首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetic patients have an altered gait strategy during walking and are known to be at high risk of falling, especially when diabetic peripheral neuropathy is present. This study investigated alterations to lower limb joint torques during walking and related these torques to maximum strength in an attempt to elucidate why diabetic patients are more likely to fall. 20 diabetic patients with moderate/severe peripheral neuropathy (DPN), 33 diabetic patients without peripheral neuropathy (DM), and 27 non-diabetic controls (Ctrl) underwent gait analysis using a motion analysis system and force plates to measure kinetic parameters. Lower limb peak joint torques and joint work done (energy expenditure) were calculated during walking. The ratio of peak joint torques and individual maximum joint strengths (measured on a dynamometer) was then calculated for 59 of the 80 participants to yield the ‘operating strength’ for those participants. During walking DM and DPN patients showed significantly reduced peak torques at the ankle and knee. Maximum joint strengths at the knee were significantly less in both DM and DPN groups than Ctrls, and for the DPN group at the ankle. Operating strengths were significantly higher at the ankle in the DPN group compared to the Ctrls. These findings show that diabetic patients walk with reduced lower limb joint torques; however due to a decrement in their maximum ability at the ankle and knee, their operating strengths are higher. This allows less reserve strength if responding to a perturbation in balance, potentially increasing their risk of falling.  相似文献   

2.
Center of mass (CoM) oscillations were documented for 81 bipedal walking strides of three chimpanzees. Full‐stride ground reaction forces were recorded as well as kinematic data to synchronize force to gait events and to determine speed. Despite being a bent‐hip, bent‐knee (BHBK) gait, chimpanzee walking uses pendulum‐like motion with vertical oscillations of the CoM that are similar in pattern and relative magnitude to those of humans. Maximum height is achieved during single support and minimum height during double support. The mediolateral oscillations of the CoM are more pronounced relative to stature than in human walking when compared at the same Froude speed. Despite the pendular nature of chimpanzee bipedalism, energy recoveries from exchanges of kinetic and potential energies are low on average and highly variable. This variability is probably related to the poor phasic coordination of energy fluctuations in these facultatively bipedal animals. The work on the CoM per unit mass and distance (mechanical cost of transport) is higher than that in humans, but lower than that in bipedally walking monkeys and gibbons. The pronounced side sway is not passive, but constitutes 10% of the total work of lifting and accelerating the CoM. CoM oscillations of bipedally walking chimpanzees are distinctly different from those of BHBK gait of humans with a flat trajectory, but this is often described as “chimpanzee‐like” walking. Human BHBK gait is a poor model for chimpanzee bipedal walking and offers limited insights for reconstructing early hominin gait evolution. Am J Phys Anthropol 156:422–433, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
To enhance the wearability of portable motion-monitoring devices, the size and number of sensors are minimized, but at the expense of quality and quantity of data collected. For example, owing to the size and weight of low-frequency force transducers, most currently available wearable gait measurement systems provide only limited, if any, elements of ground reaction force (GRF) data. To obtain the most GRF information possible with a minimal use of sensors, we propose a GRF estimation method based on biomechanical knowledge of human walking. This includes the dynamics of the center of mass (CoM) during steady human gait resembling the oscillatory behaviors of a mass-spring system. Available measurement data were incorporated into a spring-loaded inverted pendulum with translating pivot. The spring stiffness and simulation parameters were tuned to match, as accurately as possible, the available data and oscillatory characteristics of walking. Our results showed that the model simulation estimated reasonably well the unmeasured GRF. Using the vertical GRF and CoP profile for gait speeds ranging from 0.93 to 1.89 m/s, the anterior-posterior (A-P) GRF was estimated and resulted in an average correlation coefficient of R = 0.982 ± 0.009. Even when the ground contact timing and gait speed information were alone available, our method estimated GRFs resulting in R = 0.969 ± 0.022 for the A-P and R = 0.891 ± 0.101 for the vertical GRFs. This research demonstrates that the biomechanical knowledge of human walking, such as inherited oscillatory characteristics of the CoM, can be used to gain unmeasured information regarding human gait dynamics.  相似文献   

4.
The dynamics of the center of mass (CoM) during walking and running at various gait conditions are well described by the mechanics of a simple passive spring loaded inverted pendulum (SLIP). Due to its simplicity, however, the current form of the SLIP model is limited at providing any further information about multi-segmental lower limbs that generate oscillatory CoM behaviors and their corresponding ground reaction forces. Considering that the dynamics of the CoM are simply achieved by mass-spring mechanics, we wondered whether any of the multi-joint motions could be demonstrated by simple mechanics. In this study, we expand a SLIP model of human locomotion with an off-centered curvy foot connected to the leg by a springy segment that emulates the asymmetric kinematics and kinetics of the ankle joint. The passive dynamics of the proposed expansion of the SLIP model demonstrated the empirical data of ground reaction forces, center of mass trajectories, ankle joint kinematics and corresponding ankle joint torque at various gait speeds. From the mechanically simulated trajectories of the ankle joint and CoM, the motion of lower-limb segments, such as thigh and shank angles, could be estimated from inverse kinematics. The estimation of lower limb kinematics showed a qualitative match with empirical data of walking at various speeds. The representability of passive compliant mechanics for the kinetics of the CoM and ankle joint and lower limb joint kinematics implies that the coordination of multi-joint lower limbs during gait can be understood with a mechanical framework.  相似文献   

5.
6.
In 1984, Helene (Am. J. Physics 52:656) and Alexander (Am. Scientist 72:348–354) presented equations which purported to explain how lower limb length limited maximum walking speed in humans. The equations were based on a simplified model of human walking in which the center of mass (CoM) “vaults” over the supporting leg. Increasing walking speed by increasing stride frequency or stride length would increase the upward acceleration of the CoM in the first half of stance phase, to the point that it would be greater than the downward pull of gravity, and the individual would become airborne. This constitutes running by most definitions. While these models ignored various mechanical factors, such as knee flexion during midstance, that reduce the vertical movement of the CoM, the general idea is plausible inasmuch as the CoM of the body does oscillate vertically with each step. One hypothesis tested here is whether it is indeed the interaction between the pull of gravity and the individual's own upward acceleration that determines at what speed (or cadence) he changes from walking to running. Another hypothesis considered is that increased lower limb length (L) was selected for in early hominids, because of the locomotor advantages of longer lower limbs. Results indicate, however, that while L was clearly related to maximum possible walking speed, it was not an important factor in determining maximum “comfortable” walking speed. These and other results from the recent literature suggest that increased lower limb length provided no selective advantage in locomotion, and other explanations should be sought. © 1996 Wiley-Liss, Inc.  相似文献   

7.
The oscillatory behavior of the center of mass (CoM) and the corresponding ground reaction force (GRF) of human gait for various gait speeds can be accurately described in terms of resonance using a spring–mass bipedal model. Resonance is a mechanical phenomenon that reflects the maximum responsiveness and energetic efficiency of a system. To use resonance to describe human gait, we need to investigate whether resonant mechanics is a common property under multiple walking conditions. Body mass and leg stiffness are determinants of resonance; thus, in this study, we investigated the following questions: (1) whether the estimated leg stiffness increased with inertia, (2) whether a resonance-based CoM oscillation could be sustained during a change in the stiffness, and (3) whether these relationships were consistently observed for different walking speeds. Seven healthy young subjects participated in over-ground walking trials at three different gait speeds with and without a 25-kg backpack. We measured the GRFs and the joint kinematics using three force platforms and a motion capture system. The leg stiffness was incorporated using a stiffness parameter in a compliant bipedal model that best fitted the empirical GRF data. The results showed that the leg stiffness increased with the load such that the resonance-based oscillatory behavior of the CoM was maintained for a given gait speed. The results imply that the resonance-based oscillation of the CoM is a consistent gait property and that resonant mechanics may be useful for modeling human gait.  相似文献   

8.
Diabetic peripheral neuropathy (DPN) is one of the most common diabetic chronic complications. There is an increased attention directed towards the role of angiogenic factors including vascular endothelial growth factor (VEGF) and anti‐angiogenic factors including soluble endoglin (sEng) as contributors to diabetic microvascular complications including neuropathy. The purposes of this study were to determine the role of these angiogenesis regulators in the prognosis of DPN. The study group included 60 patients with type 2 diabetes mellitus (T2DM) and 20 clinically healthy individuals. The patients were divided into two groups. Group I included 20 T2DM patients without peripheral neuropathy, and Group II consisted of 40 T2DM patients with DPN. In all groups, plasma VEGF, sEng and endothelin‐1 (ET‐1), nitric oxide and ET‐1 mRNA were estimated. Plasma levels of VEGF, sEng, ET‐1 and nitric oxide were significantly elevated in diabetic patients (Groups I and II) compared with healthy control subjects, with a higher increase in their levels in patients with DPN compared with diabetic patients without peripheral neuropathy. Measurement of plasma levels of angiogenesis‐related biomarkers in high‐risk diabetic patients might identify who later develop DPN, thus providing opportunities for early detection and targets for novel treatments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In gait stability research, neither self-selected walking speeds, nor the same prescribed walking speed for all participants, guarantee equivalent gait stability among participants. Furthermore, these options may differentially affect the response to different gait perturbations, which is problematic when comparing groups with different capacities. We present a method for decreasing inter-individual differences in gait stability by adjusting walking speed to equivalent margins of stability (MoS). Eighteen healthy adults walked on a split-belt treadmill for two-minute bouts at 0.4 m/s up to 1.8 m/s in 0.2 m/s intervals. The stability-normalised walking speed (MoS = 0.05 m) was calculated using the mean MoS at touchdown of the final 10 steps of each speed. Participants then walked for three minutes at this speed and were subsequently exposed to a treadmill belt acceleration perturbation. A further 12 healthy adults were exposed to the same perturbation while walking at 1.3 m/s: the average of the previous group. Large ranges in MoS were observed during the prescribed speeds (6–10 cm across speeds) and walking speed significantly (P < 0.001) affected MoS. The stability-normalised walking speeds resulted in MoS equal or very close to the desired 0.05 m and reduced between-participant variability in MoS. The second group of participants walking at 1.3 m/s had greater inter-individual variation in MoS during both unperturbed and perturbed walking compared to 12 sex, height and leg length-matched participants from the stability-normalised walking speed group. The current method decreases inter-individual differences in gait stability which may benefit gait perturbation and stability research, in particular studies on populations with different locomotor capacities. [Preprint: https://doi.org/10.1101/314757]  相似文献   

10.
A simple spring mechanics model can capture the dynamics of the center of mass (CoM) during human walking, which is coordinated by multiple joints. This simple spring model, however, only describes the CoM during the stance phase, and the mechanics involved in the bipedality of the human gait are limited. In this study, a bipedal spring walking model was proposed to demonstrate the dynamics of bipedal walking, including swing dynamics followed by the step-to-step transition. The model consists of two springs with different stiffnesses and rest lengths representing the stance leg and swing leg. One end of each spring has a foot mass, and the other end is attached to the body mass. To induce a forward swing that matches the gait phase, a torsional hip joint spring was introduced at each leg. To reflect the active knee flexion for foot clearance, the rest length of the swing leg was set shorter than that of the stance leg, generating a discrete elastic restoring force. The number of model parameters was reduced by introducing dependencies among stiffness parameters. The proposed model generates periodic gaits with dynamics-driven step-to-step transitions and realistic swing dynamics. While preserving the mimicry of the CoM and ground reaction force (GRF) data at various gait speeds, the proposed model emulated the kinematics of the swing leg. This result implies that the dynamics of human walking generated by the actuations of multiple body segments is describable by a simple spring mechanics.  相似文献   

11.
A human walker vaults up and over each stance limb like an inverted pendulum. This similarity suggests that the vertical motion of a walker's center of mass reduces metabolic cost by providing a mechanism for pendulum-like mechanical energy exchange. Alternatively, some researchers have hypothesized that minimizing vertical movements of the center of mass during walking minimizes the metabolic cost, and this view remains prevalent in clinical gait analysis. We examined the relationship between vertical movement and metabolic cost by having human subjects walk normally and with minimal center of mass vertical movement ("flat-trajectory walking"). In flat-trajectory walking, subjects reduced center of mass vertical displacement by an average of 69% (P = 0.0001) but consumed approximately twice as much metabolic energy over a range of speeds (0.7-1.8 m/s) (P = 0.0001). In flat-trajectory walking, passive pendulum-like mechanical energy exchange provided only a small portion of the energy required to accelerate the center of mass because gravitational potential energy fluctuated minimally. Thus, despite the smaller vertical movements in flat-trajectory walking, the net external mechanical work needed to move the center of mass was similar in both types of walking (P = 0.73). Subjects walked with more flexed stance limbs in flat-trajectory walking (P < 0.001), and the resultant increase in stance limb force generation likely helped cause the doubling in metabolic cost compared with normal walking. Regardless of the cause, these findings clearly demonstrate that human walkers consume substantially more metabolic energy when they minimize vertical motion.  相似文献   

12.
摘要 目的:调查上海市杨浦区社区2型糖尿病(T2DM)患者周围神经病变(DPN)患病率,并分析其影响因素。方法:于2019年3月~2020年3月在上海市杨浦区所辖社区中随机选取5个社区,采用分层随机抽样法从每个社区选取100例T2DM患者进行调查,统计T2DM患者DPN患病率,采用多因素Logistic回归分析DPN发生的影响因素。结果:本次研究共发放500份调查问卷,回收498份,回收率为99.60%(498/500),其中DPN患者222例,DPN发生率为44.58%(222/498),纳为DPN组,276例未发生DPN纳为非DPN组。单因素分析结果显示:DPN组与非DPN组在腰围、合并糖尿病视网膜病变(DR)、合并下肢血管病变(PVD)、吸烟史、高血压、脑梗死病史、文化程度、婚姻状况、收缩压(SBP)、空腹血糖(FPG)、葡萄糖达标时间百分比(TIR)、载脂蛋白B、尿酸方面比较有差异(P<0.05)。进一步多因素Logistic回归分析结果显示:合并DR、合并PVD、有吸烟史、有脑梗死病史、婚姻状况为未婚/离异/丧偶、FPG水平较高是T2DM患者发生DPN的危险因素(P<0.05)。结论:T2DM患者中DPN的患病率较高,合并DR、PVD、吸烟史、脑梗死病史以及婚姻状况是DPN发生的影响因素,应重视DPN筛查并进行干预,针对上述影响因素对T2DM患者开展健康宣教,减少DPN的发生。  相似文献   

13.
The use of body weight support (BWS) systems during locomotor retraining has become routine in clinical settings. BWS alters load receptor feedback, however, and may alter the biomechanical role of the ankle plantarflexors, influencing gait. The purpose of this study was to characterize the biomechanical adaptations that occur as a result of a change in limb load (controlled indirectly through BWS) and gait speed during treadmill locomotion. Fifteen unimpaired participants underwent gait analysis with surface electromyography while walking on an instrumented dual-belt treadmill at seven different speeds (ranging from 0.4 to 1.6 m/s) and three BWS conditions (ranging from 0% to 40% BWS). While walking, spatiotemporal measures, anterior/posterior ground reaction forces, and ankle kinetics and muscle activity were measured and compared between conditions. At slower gait speeds, propulsive forces and ankle kinetics were unaffected by changing BWS; however, at gait speeds ≥approximately 0.8 m/s, an increase in BWS yielded reduced propulsive forces and diminished ankle plantarflexor moments and powers. Muscle activity remained unaltered by changing BWS across all gait speeds. The use of BWS could provide the advantage of faster walking speeds with the same push-off forces as required of a slower speed. While the use of BWS at slower speeds does not appear to detrimentally affect gait, it may be important to reduce BWS as participants progress with training, to encourage maximal push-off forces. The reduction in plantarflexor kinetics at higher speeds suggests that the use of BWS in higher functioning individuals may impair the ability to relearn walking.  相似文献   

14.
This study tested whether the lower economy of walking in healthy elderly subjects is due to greater gait instability. We compared the energy cost of walking and gait instability (assessed by stride to stride changes in the stride time) in octogenarians (G80, n = 10), 65-yr-olds (G65, n = 10), and young controls (G25, n = 10) walking on a treadmill at six different speeds. The energy cost of walking was higher for G80 than for G25 across the different walking speeds (P < 0.05). Stride time variability at preferred walking speed was significantly greater in G80 (2.31 +/- 0.68%) and G65 (1.93 +/- 0.39%) compared with G25 (1.40 +/- 0.30%; P < 0.05). There was no significant correlation between gait instability and energy cost of walking at preferred walking speed. These findings demonstrated greater energy expenditure in healthy elderly subjects while walking and increased gait instability. However, no relationship was noted between these two variables. The increase in energy cost is probably multifactorial, and our results suggest that gait instability is probably not the main contributing factor in this population. We thus concluded that other mechanisms, such as the energy expenditure associated with walking movements and related to mechanical work, or neuromuscular factors, are more likely involved in the higher cost of walking in elderly people.  相似文献   

15.
Peripheral sensory feedback is believed to contribute significantly to maintaining walking stability. Patients with diabetic peripheral neuropathy have a greatly increased risk of falling. Previously, we demonstrated that slower walking speeds in neuropathic patients lead to improved local dynamic stability. However, all subjects exhibited significant local instability during walking, even though no subject fell or stumbled during testing. The present study was conducted to determine if and how significant changes in peripheral sensation and walking speed affect orbital stability during walking. Trunk and lower extremity kinematics were examined from two prior experiments that compared patients with significant neuropathy to healthy controls and walking at multiple different speeds in young healthy subjects. Maximum Floquet multipliers were computed for each time series to quantify the orbital stability of these movements. All subjects exhibited orbitally stable walking kinematics, even though these same kinematics were previously shown to be locally unstable. Differences in orbital stability between neuropathic and control subjects were small and, with the exception of knee joint movements (p=0.001), not statistically significant (0.380p0.946). Differences in knee orbital stability were not mediated by differences in walking speed. This was supported by our finding that although orbital stability improved slightly with slower walking speeds, the correlations between walking speed and orbital stability were generally weak (r(2)16.7%). Thus, neuropathic patients do not gain improved orbital stability as a result of slowing down and do not experience any loss of orbital stability because of their sensory deficits.  相似文献   

16.
Tufted capuchin monkeys are known to use both quadrupedalism and bipedalism in their natural environments. Although previous studies have investigated limb kinematics and metabolic costs, their ground reaction forces (GRFs) and center of mass (CoM) mechanics during two and four‐legged locomotion are unknown. Here, we determine the hind limb GRFs and CoM energy, work, and power during bipedalism and quadrupedalism over a range of speeds and gaits to investigate the effect of differential limb number on locomotor performance. Our results indicate that capuchin monkeys use a “grounded run” during bipedalism (0.83–1.43 ms?1) and primarily ambling and galloping gaits during quadrupedalism (0.91–6.0 ms?1). CoM energy recoveries are quite low during bipedalism (2–17%), and in general higher during quadrupedalism (4–72%). Consistent with this, hind limb vertical GRFs as well as CoM work, power, and collisional losses are higher in bipedalism than quadrupedalism. The positive CoM work is 2.04 ± 0.40 Jkg?1 m?1 (bipedalism) and 0.70 ± 0.29 Jkg?1 m?1 (quadrupedalism), which is within the range of published values for two and four‐legged terrestrial animals. The results of this study confirm that facultative bipedalism in capuchins and other nonhuman primates need not be restricted to a pendulum‐like walking gait, but rather can include running, albeit without an aerial phase. Based on these results and similar studies of other facultative bipeds, we suggest that important transitions in the evolution of hominin locomotor performance were the emergences of an obligate, pendulum‐like walking gait and a bouncy running gait that included a whole‐body aerial phase. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Diabetic peripheral neuropathy (DPN) is the most common and troublesome complication of type 2 diabetes mellitus (T2DM). Recent findings reveal an important role of endoplasmic reticulum (ER) stress in the development of DPN and identify a potential new therapeutic target. Schwann cells (SC), the myelinating cells in peripheral nervous system, are highly susceptible to ER homeostasis. Grape seed proanthocyanidins (GSPs) have been reported to improve DPN of type 1 diabetic rats and relieve ER stress in skeletal muscles and pancreas of T2DM. We investigated the potential role of ER stress in SC in regulating DPN of T2DM and assessed whether early intervention of GSPs would prevent DPN by modulating ER stress. The present study was performed in Sprague–Dawley rats made T2DM with low-dose streptozotocin and a high-carbohydrate/high-fat diet and in rat SC cultured in serum from type 2 diabetic rats. Diabetic rats showed a typical characteristic of T2DM and slowing of nerve conduction velocity (NCV) in sciatic/tibial nerves. The lesions of SC, Ca2+ overload and ER stress were present in sciatic nerves of diabetic rats, as well as in cell culture models. GSPs administration significantly decreased the low-density lipoprotein level and increased NCV in diabetic rats. GSPs or their metabolites also partially prevented cell injury, Ca2+ overload and ER stress in animal and cell culture models. Therefore, ER stress is implicated in peripheral neuropathy in animal and cell culture models of T2DM. Prophylactic GSPs treatment might have auxiliary preventive potential for DPN partially by alleviating ER stress.  相似文献   

18.
《Biomarkers》2013,18(6-7):474-480
Abstract

Background: Adiponectin (ADP) polymorphisms associated with diabetes mellitus in several populations. However, no previous studies have investigated its association with diabetic peripheral neuropathy (DPN). Our study examined the association between ADP-linked SNPs and DPN susceptibility.

Methods: We randomly recruited 160 diabetes mellitus (DM) patients and 80 healthy individuals.

Results: The C allele of rs3821799 increased DPN susceptibility. In normal individuals, GG of rs3774261 carriers had 7.1 times higher DPN susceptibility than AA carriers. The haplotype analyzes indicated CGG might increase DPN susceptibility.

Conclusion: Our study demonstrated that ADP gene polymorphisms are associated with the susceptibility to DPN.  相似文献   

19.
We investigated the muscle fiber conduction velocity (MFCV) during gait phases of the lower limb muscles in individuals with various degrees of diabetic peripheral neuropathy (DPN). Forty-five patients were classified into severity degrees of DPN by a fuzzy model. The stages were absent (n = 11), mild (n = 14), moderate (n = 11) and severe (n = 9), with 10 matched healthy controls. While walking, all subjects had their sEMG (4 linear electrode arrays) recorded for tibialis anterior (TA), gastrocnemius medialis (GM), vastus lateralis (VL) and biceps femoris (BF). MFCV was calculated using a maximum likelihood algorithm with 30 ms standard deviation Gaussian windows. In general, individuals in the earlier stages of DPN showed lower MFCV of TA, GM and BF, whilst individuals with severe DPN presented higher MFCV of the same muscles. We observed that mild patients already showed lower MFCV of TA at early stance and swing, and lower MFCV of BF at swing. All diabetic groups showed a markedly reduction in MFCV of VL, irrespective of DPN. Severe patients presented higher MFCV mainly in distal muscles, TA at early and swing phases and GM at propulsion and midstance. The absent group already showed MFCV of VL and GM reductions at the propulsion phase and of VL at early stance. Although MFCV changes were not as progressive as the DPN was, we clearly distinguished diabetic patients from controls, and severe patients from all others.  相似文献   

20.
Although numerous clinical studies have reported that pulsed electromagnetic fields (PEMF) have a neuroprotective role in patients with diabetic peripheral neuropathy (DPN), the application of PEMF for clinic is still controversial. The present study was designed to investigate whether PEMF has therapeutic potential in relieving peripheral neuropathic symptoms in streptozotocin (STZ)-induced diabetic rats. Adult male Sprague–Dawley rats were randomly divided into three weight-matched groups (eight in each group): the non-diabetic control group (Control), diabetes mellitus with 15 Hz PEMF exposure group (DM+PEMF) which were subjected to daily 8-h PEMF exposure for 7 weeks and diabetes mellitus with sham PEMF exposure group (DM). Signs and symptoms of DPN in STZ-treated rats were investigated by using behavioral assays. Meanwhile, ultrastructural examination and immunohistochemical study for vascular endothelial growth factor (VEGF) of sciatic nerve were also performed. During a 7-week experimental observation, we found that PEMF stimulation did not alter hyperglycemia and weight loss in STZ-treated rats with DPN. However, PEMF stimulation attenuated the development of the abnormalities observed in STZ-treated rats with DPN, which were demonstrated by increased hind paw withdrawal threshold to mechanical and thermal stimuli, slighter demyelination and axon enlargement and less VEGF immunostaining of sciatic nerve compared to those of the DM group. The current study demonstrates that treatment with PEMF might prevent the development of abnormalities observed in animal models for DPN. It is suggested that PEMF might have direct corrective effects on injured nerves and would be a potentially promising non-invasive therapeutic tool for the treatment of DPN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号