezing alone. Five of eight genotypes tested with this protocol gave survival percentages in excess of 55%, and a further two in excess of 33%, all after evaporative dehydration. The most effective sucrose treatment(s), however, varied with the genotype. Received: 7 October 1996 / Revision received: 16 December 1996 / Accepted 27 January 1997  相似文献   

7.
The first efficient cryopreservation procedure for in vitro-grown shoot tips of raspberry (Rubus idaeus L.) has been developed based on encapsulation–vitrification (EnVi) and encapsulation–dehydration (EnDe). EnVi resulted in higher survival (85%) and regrowth (75%) of cryopreserved shoot tips than EnDe (65 and 50%, respectively). In both cryogenic procedures, shoots regenerated from cryopreserved shoot tips without intermediary callus formation. Histological studies showed that a much larger number of meristematic cells survived following EnVi than EnDe. The EnVi procedure was applied to seven raspberry genotypes with an average survival and regrowth of 71 and 68%, respectively. Regenerated plants showed normal morphology. Results here indicate EnVi as a simple and efficient method for long-term preservation of R. idaeus germplasm.  相似文献   

8.
Heng BC  Clement MV  Cao T 《Bioscience reports》2007,27(4-5):257-264
Previous study demonstrated that the low survival of human embryonic stem cells (hESC) under conventional slow-cooling cryopreservation protocols is predominantly due to apoptosis rather than cellular necrosis. Hence, this study investigated whether a synthetic broad-spectrum irreversible inhibitor of caspase enzymes, Z-VAD-FMK can be used to enhance the post-thaw survival rate of hESC. About 100 mM Z-VAD-FMK was supplemented into either the freezing solution, the post-thaw culture media or both. Intact and adherent hESC colonies were cryopreserved so as to enable subsequent quantitation of the post-thaw cell survival rate through the MTT assay, which can only be performed with adherent cells. Exposure to 100 mM Z-VAD-FMK in the freezing solution alone did not significantly enhance the post-thaw survival rate (10.2% vs. 9.9%, p > 0.05). However, when 100 mM Z-VAD-FMK was added to the post-thaw culture media, there was a significant enhancement in the survival rate from 9.9% to 14.4% (p < 0.05), which was further increased to 18.7% when Z-VAD-FMK was also added to the freezing solution as well (p < 0.01). Spontaneous differentiation of hESC after cryopreservation was assessed by morphological observations under bright-field microscopy, and by immunocytochemical staining for the pluripotency markers SSEA-3 and TRA-1-81. The results demonstrated that exposure to Z-VAD-FMK did not significantly enhance the spontaneous differentiation of hESC within post-thaw culture.  相似文献   

9.
Progress in biotechnological research over the last two decades has provided greater scope for the improvement of crops, forest trees and other important plant species. Plant propagation using synthetic seeds has opened new vistas in the field of agriculture. Synseed technology is a highly promising tool for the management of transgenic and seedless plant species, polyploid plants with elite traits and plant lines that are difficult to propagate through conventional propagation methods. Delivery of synseeds also alleviates issues like undertaking several passages for scaling up in vitro cultures as well as acclimatization to ex vitro conditions. Optimization of synchronized propagule development followed by automation of the whole process (sorting, harvesting, encapsulation and conversion) can enhance the pace of synseed production. Cryopreservation of encapsulated germplasm has now been increasingly used as an ex vitro conservation tool with the possible minimization of adverse effects of cryoprotectants and post-preservation damages. Through synseed technology, germplasm exchange between countries could be accelerated as a result of reduced plant quarantine requirements because of the aseptic condition of the plant material.  相似文献   

10.
    
The ability to preserve stem cells/cells with minimal damage for short and long periods of time is essential for advancements in biomedical therapies and biotechnology. New methods of cell banking are continuously needed to provide effective damage prevention to cells. This paper puts forward a solution to the problem of the low viability of cells during cryopreservation in a traditional suspension and storage by developing innovative multiple emulsion‐based carriers for the encapsulation and cryopreservation of cells. During freezing‐thawing processes, irreversible damage to cells occurs as a result of the formation of ice crystals, cell dehydration, and the toxicity of cryoprotectant. The proposed method was effective due to the “flexible” protective structure of multiple emulsions, which was proven by a high cell survival rate, above 90%. Results make new contributions in the fields of cell engineering and biotechnology and contribute to the development of methods for banking biological material.  相似文献   

11.
Dental pulp is a promising source of mesenchymal stem cells with the potential for cell-mediated therapies and tissue engineering applications. We recently reported that isolation of dental pulp-derived stem cells (DPSC) is feasible for at least 120 h after tooth extraction, and that cryopreservation of early passage cultured DPSC leads to high-efficiency recovery post-thaw. This study investigated additional processing and cryobiological characteristics of DPSC, ending with development of procedures for banking. First, we aimed to optimize cryopreservation of established DPSC cultures, with regards to optimizing the cryoprotective agent (CPA), the CPA concentration, the concentration of cells frozen, and storage temperatures. Secondly, we focused on determining cryopreservation characteristics of enzymatically digested tissue as a cell suspension. Lastly, we evaluated the growth, surface markers and differentiation properties of DPSC obtained from intact teeth and undigested, whole dental tissue frozen and thawed using the optimized procedures. In these experiments it was determined that Me2SO at a concentration between 1 and 1.5 M was the ideal cryopreservative of the three studied. It was also determined that DPSC viability after cryopreservation is not limited by the concentration of cells frozen, at least up to 2 × 106 cells/mL. It was further established that DPSC can be stored at −85 °C or −196 °C for at least six months without loss of functionality. The optimal results with the least manipulation were achieved by isolating and cryopreserving the tooth pulp tissues, with digestion and culture performed post-thaw. A recovery of cells from >85% of the tissues frozen was achieved and cells isolated post-thaw from tissue processed and frozen with a serum free, defined cryopreservation medium maintained morphological and developmental competence and demonstrated MSC-hallmark trilineage differentiation under the appropriate culture conditions.  相似文献   

12.
脐带血干细胞在医学上具有广阔的应用前景.本文对其低温保存进行了理论和实验研究.在以5%和10%的二甲亚砜做低温保护剂时,实验得到干细胞分别在冷却速率为10℃/min和10.5℃/min时细胞具有最高的存活率,与理论预测的最佳冷却速率十分接近.  相似文献   

13.
    
  相似文献   

14.
    
The cryostoring of embryogenic tissue of the date palm (Phoenix dactylifera L. cv. Sagai) was examined through dehydrated-encapsulation, vitrification, and vitrification-encapsulation. The most extreme regeneration rate (53.33%) of epitomized, cryostored liquid nitrogen (+LN) treated embryos was observed when pre-embryonic masses were hatched with 0.5 M sucrose for 48 h pursued by 6 h air drying out. The most noteworthy survival rate (80.0%) of epitomized, cryopreserved embryonic cluster came about when calli were hatched with 0.3 or 0.7 M sucrose for 48 h pursued by four hours of lack of hydration, or with 0.5 M sucrose for 48 h without air drying out or with 2 h of air drying out. Following cryopreservation utilizing the embodiment vitrification convention, the most astounding survival (86.7%) as well as the greatest growth (46.7%) was accomplished when the typified vitrified, cryopreserved calli were treated with Vitrification Solution 2 for plants (PVS2) for 60 min at 25 °C. Cryopreservation utilizing the vitrification convention brought about the most extreme recuperation of 53.3%, when vitrified-cryopreserved calli were subjected to PVS2 solution for 30 min at 25 °C. Most extreme (40%) regeneration of vitrified, cryopreserved embryonic calli was seen when these calli were treated with PVS2 solution for 60 min at 25 °C. The outcome got amid this investigation of regrowth after cryopreservation of the cv. Sagai was over the base suitable for a cryo-germplasm bank. Recovery and regrowth were above 30% for all the techniques developed for the cv. Sagai.  相似文献   

15.
There is significant interest in designing a cryopreservation protocol for hematopoietic stem cells (HSC) which does not rely on dimethyl sulfoxide (Me2SO) as a cryoprotectant. Computer simulations that describe cellular osmotic responses during cooling and warming can be used to optimize the viability of cryopreserved HSC; however, a better understanding of cellular osmotic parameters is required for these simulations. As a model for HSC, the erythroleukemic human cell line TF-1 was used in this study. Simulations, based on the osmotic properties of TF-1 cells and on the solution properties of the intra- and extracellular compartments, were used to interpret cryoinjury associated with a two-step cryopreservation protocol. Calculated intracellular supercooling was used as an indicator of cryoinjury related to intracellular ice formation. Simulations were applied to the two-step cooling protocol (rapid cooling interrupted with a hold time) for TF-1 cells in the absence of Me2SO or other cryoprotectants and optimized by minimizing the indicator of cryoinjury. A comparison of simulations and experimental measurements of membrane integrity supports the concept that, for two-step cooling, increasing intracellular supercooling is the primary contributor to potential freezing injury due to the increase in the likelihood of intracellular ice formation. By calculating intracellular supercooling for each step separately and comparing these calculations with cell recovery data, it was demonstrated that it is not optimal simply to limit overall supercooling during two-step freezing procedures. More aptly, appropriate limitations of supercooling differ from the first step to the second step. This study also demonstrates why high cell recovery after cryopreservation could be achieved in the absence of traditional cryoprotectants.  相似文献   

16.
    
Laboratory friendly, cryopreservation procedures with respect to cryopreservation formulations and cryopreservation temperatures were attempted, in the present study to ensure perennial availability of cultured mantle cells of bivalve (Paphia malabarica). Screening of cryopreservative formulations with different concentrations of DMSO, Propylene glycol and Glycerol was carried out for cryopreservation of freshly dissociated cells of Paphia malabarica. Out of these cryopreservative formulations, 10% DMSO, 10% Propylene glycol and 15% Glycerol were selected for cryopreservation of the mantle cells pooled from 1-day old primary culture and cell line after 3 passages at the end of different cryopreservation periods. Cryopreservative formulation with 15% glycerol, served as a best cryoprotectant for the cryopreservation of cells sourced from freshly dissociated cells as well as from primary cultures and cell cultures after three passages of mantle cells of Paphia malabarica, retaining metabolic activity of resurrected cells. Both, cell cultures established from uncryopreserved cells as well as cryopreserved cells showed similar alkaline phosphatase and carbonic anhydrase activities thus indicating retention of their biomineralization capacity even after cryopreservation at low and ultralow temperatures.  相似文献   

17.
本文用定性定量组织细胞化学方法,对冻前及不同降温条件冻存的人骨髓细胞的 DNA、碱性磷酸(ALP)、过氧化物酶(POX)活性进行测定。在程序降温过程中,没有消除融合热的骨髓细胞的 DNA、ALP、POX 活性均显著下降。消除融合热后,冻存骨髓细胞 DNA 活性没有改变,ALP、POX 活性略有下降。因而,融合热的释放是骨髓细胞生物活性下降的重要因素。  相似文献   

18.
    
Non-small cell lung cancer (NSCLC) and hepatocellular carcinoma (HCC) are leading causes of cancer mortality and morbidity around the world. Despite the recent advances in their diagnosis and therapy, their prognosis remains poor owing to the development of drug resistance and metastasis. Raloxifene (RX), a drug first used in the treatment of osteoporosis, was recently approved for NSCLC and HCC prevention. Unfortunately, many of the therapies that use RX are likely to become ineffective due to drug resistance. Herein, we developed a novel delivery strategy by utilizing hyaluronic acid (HA) and chitosan (CS) complexation to increase the half-life and activity of RX. Consequently, we explored the pro-apoptotic and cytotoxic effects of RX-HA-CS nanoparticles (NPs) against NSCLC (A549) and HCC (HepG2 and Huh-7) cell lines. The highest entrapment efficiency (EE%) was noted in RX-HA-CS NPs (92%) compared to RX-HA NPs (87.5%) and RX-CS NPs (68%). In addition, RX-HA-CS NPs induced the highest cytotoxicity against A549 cells compared to other platforms. The significant suppression of A549 cell viability was achieved via glucose uptake reduction resulting in diminished bioenergetics of cancer cells and activation of apoptosis via nitric oxide level elevation. This study is the first to assess the efficacy of RX in its HA-CS nano-formulation against lung and liver cancer cells and demonstrated its selective cytotoxic and apoptotic potential against human lung A549 cancer cell line. These findings demonstrate a promising drug delivery system to help mitigate drug resistance in lung cancer.  相似文献   

19.
Disruption of the extracellular matrix (ECM) is frequently found in calcific aortic valve disease (CAVD), yet the role of ECM components in valvular interstitial cell (VIC) function and dysfunction remains poorly understood. This study examines the contributions of exogenous and endogenous hyaluronic acid (HA), in both two-dimensional (2-D) and 3-D environments, in regulating the phenotype and calcification of VICs. VIC calcification was first assessed in a 2-D setting in which the cells were exposed to different molecular weights of exogenous HA presented in either an immobilized or soluble form. Delivery of HA suppressed nodule formation in a molecular weight-dependent manner, while blocking VIC recognition of HA via an antibody to CD44 abolished these nodule-suppressive effects and stimulated other hallmarks of valvular dysfunction. These 2-D results were then validated in a more physiologically-relevant setting, using an approach that allowed the characterization of VIC phenotype in response to HA alterations in the native 3-D environment. In this approach, leaflet organ cultures were analyzed following treatment with anti-CD44 or with hyaluronidase to specifically remove HA. Disruption of VIC-HA interactions upregulated markers of VIC disease and induced leaflet mineralization. Similarly, HA-deficient leaflets exhibited numerous hallmarks of CAVD, including increased VIC proliferation, apoptosis, increased expression of disease-related markers, and mineralization. These findings suggest that VIC-HA interactions are crucial in maintaining a healthy VIC phenotype. Identification ECM components that can regulate VIC phenotype and function has significant implications for understanding native valve disease, investigating possible treatments, and designing new biomaterials for valve tissue engineering.  相似文献   

20.
Despite the widespread use of tissue culture as a means of propagating begonias and concerns regarding the preservation of germplasm, little information is available on the cryopreservation of these commercially important plants. For this reason studies were conducted to develop an encapsulation–dehydration method for the cryopreservation of adventitious shoots of the rhizomatous begonia, Begonia x erythrophylla. Adventitious shoots of B. x erythrophylla were found to be sensitive to dehydration and very sensitive to freezing. While pre-treatment with 0.75 M sucrose significantly increased the percentage of encapsulated shoots surviving dehydration, pre-treatment with sucrose did not afford cryoprotection without prior dehydration. Addition of abscisic acid and proline to the pre-treatment medium significantly improved the percentage of shoots surviving freezing. Pre-treatment of shoots with a medium containing, 0.75 M sucrose, 3.8 μM abscisic acid and 2.15 mM proline resulted in greater than 50% of shoots surviving freezing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号