首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the modern scenario, thiazolidinone scaffold has emerged as a very potent scaffold as per its clinical significance concerned. It has attracted the keen interest of the researchers due to its great diversity in biological activities. Thiazolidinones are the saturated form of thiazole, called thiazolidine with a carbonyl group. The 1,3-thiazolidin-4-ones possess wide range of pharmacological activities such as anti-cancer, anti-diabetic, anti-microbial, anti-viral, anti-inflammatory and anti-convulsant. In the past few years, various newer synthetic approaches have been designed to synthesize diverse scaffolds to explore the various types of biological activities. In this review, an attempt has been made by the authors to summarize various synthetic strategies for thiazolidinone derivatives as well as their biological significance.  相似文献   

2.
Abstract

Tuberculosis (TB) is still a major health concern worldwide. The increasing incidences of multi-drug-resistant tuberculosis (MDR-TB) necessitate the development of new anti-TB drugs acting via novel mode of action. The search of newer drugs for TB led to the identification of several quinoline-based antimycobacterial agents against both the drug-sensitive and MDR-TB. These agents have been designed by substituting quinoline scaffold with diverse chemical functionalities as well as by modifying quinoline/quinolone-based antibacterial drugs. Several of quinoline/quinolone derivatives displayed excellent antimycobacterial activity and were found free of cytotoxicity. This review highlights the critical aspects of design and structure–activity relationship of quinoline- and quinolone-based antimycobacterial agents.  相似文献   

3.
Significant advances have been achieved in recent years to ameliorate rheumatoid arthritis (RA) in animal models using gene therapy approaches rather than biological treatments. Although biological agents serve as antirheumatic drugs with suppressing proinflammatory cytokine activities, they are usually accompanied by systemic immune suppression resulting from continuous or high systemic dose injections of biological agents. Therefore, gene transfer approaches have opened an interesting perspective to deliver one or multiple genes in a target-specific or inducible manner for the sustained intra-articular expression of therapeutic products. Accordingly, many studies have focused on gene transferring methods in animal models by using one of the available approaches. In this study, the important strategies used to select effective genes for RA gene therapy have been outlined. Given the work done in this field, the future looks bright for gene therapy as a new method in the clinical treatment of autoimmune diseases such as RA, and by ongoing efforts in this field, we hope to achieve feasible, safe, and effective treatment methods.  相似文献   

4.
Thienopyrimidine scaffold is a fused heterocyclic ring system that structurally can be considered as adenine, the purine base that is found in both DNA and RNA-bioisosteres. Thienopyrimidines exist in three distinct isomeric forms. The current review discusses thieno[2,3-d]pyrimidine as a one of the opulent heterocycles in drug discovery. Its broad range of medical applications such as anticancer, anti-inflammatory, anti-microbial, and CNS protective agents has inspired us to study its structure-activity relationship (SAR), along with its relevant synthetic strategies. The present review briefly summarizes synthetic approaches for the preparation of thieno[2,3-d]pyrimidine derivatives. In addition, the promising biological activities of this scaffold are also illustrated with explanatory diagrams for their SAR studies.  相似文献   

5.
A water-soluble calixarene-based heterocyclic podand incorporating a quinolone antibiotic subunit, the nalidixic acid, was synthesised and fully characterised. Its prodrug behaviour was assessed in vitro by HPLC, demonstrating the release of the tethered quinolone in model biological conditions. Microbiological studies performed on various Gram-positive and Gram-negative reference strains showed very interesting antibacterial activities.  相似文献   

6.
庞晓楠  弘笑  魏璇  陈喜文  刘佳  陈德富 《遗传》2015,37(9):873-884
乳铁蛋白(Lactoferrin, Lf)是分子量大小约为80 kDa的铁离子结合糖蛋白,是转铁蛋白(Transferrin, Tf)家族的成员之一。其理化性质独特,具有抑菌、抗病毒、抗癌、免疫调节、调节铁离子的吸收等诸多生物学功能。获得高产且有生物活性的重组乳铁蛋白,并用于临床治疗,一直是研究热点。随着基因工程技术的发展,已获得多个可表达重组乳铁蛋白的表达系统。本文对乳铁蛋白的理化性质、生物学活性、临床研究以及目前的重组表达系统进行综述,以期为乳铁蛋白的临床应用提供参考。  相似文献   

7.
To protect organisms from ionizing radiation (IR), and to reduce morbidity or mortality, various agents, called radioprotectors, have been utilized. Because radiation‐induced cellular damage is attributed primarily to the harmful effects of free radicals, molecules with radical‐scavenging properties are particularly promising as radioprotectors. Early development of such agents focused on thiol synthetic compounds, known as WR protectors, but only amifostine (WR‐2721) has been used in clinical trials as an officially approved radioprotector. Besides thiol compounds, various compounds with different chemical structure were investigated, but an ideal radioprotector has not been found yet. Plants and natural products have been evaluated as promising sources of radioprotectors because of their low toxicity, although they exhibit an inferior protection level compared to synthetic thiol compounds. Active plant constituents seem to exert the radioprotection through antioxidant and free radical‐scavenging activities. Our research established that plants containing polyphenolic compounds (raspberry, blueberry, strawberry, grape, etc.) exhibit antioxidative activities and protect genetic material from IR.  相似文献   

8.
9.
乳铁素——来源于乳铁蛋白的多功能抗菌肽   总被引:2,自引:0,他引:2  
乳铁素是乳铁蛋白在酸性环境条件下经胃蛋白酶水解从N-端释放的多功能活性多肽.乳铁素不仅保持了完整乳铁蛋白的大部分生物学活性,而且乳铁素的某些生物学活性比乳铁蛋白更强.乳铁素具有抗细菌、抗真菌、抗病毒、抗肿瘤、免疫调节和抗炎症等多种生物学功能.然而,乳铁素的生物学作用大部分是通过体外试验发现和验证的,乳铁素的体内生物学效应还需更多的试验加以评价和证实,现代基因组学和蛋白组学分析方法和技术将有助于深入了解乳铁素体内生物学作用机制.本文就乳铁素的结构、生物学功能及其作用机制、制备和应用前景作一综述.  相似文献   

10.
Chitin oligosaccharides (COSs) can be isolated from various natural resources, which have widely been used in biological active supplements (BAS) for the benefit of humankind. Several technological approaches for the preparation of COSs such as enzymatic, chemical, acid-catalysts hydrolysis, microwave radiation, membrane bioreactor methods have been developed and among them, membrane bioreactor, bioconversion and continuous mass production technologies are reported to be excellent. Compounds isolated from natural products have made a drastic impact on the pharmaceutical industry and especially, water-soluble chitin oligosaccharides have shown greater clinical activity, which have been demonstrated in various cell lines of disease significance. The activities of these COSs were being investigated in different patients, animals and even plants as a broad phase clinical trial program. In the present article, we have discussed the COSs preparation by different methods through comprehensive diffraction procedures along with the merits and demerits given in detail. In addition, a summary of recent work describing the synthesis and biological activities of water-soluble COSs has been presented here.  相似文献   

11.
Quinoxalines are benzopyrazines containing benzene and pyrazine rings fused together. In the recent past, quinoxalines have attracted Medicinal Chemists considerably for their syntheses and chemistry due to their distinct pharmacological activities. Diverse synthetic protocols have been developed via multicomponent reactions, single pot synthesis and combinatorial approach using efficient catalysts, reagents, and nano-composites etc. Further, the versatility of the quinoxaline core and its reasonable chemical simplicity devise it extremely promising source of bioactive compounds. Therefore, a wide variety of bioactive quinoxalines has been realised as antitumour, antifungal, anti-inflammatory, antimicrobial, and antiviral agents. Already, a few of them are clinical drugs while many more are under various phases of clinical trials. Present review focuses on chemistry and pharmacology (both efficacy and safety) of quinoxalines and also provides some insight in to their structure–activity relationship.  相似文献   

12.
Seaweeds are the primary producers of all aquatic ecosystems. Chemical constituents isolated from diverse classes of seaweeds exert a wide range of nutritional, functional and biological activities. Unique metabolites of seaweeds possess specific biological properties that make them potential ingredients of many industrial applications such as functional foods, pharmaceuticals and cosmeceuticals. Cosmeceuticals of natural origin are becoming more popular than synthetic cosmetics. Hence, the investigation of new seaweeds derived functional components, a different source of natural products, has proven to be a promising area of cosmeceutical studies. Brown seaweeds also produce a range of active components including unique secondary metabolites such as phlorotannins and many of which have specific biological activities that give possibilities for their economic utilization. Brown seaweeds derived active compounds have been shown various functional properties including, antioxidant, antiwrinkling, whitening, antiinflammatory and antiallergy. It is well-known that these kind of biological effects are closely associated with cosmeceutical preparations. This communication reviews the current knowledge on brown seaweeds derived metabolites with various biological activities and the potential use as cosmeceutical ingredients. It is hoped that the reviewed literature on multifunctional properties of brown seaweeds will improve access to the seaweed based natural products specially the ability to incorporate these functional properties in cosmeceutical applications.  相似文献   

13.
Summary The triple-helical conformation of collagen has been proposed to be important for mediation of cellular activities, such as adhesion and activation, extracellular matrix assembly, and enzyme function. We have developed synthetic protocols that allow for the study of biological activities of specific collagen sequences in triple-helical conformation. These methods primarily involve solid-phase assembly and covalent linkage of three peptide chains. The resultant triple-helical peptides have sufficient thermal stabilities to permit structural and biological characterization under physiological conditions. The present article critically reviews the various approaches for constructing synthetic triple-helices.This paper is based on a presentation given at the Symposium on Peptide Structure and Design as part of the 31st Annual ACS Western Regional Meeting held in San Diego, CA, USA, October 18–21, 1995.  相似文献   

14.
Pyrazole nucleosides and condensed pyrazole nucleosides exhibit various biological activities. This article describes recent synthetic approaches to their preparation, chemical properties, biological activities, and structure-activity relationships, with emphasis to selected drugs or drug candidates. Two pyrazole C-nucleoside compounds pyrazofurin (pyrazomycin) and its alpha-epimer pyrazofurin B are active components of potent antivirals approved for therapeutic use in human medicine aimed against various diseases caused by DNA viruses.  相似文献   

15.
Pyrazole nucleosides and condensed pyrazole nucleosides exhibit various biological activities. This article describes recent synthetic approaches to their preparation, chemical properties, biological activities, and structure-activity relationships, with emphasis to selected drugs or drug candidates. Two pyrazole C-nucleoside compounds pyrazofurin (pyrazomycin) and its α-epimer pyrazofurin B are active components of potent antivirals approved for therapeutic use in human medicine aimed against various diseases caused by DNA viruses.  相似文献   

16.
Basal Stem Rot (BSR) disease caused by Ganoderma boninense is the most destructive disease in oil palm, especially in Indonesia and Malaysia. The available control measures for BSR disease such as cultural practices and mechanical and chemical treatment have not proved satisfactory due to the fact that Ganoderma has various resting stages such as melanised mycelium, basidiospores and pseudosclerotia. Alternative control measures to overcome the Ganoderma problem are focused on the use of biological control agents and planting resistant material. Present studies conducted at Indonesian Oil Palm Research Institute (IOPRI) are focused on enhancing the use of biological control agents for Ganoderma. These activities include screening biological agents from the oil palm rhizosphere in order to evaluate their effectiveness as biological agents in glasshouse and field trials, testing their antagonistic activities in large scale experiments and eradicating potential disease inoculum with biological agents. Several promising biological agents have been isolated, mainly Trichoderma harzianum, T. viride, Gliocladium viride, Pseudomonas fluorescens, and Bacillus sp. A glasshouse and field trial for Ganoderma control indicated that treatment with T. harzianum and G. viride was superior to Bacillus sp. A large scale trial showed that the disease incidence was lower in a field treated with biological agents than in untreated fields. In a short term programme, research activities at IOPRI are currently focusing on selecting fungi that can completely degrade plant material in order to eradicate inoculum. Digging holes around the palm bole and adding empty fruit bunches have been investigated as ways to stimulate biological agents.  相似文献   

17.
Large-scale functional analysis using peptide or protein arrays   总被引:22,自引:0,他引:22  
The array format for analyzing peptide and protein function offers an attractive experimental alternative to traditional library screens. Powerful new approaches have recently been described, ranging from synthetic peptide arrays to whole proteins expressed in living cells. Comprehensive sets of purified peptides and proteins permit high-throughput screening for discrete biochemical properties, whereas formats involving living cells facilitate large-scale genetic screening for novel biological activities. In the past year, three major genome-scale studies using yeast as a model organism have investigated different aspects of protein function, including biochemical activities, gene disruption phenotypes, and protein-protein interactions. Such studies show that protein arrays can be used to examine in parallel the functions of thousands of proteins previously known only by their DNA sequence.  相似文献   

18.
RNA molecules play diverse functional roles in natural biological systems. There has been growing interest in designing synthetic RNA counterparts for programming biological function. The design of synthetic RNA molecules that exhibit diverse activities, including sensing, regulatory, information processing, and scaffolding activities, has highlighted the advantages of RNA as a programmable design substrate. Recent advances in implementing these engineered RNA molecules as key control elements in synthetic genetic networks are highlighting the functional relevance of this class of synthetic elements in programming cellular behaviors.  相似文献   

19.
Transgenic mouse models for the prevention of breast cancer   总被引:3,自引:0,他引:3  
Shen Q  Brown PH 《Mutation research》2005,576(1-2):93-110
Breast cancer prevention research has made remarkable progress in the past decade. Much of this progress has come from clinical trials. However, in the future to test the many promising agents that are now available, pre-clinical models of breast cancer are needed. Such models are now available. Useful models include rat and mouse models, particularly, the genetically engineered mice (GEM). Many transgenic mouse models have been generated by manipulating growth factors and their receptors, cell cycle regulators, signal transduction pathways, cellular differentiation, oncogenes and tumor suppressor genes. The transgenes are induced to express in the mouse mammary glands under the control of various transgenic promoters, which have respective characteristics in expression pattern and other biological attributes. These models are providing invaluable insight on the molecular mechanisms of breast tumorigenesis. In this review, we discuss the relative relevance of the most commonly used transgenic mouse models for breast cancer prevention studies, and provide examples of how these transgenic models can be used to conduct cancer prevention research. Due to the multi-factor, multi-step nature of breast cancer, many factors should be incorporated into a valid prevention study. However, many barriers to progress must be overcome, including access to and availability of new cancer preventive drugs, and difficulties in conducting studies of combinations of preventive agents.  相似文献   

20.
Nitrogen-rich heterocycles, particularly quinazolines and quinazolinones, represent a unique class of diversified frameworks displaying a broad spectrum of biological functions. Over the past several years, intensive medicinal chemistry efforts have generated numerous structurally functionalized quinazoline and quinazolinone derivatives. Interest in expanding the biological effects, demonstrated by these motifs, is growing exponentially, as indicated by the large number of publications reporting the easy accessibility of these skeletons in addition to the diverse nature of synthetic as well as biological applications. Therefore, the main focus of the present review is to provide an ample but condensed overview on various synthetic approaches providing access to quinazoline and quinazolinone compounds with multifaceted biological activities. Furthermore, mechanistic insights, synthetic utilization, structure–activity relationships and molecular modeling inputs for the potent derivatives have also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号