首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lower limb (LL) muscle morphology and growth are altered in children with cerebral palsy (CP). Muscle alterations differ with age and with severity of motor impairment, classified according to the gross motor classification system (GMFCS). Muscle alterations differ also with orthopedic intervention, frequently performed at the level of the shank muscles since an early age, such as the gastrocnemius. The aim was to investigate the alterations of treatment-naïve pelvis and thigh muscle lengths and volumes in children with GMFCS levels I and II, of varying ages.17 children with CP (GMFCS I: N = 9, II: N = 8, age: 11.7 ± 4 years), age-matched to 17 typically developing (TD) children, underwent MRI of the LL. Three-dimensional reconstructions of the muscles were performed bilaterally. Muscle volumes and lengths were calculated in 3D and compared between groups. Linear regression between muscle volumes and age were computed.Adductor-brevis and gracilis lengths, as well as rectus-femoris volume, were decreased in GMFCS I compared to TD (p < 0.05). Almost all the reconstructed muscle volumes and lengths were found to be altered in GMFCS II compared to TD and GMFCS I. All muscle volumes showed significant increase with age in TD and GMFCS I (R2 range: 0.3–0.9, p < 0.05). Rectus-femoris, hamstrings and adductor-longus showed reduced increase in the muscle volume with age in GMFCS II when compared to TD and GMFCS I.Alterations of treatment-naïve pelvis and thigh muscle volumes and lengths, as well as muscle growth, seem to increase with the severity of motor impairment in ambulant children with CP.  相似文献   

2.
The maximum anatomical muscle cross-sectional areas and volumes of the muscles in the lower part of the body, thigh, and shank were measured by magnetic resonance imaging. The largest cross-sectional areas were 145.65 and 63 cm2 in m. gluteus maximus and m. vastus, respectively, referred to as mm. adductors. In the thigh, m. vastus had the largest volume, 1505 ± 271 cm3, and in the shank, m. soleus had the largest volume, 552 ± 64 cm3. Close correlations (0.50 < R < 0.75) between the maximum areas of the lower extremity muscles were evidence for a certain relationship between the muscle cross-sections. A multiple regression equation was formulated to calculate the maximum anatomical cross-sectional areas and volumes in the muscles of the lower extremities with respect to some anthropometric parameters.  相似文献   

3.
The volume of the thigh adipose tissue was estimated using magnetic resonance tomography (MRT) and anthropometric measurements. Eighty-seven physically well-developed men aged 18–45 years participated in the experiment. The MRT estimate of the thigh fat volume was 2206 ± 882 cm3. The results were used to derive two multiple linear regression equations for calculating the thigh adipose tissue volume from anthropometric parameters. The correlation coefficient between the thigh adipose tissue volumes calculated from the equation and measured by MRT was r = 0.97.  相似文献   

4.
Tensiomyography detects the contraction time (Tc) and amplitude (Dm) of muscle belly thickening during maximal isometric twitch contraction. The assessment of both parameters is highly reliable; however, it seems that their calculation depends on the measurement point. The aim of the study was to determine spatial relative error distribution of Tc and/or Dm within a two-dimensional array of 27 (3 × 9) measurement points in comparison to the reference point (RP) in 12 male participants (22.5 ± 3.1 years). The RPs were determined as follows: in the biceps brachii (BB) at 50% of the humerus length; in the erector spinae (ES) at the height of the iliac crest; in the vastus lateralis (VL), vastus medalis (VM), and rectus femoris (RF) at 30%, 20%, and 50% of femur length above the patella, respectively. The surface area under the 3% relative error in Dm (BB: 4.0; VL: 3.8; VM; 8.2; RF: 6.2; ES: 2.4 cm2) was lower than in Tc (BB: 6.9; VL: 3.8; VM; 4.6; RF: 9.5; ES: 3.7 cm2), yielding merged values (BB: 3.9; VL: 3.7; VM; 4.8; RF: 5.1; ES: 2.4 cm2). Dm show twice as steep relative error rate when moving away from the RP in comparison to Tc, which seems to be less sensitive to spatial sensor positioning.  相似文献   

5.
Muscle volume and length are important parameters for examining the force-generating capabilities of muscle and their evaluation is necessary in studies that investigate muscle morphology and mechanical changes due to age, function, pathology, surgery and training. In this study, we assessed the validity and reliability of in vivo muscle volume and muscle belly length measurement using a multiple sweeps freehand 3D ultrasound (3DUS). The medial gastrocnemius of 10 subjects was scanned at three ankle joint angles (15°, 0° and ?15° dorsiflexion) three times using the freehand 3DUS and once on the following day using magnetic resonance imaging (MRI). All freehand 3DUS and MRI images were segmented, volumes rendered and volumes and muscle belly lengths measured. The freehand 3DUS overestimated muscle volume by 1.9±9.1 mL, 1.1±3.8% difference and underestimated muscle belly length by 3.0±5.4 mm, 1.3±2.2% difference. The intra-class correlation coefficients (ICC) for repeated freehand 3DUS system measures of muscle volume and muscle belly length were greater than 0.99 and 0.98, respectively. The ICCs for the segmentation process reliability for the freehand 3DUS system and MRI for muscle volume were both greater than 0.99 and muscle belly length were 0.97 and 0.99, respectively. Freehand 3DUS is a valid and reliable method for the measurement of human muscle volume and muscle belly length in vivo. It could be used as an alternative to MRI for measuring in vivo muscle morphology and thus allowing the determination of PCSA and estimation of the force-generating capacity of individual muscles within the setting of a biomechanics laboratory.  相似文献   

6.
The purposes of this study were to attempt to record surface electromyography (EMG) from the superficial region of vastus intermedius (VI) and to investigate the influence of adjacent muscle activity on surface EMG of VI. First, serial axial magnetic resonance imaging of the thigh was performed for 45 healthy young men to determine morphological characteristics of the VI. Second, surface EMG activity of the VI and other quadriceps femoris (QF) muscle group components were recorded in maximum voluntary contraction during isometric knee extension from 11 healthy young men. To test cross-talk of EMG signals between VI and the nearest adjacent muscle, vastus lateralis (VL), we applied cooling for 20-min on VL to selectively alter activity. Cooling the skin above a muscle is known to decrease median frequency (MF) of EMG signal of the muscle. All subjects displayed a superficial region in VI sufficiently large (14 cm2) to record surface EMG. Surface EMG of VI could be detected in the same scale as other QF muscle group components. Cooling induced a significant MF decrease only in VL (from 92.5 to 44.2 Hz, p < 0.001), but no significant change was observed in VI (from 63.8 to 61.7 Hz). From this result, we concluded the muscle activity of VL is negligible on surface EMG detected from VI during isometric contraction.  相似文献   

7.
Age‐related increases in ectopic fat accumulation are associated with greater risk for metabolic and cardiovascular diseases, and physical disability. Reducing skeletal muscle fat and preserving lean tissue are associated with improved physical function in older adults. PPARγ‐agonist treatment decreases abdominal visceral adipose tissue (VAT) and resistance training preserves lean tissue, but their effect on ectopic fat depots in nondiabetic overweight adults is unclear. We examined the influence of pioglitazone and resistance training on body composition in older (65–79 years) nondiabetic overweight/obese men (n = 48, BMI = 32.3 ± 3.8 kg/m2) and women (n = 40, BMI = 33.3 ± 4.9 kg/m2) during weight loss. All participants underwent a 16‐week hypocaloric weight‐loss program and were randomized to receive pioglitazone (30 mg/day) or no pioglitazone with or without resistance training, following a 2 × 2 factorial design. Regional body composition was measured at baseline and follow‐up using computed tomography (CT). Lean mass was measured using dual X‐ray absorptiometry. Men lost 6.6% and women lost 6.5% of initial body mass. The percent of fat loss varied across individual compartments. Men who were given pioglitazone lost more visceral abdominal fat than men who were not given pioglitazone (?1,160 vs. ?647 cm3, P = 0.007). Women who were given pioglitazone lost less thigh subcutaneous fat (?104 vs. ?298 cm3, P = 0.002). Pioglitazone did not affect any other outcomes. Resistance training diminished thigh muscle loss in men and women (resistance training vs. no resistance training men: ?43 vs. ?88 cm3, P = 0.005; women: ?34 vs. ?59 cm3, P = 0.04). In overweight/obese older men undergoing weight loss, pioglitazone increased visceral fat loss and resistance training reduced skeletal muscle loss. Additional studies are needed to clarify the observed gender differences and evaluate how these changes in body composition influence functional status.  相似文献   

8.
The force produced by a muscle depends on both the neural drive it receives and several biomechanical factors. When multiple muscles act on a single joint, the nature of the relationship between the neural drive and force-generating capacity of the synergistic muscles is largely unknown. This study aimed to determine the relationship between the ratio of neural drive and the ratio of muscle force-generating capacity between two synergist muscles (vastus lateralis (VL) and vastus medialis (VM)) in humans. Twenty-one participants performed isometric knee extensions at 20 and 50% of maximal voluntary contractions (MVC). Myoelectric activity (surface electromyography (EMG)) provided an index of neural drive. Physiological cross-sectional area (PCSA) was estimated from measurements of muscle volume (magnetic resonance imaging) and muscle fascicle length (three-dimensional ultrasound imaging) to represent the muscles'' force-generating capacities. Neither PCSA nor neural drive was balanced between VL and VM. There was a large (r = 0.68) and moderate (r = 0.43) correlation between the ratio of VL/VM EMG amplitude and the ratio of VL/VM PCSA at 20 and 50% of MVC, respectively. This study provides evidence that neural drive is biased by muscle force-generating capacity, the greater the force-generating capacity of VL compared with VM, the stronger bias of drive to the VL.  相似文献   

9.
Magnetic resonance imaging (MRI) and computerizedtomography (CT) are promising reference methods for quantifying wholebody and regional skeletal muscle mass. Earlier MRI and CTvalidation studies used data-acquisition techniques and data-analysisprocedures now outdated, evaluated anatomic rather than adiposetissue-free skeletal muscle (ATFSM), studied only the relatively largethigh, or found unduly large estimation errors. The aim ofthe present study was to compare arm and leg ATFSM cross-sectional areaestimates (cm2) by usingstandard MRI and CT acquisition and image-analysis methods withcorresponding cadaver estimates. A second objective was to validate MRIand CT measurements of adipose tissue embedded within muscle(interstitial adipose tissue) and surrounding muscle (subcutaneousadipose tissue). ATFSM area (n = 119)by MRI [38.9 ± 22.3 (SD)cm2], CT (39.7 ± 22.8 cm2), and cadaver (39.5 ± 23.0 cm2) were not different(P > 0.001), and both MRI and CTestimates of ATFSM were highly correlated with corresponding cadavervalues [MRI: r = 0.99, SE of estimate (SEE) 3.9 cm2,P < 0.001; and CT:r = 0.99, SEE = 3.8 cm2,P < 0.001].Similarly good results were observed between MRI- and CT-measured vs.cadaver-measured interstitial and subcutaneous adipose tissue. ForMRI-ATFSM the intraobserver correlation for duplicate measurements invivo was 0.99 [SEE = 8.7 cm2(2.9%), P < 0.001]. Thesefindings strongly support the use of MRI and CT as reference methodsfor appendicular skeletal muscle, interstitial and subcutaneous adiposetissue measurement in vivo.

  相似文献   

10.
In vivo muscle forces are typically estimated using literature-based or subject-specific moment arms (MAs) because it is not possible to measure in vivo muscle forces non-invasively. However, even subject-specific muscle-tendon MAs vary across contraction levels and are impossible to determine at high contraction levels without techniques that use ionized radiation. Therefore, different generic MA functions are often used to estimate in vivo muscle forces, which may alter force predictions and the shape of the muscle’s force-length relationship. The aim of this study was to examine the influence of different literature-based patella tendon MA functions on the vastus lateralis (VL) force-angle relationship. Participants (n = 11) performed maximum voluntary isometric knee extension contractions at six knee flexion angles, ranging from 40° to 90°. To estimate in vivo VL muscle force, the peak knee extension torque at each joint angle was multiplied by the VL’s physiological cross-sectional area (PCSA) relative to the quadriceps’ PCSA (34%) and then divided by the angle-specific patella tendon MA for 19 different functions. Maximum VL force was significantly different across MA functions (p ≤ 0.039) and occurred at different knee flexion angles. The shape of the VL force-angle relationship also differed significantly (p < 0.01) across MA functions. According to the maximum force generated by VL based on its literature-derived PSCA, only the VL force-angle relationships estimated using geometric imaging-based MA functions are feasible across the knee angles studied here. We therefore recommend that an average of these MA functions is calculated to estimate quadriceps muscle forces if subject-specific MAs cannot be determined.  相似文献   

11.
目的:探讨超声引导经阴道射频消融治疗症状性子宫肌瘤的安全性和有效性。方法:选择39例症状性子宫肌瘤患者进行经阴道射频消融治疗。术前超声测量肌瘤体积,采用子宫肌瘤症状和生存质量调查表对患者的子宫肌瘤相关症状的严重程度以及生活质量情况进行评分,观察治疗前和治疗后3、6、9、12个月肌瘤体积缩小率、临床症状及生活质量的改善情况和治疗前后卵巢功能的变化情况。结果:射频消融平均手术时间25分钟,术中及术后均未见明显并发症。本组术前肌瘤体积为65.2±49.3 cm~3;术后3、6、9、12个月肌瘤体积分别为32.2±27.6 cm~3、21.2±18.2 cm~3、15.3±12.1 cm~3、10.3±9.8 cm~3,与术前相比均显著缩小(P0.05)。术前SSS评分为60.23±13.2,术后3、6、9、12个月SSS评分分别为42.2±11.4、21.1±10.2、15.4±10.3、12.2±9.7,与治疗前相比均明显下降(P0.05)。术前QOL评分为58.24±16.24,术后3、6、9、12个月QOL评分分别为70.3±20.3、81.4±8.6、86.3±7.6、88.2±9.1,与治疗前相比逐渐上升,差异有统计学意义(P0.05)。手术后3、6、9、12个月后患者的FSH、LH、E2水平与术前相比,差异均无统计学意义(P0.05)。结论:超声引导下经阴道射频治疗子宫肌瘤可以有效缩小肌瘤体积,改善患者的临床症状,并提高患者的生活质量。  相似文献   

12.
The present study aimed to investigate the validity of estimating muscle volume by bioelectrical impedance analysis. Bioelectrical impedance and series cross-sectional images of the forearm, upper arm, lower leg, and thigh on the right side were determined in 22 healthy young adult men using a specially designed bioelectrical impedance acquisition system and magnetic resonance imaging (MRI) method, respectively. The impedance index (L(2)/Z) for every segment, calculated as the ratio of segment length squared to the impedance, was significantly correlated to the muscle volume measured by MRI, with r = 0.902-0.976 (P < 0.05). In these relationships, the SE of estimation was 38.4 cm(3) for the forearm, 40.9 cm(3) for the upper arm, 107.2 cm(3) for the lower leg, and 362.3 cm(3) for the thigh. Moreover, isometric torque developed in elbow flexion or extension and knee flexion or extension was significantly correlated to the L(2)/Z values of the upper arm and thigh, respectively, with correlation coefficients of 0.770-0.937 (P < 0.05), which differed insignificantly from those (0.799-0.958; P < 0.05) in the corresponding relationships with the muscle volume measured by MRI of elbow flexors or extensors and knee flexors or extensors. Thus the present study indicates that bioelectrical impedance analysis may be useful to predict the muscle volume and to investigate possible relations between muscle size and strength capability in a limited segment of the upper and lower limbs.  相似文献   

13.
Membrane potentials, cable parameters, and component resting ionic conductances of gastrocnemius fibers from normal goats were measured in vitro at six to 32 days following denervation by section of the tibial nerve. Denervated fibers were depolarized an average of 11.6 ± 1.5 mV (six preparations) from the control mean of 62.1 ± 1.0 mV (124 fibers) over the period studied. Fibrillation, tetrodotoxin-resistant action potentials, and anodebreak excitation were present in the denervated preparations after 13 days. The control cable parameters from 124 fibers (13 preparations) were membrane resistance, 1052 ± 70 ω·cm2 and membrane capacitance, 6.2 μF/cm2. In denervated fibers membrane resistance increased two to three times in the 13 to 32 day period; membrane capacitance increased about 50% in normal solution at eight to nine, 27–28, and 32 days. Myoplasmic resistivity was assumed to be 112 Ωcm. Measurements were made at 38°C. Component resting conductances were determined from the cable parameters in normal and chloride-free solution. Mean chloride conductance GCl and mean potassium conductance GK of control fibers were 776 ± 49 μmhos/cm2 and 175 ± 15 μmhos/cm2 (92 fibers), respectively. Following denervation GCl increased slightly at six to nine days then fell to low values at 16 to 32 days that were close to or indistinguishable from zero. GK increased significantly to 372 ± 40 μmhos/cm2 and 499 ± 90 μmhos/cm2 at 16 to 20 and 32 days, respectively. It was concluded from these findings that GCl and GK of mammalian skeletal muscle are controlled by factors from the nerve and/or muscle action potentials. Goat muscle is different from frog muscle in which GCl does not change and GK decreases during denervation.  相似文献   

14.
ObjectivesThe objective of the proposed study is to exploit the technology of high-density surface electromyography (HD-sEMG), in order to evaluate the muscle activation in young and elderly subjects during a daily life gesture, namely, Sit To Stand (STS), using wireless connected ambulatory equipment (TMSi©) and Blind Source Separation (BSS) approach with Canonical Correlation Analysis (CCA).Materials and methodsSixteen subjects participated (50% females) divided into two categories (‘H1’: young (30.62 yrs ±5.92, 23.95 kg/m2 ±3.08), versus ‘H2’: old (61.87 yrs ±7.98, 23.4 kg/m2 ±3.38)), in the recording of HD-sEMG signals, using 32-electrodes square grids (4×8), during Sit To Stand (STS) motion, three times at spontaneous speed. The studied muscle is the Rectus Femoris (RF) muscle. The recorded HD-sEMG signals were analyzed with CCA approach to extract correlation coefficient sets according to two age categories (young versus old), in order to evaluate its discriminating power with ageing. Statistical tests (t-test) were used to evaluate the discrimination for these two categories.ResultsThe calculation of CCA correlation coefficients showed a significant difference between young and old category concerning the mean CCA correlation coefficient (P<0.001***) and also the standard deviation of the CCA correlation coefficients (P<0.0001****).ConclusionThe obtained results are promising and indicate a clear difference between the obtained source variability using CCA method between the young and the old tested subjects during daily life motion. Furthermore, these estimated sources seem to be impacted by both anatomical and functional modifications with ageing.  相似文献   

15.
Stroke survivors routinely experience long-term motor and sensory impairments. In parallel with neurological changes, material properties of muscles in the impaired limbs, such as muscle stiffness, may also change progressively. However, these stiffness measures are routinely derived from individual joint stiffness, representing whole muscle groups. Here, we use shear wave (SW) ultrasound elastography to measure SW velocity, as a surrogate measure of stiffness, to quantify material properties in individual muscles. Accordingly, the purpose of this study was to compare muscle material properties of the bicep brachii in stroke survivors and in age-matched control subjects by measuring SW velocity at rest and different voluntary activation levels. Our main findings show that at rest, the SW velocity was on average 41% greater in the paretic muscle compared the contralateral non-paretic muscle. The mean passive SW velocity across all subjects were 2.34 ± 0.41 m/s for the non-paretic side, 3.30 ± 1.20 m/s for the paretic side, and 2.24 ± 0.18 for controls. SW velocity was significantly different in muscles of the paretic and non-paretic side (p < 0.001), but not between muscles of the non-paretic and controls (p = 0.47). As voluntary activation increased, SW velocity increased non-linearly, with an average power fit of r2 = 0.83 ± 0.09 for the non-paretic side, r2 = 0.61 ± 0.24 for the paretic side, and r2 = 0.24 ± 0.15 for the healthy age-matched controls. In active muscle (10, 25, 50, 75, 100% maximum voluntary contraction), there was no significant difference in SW velocity between the non-paretic, paretic, and control muscles.These findings suggest that stroke-impaired muscles have potentially altered muscle material properties, specifically stiffness, and that passive and active stiffness may contribute differently to total muscle stiffness.  相似文献   

16.
Muscle thickness is one of the most widely used parameters for quantifying muscle function in both diagnosis and rehabilitation assessment. Ultrasound imaging has been frequently used to non-invasively study the thickness of human muscles as a reliable method. However, the measurement is traditionally conducted by manual digitization of reference points at the superior and inferior muscle fascias, thus it is subjective and time-consuming. In this paper, a novel method is proposed to detect the muscle thickness automatically. The superficial and deep fascias of a muscle are detected by line detection algorithm at the first ultrasound frame, and the image regions of interest (ROI) for the fascias are subsequently located and tracked by optical flow technique. The muscle thickness is geometrically obtained based on the location of the fascias for each frame. Six ultrasound sequences (250 frames in each sequence) are used to evaluate this method. The correlation coefficient of the detection results between the proposed method and manual method is 0.95 ± 0.01, and the difference is ?0.05 ± 0.22 mm. The linear regression of the total 1500 detections show that a good linear correlation between the results of the two methods is obtained (R2 = 0.981). The automated method proposed here provides an accurate, high repeatable and efficient approach for estimating fascicle thickness during human motion, thus justifying its application in biological sciences.  相似文献   

17.
The structure of thermally denatured Type I collagen has been studied using laser light scattering. The results indicate that the diffusion coefficients of α-chains and β- and γ-components are 1.550 ± 0.08 × 10?7, 1.000 ± 0.05 × 10?7, and 0.835 ± 0.04 × 10?7 cm2/sec, respectively, at temperatures between 20 and 40°C. It is concluded from diffusion data that these species have hydrodynamic radii of about 13.8 nm (α-chain), 21.5 nm (β-component), and 25.7 nm (γ-component), consistent with previous studies of thermal denaturation by light scattering. It is also concluded, based on volume calculations, that a large volume increase occurs when the triple helix unfolds. Homodyne correlation functions for two component mixtures of α-chains and β-and γ-components appeared to decay exponentially. In all but one case discussed the correlation function could be fitted with a single component having a translational diffusion coefficient which was an intensity weighted average of the diffusion coefficient of each component present.  相似文献   

18.
IntroductionIn this study, we tested two assumptions that have been made in experimental studies on muscle mechanics: (i) that the torque-angle properties are similar among agonistic muscles crossing a joint, and (ii) that the sum of the torque capacity of individual muscles adds up to the torque capacity of the agonist group.MethodsMaximum isometric torque measurements were made using a specifically designed animal knee extension dynamometer for the intact rabbit quadriceps muscles (n = 10) for knee angles between 60 and 120°. The nerve branches of the vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) muscles were carefully dissected, and a custom made nerve cuff electrode was implanted on each branch. Knee extensor torques were measured for four maximal activation conditions at each knee angle: VL activation, VM activation, RF activation, and activation of all three muscles together.ResultsWith the exception of VL, the torque-angle relationships of the individual muscles did not have the shape of the torque-angle relationship obtained when all muscles were activated simultaneously. Furthermore, the maximum torque capacity obtained by adding the individual torque capacities of VL, VM and RF was approximately 20% higher than the torques produced when the three muscles were activated simultaneously.DiscussionThese results bring into question our understanding of in-vivo muscle contraction and challenge assumptions that are sometimes made in human and animal muscle force analyses.  相似文献   

19.
Magnetic Resonance Imaging (MRI) scanners are widely used for 3D gel dosimeters readout. However, limited access to MRI scanners is a challenge in MRI-based gel dosimetry. Recent clinical implementation of MRI-guided radiation therapy machines provides potential opportunities for onboard gel dosimetry using its MRI subsystem. The objective of this study was to investigate the feasibility of gel dosimetry using ViewRay’s onboard 0.35 T MRI scanner. A BANG® polymer gel dosimeter was irradiated by three beams of 3 × 3 cm2 field size. The T2 relaxation rate (R2) of the irradiated gel was measured using a Philips 1.5 T Ingenia MRI and a ViewRay 0.35 T onboard MRI and spin-echo pulse sequences. The number of signal averages (NSA) was set to 16 for the ViewRay acquisitions and one for the Philips 1.5 T MRI to achieve similar signal-to-noise ratios. The in-plane spatial resolution was 1.5 × 1.5 mm2 and the slice thickness was 5 mm. The relative dose uncertainty was obtained using R2 versus dose curves to compare the performance of dosimetry using the two different MRIs and field strengths. The dose uncertainty decreased from 12% at 2 Gy to 3.5% at 7.5 Gy at 1.5 T. The dose uncertainty decreased from 13% at 2 Gy to 4% at 7.5 Gy with NSA = 16 and 3 × 3 mm2 pixel size, and from 10.5% at 2 Gy to 3.2% at 7.5 Gy with NSA = 16 and denoised R2 maps (1.5 × 1.5 mm2 pixel size) at 0.35 T. The mean of dose resolution was 0.4 Gy at 1.5 T while the mean of dose resolution was 0.8 Gy and 0.64 Gy at 0.35 T by downsampling and denoising the R2 map, respectively. Therefore, comparable dose uncertainty was achievable using the ViewRay’s onboard 0.35 T and Philips 1.5 T MRI scanners. 3D gel dosimetry using onboard low-field MRI scanner provides ViewRay users a 3D high resolution dosimetry option besides film and ionization chamber.  相似文献   

20.
This study examined hypertrophy after head extension resistance training to assess which muscles of the complicated cervical neuromuscular system were used in this activity. We also determined if conventional resistance exercises, which are likely to evoke isometric action of the neck, induce generalized hypertrophy of the cervical muscle. Twenty-two active college students were studied. [mean (SE) age, weight and height: 21 (1) years, 71 (4) kg and 173 (3) cm, respectively]. Subjects were assigned to one of three groups: RESX (head extension exercise and other resistance exercises), RES (resistance exercises without specific neck exercise), or CON (no training). Groups RESX (n = 8) and RES (n = 6) trained 3 days/week for 12 weeks with large-muscle mass exercises (squat, deadlift, push press, bent row and mid-thigh pull). Group RESX also performed three sets of ten repetitions of a head extension exercise 3 days/week with a load equal to the 3 × 10 repetition maximum (RM). Group CON (n = 8) was a control group. The cross-sectional area (CSA) of nine individual muscles or muscle groups was determined by magnetic resonance imaging (MRI) of the cervical region. The CSA data were averaged over four contiguous transaxial slices in which all muscles of interest were visible. The 3 × 10 RM for the head extension exercise increased for RESX after training [from 17.9 (1.0) to 23.9 (1.4) kg, P < 0.05] but not for RES [from 17.6 (1.4) to 17.7 (1.9)␣kg] or CON [from 10.1 (2.2) to 10.3 (2.1) kg]. RESX showed an increase in total neck muscle CSA after training [from 19.5 (3.0) to 22.0 (3.6) cm2, P < 0.05], but RES and CON did not [from 19.6 (2.9) to 19.7 (2.9)␣cm2 and 17.0 (2.5) to 17.0 (2.4) cm2, respectively]. This hypertrophy for RESX was due mainly to increases in CSA of 23.9 (3.2), 24.0 (5.8), and 24.9 (5.3)% for the splenius capitis, and semispinalis capitis and cervicis muscles, respectively. The lack of generalized neck muscle hypertrophy in RES was not due to insufficient training. For example, the CSA of their quadriceps femoris muscle group, as assessed by MRI, increased by 7 (1)% after this short-term training (P < 0.05). The results suggest that: (1) the splenius capitis, and semispinalis capitis and cervicis muscles are mainly responsible for head extension; (2) short-term resistance training does not provide a sufficient stimulus to evoke neck muscle hypertrophy unless specific neck exercises are performed; and (3) the postural role of head extensors provides modest loading in bipeds. Accepted: 15 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号