首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
Finger-pressing forces are produced by activation of the intrinsic hand muscles, which are finger specific, and the extrinsic muscles that connect to multiple fingers. We tested a hypothesis of greater weakening of intrinsic hand muscles with age and quantified associated indexes of finger interaction such as enslaving (force production by unintended fingers) and force deficit (loss of finger force in multifinger tasks compared with single-finger tasks). Twelve young (23-35 yr old) and 12 elderly (70-95 yr old) men and women performed single-finger and four-finger maximal pressing tasks, in which force was applied at the proximal phalanges (PP, the intrinsic muscles are major focal force generators) and at the distal phalanges (DP, the extrinsic muscles are focal force generators). The decline in the peak force with age was greater at PP (30%) than at DP (19%). Larger indexes of finger interaction were observed at PP (enslaving = 17.2 +/- 9.4%, force deficit = 36.1 +/- 11.1%) than at DP (enslaving = 14.9 +/- 8.8%, force deficit = 27.7 +/- 10.8%) across ages and genders. We conclude that intrinsic hand muscles show disproportionate weakening with age. The greater indexes of finger interaction in PP tests with greater involvement of intrinsic hand muscles suggest that the finger interactions are predominantly of a central origin across ages and genders.  相似文献   

2.
BackgroundThe trapeziometacarpal joint is subjected to high compressive forces during powerful pinch and grasp tasks due to muscle loading. In addition, muscle contraction is important for stability of the joint. The aim of the present study is to explore if different muscle activation patterns can be found between three functional tasks.MethodsIsometric forces and fine-wire electromyographic (fEMG) activity produced by three intrinsic and four extrinsic thumb muscles were measured in 10 healthy female volunteers. The participants performed isometric contractions in a lateral key pinch, a power grasp and a jar twist task. The tasks were executed with and without EMG recording to verify if electrode placement influenced force production.ResultsA subject-specific muscle recruitment was found which remained largely unchanged across tasks. Extrinsic thumb muscles were significantly more active than intrinsic muscles in all tasks. Insertion of the fEMG electrodes decreased force production significantly in all tasks.ConclusionThe thumb muscles display a high variability in muscle activity during functional tasks of daily life. The results of this study suggest that to produce a substantial amount of force, a well-integrated, but subject-specific, co-contraction between the intrinsic and extrinsic thumb muscles is necessary.  相似文献   

3.
Finger joint coordination during tapping   总被引:1,自引:0,他引:1  
We investigated finger joint coordination during tapping by characterizing joint kinematics and torques in terms of muscle activation patterns and energy profiles. Six subjects tapped with their index finger on a computer keyswitch as if they were typing on the middle row of a keyboard. Fingertip force, keyswitch position, kinematics of the metacarpophalangeal (MCP) and the proximal and distal interphalangeal (IP) joints, and intramuscular electromyography of intrinsic and extrinsic finger muscles were measured simultaneously. Finger joint torques were calculated based on a closed-form Newton–Euler inverse dynamic model of the finger. During the keystroke, the MCP joint flexed and the IP joints extended before and throughout the loading phase of the contact period, creating a closing reciprocal motion of the finger joints. As the finger lifted, the MCP joint extended and the interphalangeal (IP) joints flexed, creating an opening reciprocal motion. Intrinsic finger muscle and extrinsic flexor activities both began after the initiation of the downward finger movement. The intrinsic finger muscle activity preceded both the IP joint extension and the onset of extrinsic muscle activity. Only extrinsic extensor activity was present as the finger was lifted. While both potential energy and kinetic energy are present and large enough to overcome the work necessary to press the keyswitch, the motor control strategies utilize the muscle forces and joint torques to ensure a successful keystroke.  相似文献   

4.
Interaction between the execution process of eye movement and that of hand movement must be indispensable for eye–hand coordination. The present study investigated corticospinal excitability in the hand muscles during the premotor processes of eye and/or hand movement to elucidate interaction between these processes. Healthy humans performed a precued reaction task of eye and/or finger movement and motor-evoked potentials in the hand muscles were evoked in the reaction time. Leftward eye movement suppressed corticospinal excitability in the right abductor digiti minimi muscle only when little finger abduction was simultaneously executed. Corticospinal excitability in the first dorsal interosseous muscle was not suppressed by eye movement regardless of whether or not it was accompanied by finger movement. Suppression of corticospinal excitability in the hand muscles induced by eye movement in the premotor period depends on the direction of eye movement, the muscle tested, and the premotor process of the tested muscle. The suppression may reflect interaction between the motor process of eye movement and that of hand movement particularly active during eye–hand coordination tasks during which both processes proceed.  相似文献   

5.
The role of the intrinsic finger flexor muscles was investigated during finger flexion tasks. A suspension system was used to measure isometric finger forces when the point of force application varied along fingers in a distal-proximal direction. Two biomechanical models, with consideration of extensor mechanism Extensor Mechanism Model (EMM) and without consideration of extensor mechanism Flexor Model (FM), were used to calculate forces of extrinsic and intrinsic finger flexors. When the point of force application was at the distal phalanx, the extrinsic flexor muscles flexor digitorum profundus, FDP, and flexor digitorum superficialis, FDS, accounted for over 80% of the summed force of all flexors, and therefore were the major contributors to the joint flexion at the distal interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints. When the point of force application was at the DIP joint, the FDS accounted for more than 70% of the total force of all flexors, and was the major contributor to the PIP and MCP joint flexion. When the force of application was at the PIP joint, the intrinsic muscle group was the major contributor for MCP flexion, accounting for more than 70% of the combined force of all flexors. The results suggest that the effects of the extensor mechanism on the flexors are relatively small when the location of force application is distal to the PIP joint. When the external force is applied proximally to the PIP joint, the extensor mechanism has large influence on force production of all flexors. The current study provides an experimental protocol and biomechanical models that allow estimation of the effects of extensor mechanism on both the extrinsic and intrinsic flexors in various loading conditions, as well as differentiating the contribution of the intrinsic and extrinsic finger flexors during isometric flexion.  相似文献   

6.
High precision demands in manual tasks can be expected to cause more selective use of a part of the muscular synergy involved. To test this expectation, load sharing of the index finger and middle finger was investigated during a pinching task. Myoelectric activation of lower arm and neck-shoulder muscles was measured to see if overall level of effort was affected by precision demands. Ten healthy female subjects performed pinching tasks with three levels of force and three levels of precision demands. The force level did not significantly affect the relative contribution of the index and middle finger to the force. Higher precision demands, however, led to higher contribution of the index finger to the pinch force. Consequently, a more selective load of the forearm and hand occurs during tasks with high precision demands. The variability of the force contribution of the fingers increased during the task. No effects of precision demand on the activation of forearm and neck-shoulder muscles were found. Force level did affect the EMG parameters of several muscles. The effects were most apparent in the muscles responsible for the pinch force, the forearm muscles. Activation of these muscles was higher at higher force levels. In the trapezius muscle at the dominant side EMG amplitudes were lower at the high pinch force compared to the low force and median force conditions.  相似文献   

7.
Intermuscular coupling has been investigated to understand neural inputs to coordinate muscles in a motor performance. However, little is known on the role of nerve innervation on intermuscular coupling. The purpose of this study was to investigate how the anatomy of nerve distribution affected intermuscular coupling in the hand during static grip. Electromyographic (EMG) signals were recorded from intrinsic and extrinsic muscles while subjects performed a static grip. Coherence was computed for muscle pairs innervated by either the same or different nerves. The results did not support the hypothesis that muscles sharing the same nerve exhibit greater coupling than muscles innervated by different nerves. In general, extrinsic muscle pairs displayed higher coherence than intrinsic pairs. The results suggest that intermuscular coupling in a voluntary motor task is likely modulated in a functional manner and that different nerves might transport common neural inputs to functionally coupled muscles.  相似文献   

8.
Abstract

To improve our understanding on the neuromechanics of finger movements, a comprehensive musculoskeletal model is needed. The aim of this study was to build a musculoskeletal model of the hand and wrist, based on one consistent data set of the relevant anatomical parameters. We built and tested a model including the hand and wrist segments, as well as the muscles of the forearm and hand in OpenSim. In total, the model comprises 19 segments (with the carpal bones modeled as one segment) with 23 degrees of freedom and 43 muscles. All required anatomical input data, including bone masses and inertias, joint axis positions and orientations as well as muscle morphological parameters (i.e. PCSA, mass, optimal fiber length and tendon length) were obtained from one cadaver of which the data set was recently published. Model validity was investigated by first comparing computed muscle moment arms at the index finger metacarpophalangeal (MCP) joint and wrist joint to published reference values. Secondly, the muscle forces during pinching were computed using static optimization and compared to previously measured intraoperative reference values. Computed and measured moment arms of muscles at both index MCP and wrist showed high correlation coefficients (r?=?0.88 averaged across all muscles) and modest root mean square deviation (RMSD?=?23% averaged across all muscles). Computed extrinsic flexor forces of the index finger during index pinch task were within one standard deviation of previously measured in-vivo tendon forces. These results provide an indication of model validity for use in estimating muscle forces during static tasks.  相似文献   

9.
Determining tendon tensions of the finger muscles is crucial for the understanding and the rehabilitation of hand pathologies. Since no direct measurement is possible for a large number of finger muscle tendons, biomechanical modelling presents an alternative solution to indirectly evaluate these forces. However, the main problem is that the number of muscles spanning a joint exceeds the number of degrees of freedom of the joint resulting in mathematical under-determinate problems. In the current study, a method using both numerical optimization and the intra-muscular electromyography (EMG) data was developed to estimate the middle finger tendon tensions during static fingertip force production. The method used a numerical optimization procedure with the muscle stress squared criterion to determine a solution while the EMG data of three extrinsic hand muscles serve to enforce additional inequality constraints. The results were compared with those obtained with a classical numerical optimization and a method based on EMG only. The proposed method provides satisfactory results since the tendon tension estimations respected the mechanical equilibrium of the musculoskeletal system and were concordant with the EMG distribution pattern of the subjects. These results were not observed neither with the classical numerical optimization nor with the EMG-based method. This study demonstrates that including the EMG data of the three extrinsic muscles of the middle finger as inequality constraints in an optimization process can yield relevant tendon tensions with regard to individual muscle activation patterns, particularly concerning the antagonist muscles.  相似文献   

10.
This study investigated the effects of the finger extensor mechanism on the bone-to-bone contact forces at the interphalangeal and metacarpal joints and also on the forces in the intrinsic and extrinsic muscles during finger pressing. This was done with finger postures ranging from very flexed to fully extended. The role of the finger extensor mechanism was investigated by using two alternative finger models, one which omitted the extensor mechanism and another which included it. A six-camera three-dimensional motion analysis system was used to capture the finger posture during maximum voluntary isometric pressing. The fingertip loads were recorded simultaneously using a force plate system. Two three-dimensional biomechanical finger models, a minimal model without extensor mechanism and a full model with extensor mechanism (tendon network), were used to calculate the joint bone-to-bone contact forces and the extrinsic and intrinsic muscle forces. If the full model is assumed to be realistic, then the results suggest some useful biomechanical advantages provided by the tendon network of the extensor mechanism. It was found that the forces in the intrinsic muscles (interosseus group and lumbrical) are significantly reduced by 22% to 61% due to the action of the extensor mechanism, with the greatest reductions in more flexed postures. The bone-to-bone contact force at the MCP joint is reduced by 10% to 41%. This suggests that the extensor mechanism may help to reduce the risk of injury at the finger joints and also to moderate the forces in intrinsic muscles. These apparent biomechanical advantages may be a result of the extensor mechanism''s distinctive interconnected fibrous structure, through which the contraction of the intrinsic muscles as flexors of the MCP joint can generate extensions at the DIP and PIP joints.  相似文献   

11.
A novel open-source biomechanical model of the index finger with an electromyography (EMG)-constrained static optimization solution method are developed with the goal of improving co-contraction estimates and providing means to assess tendon tension distribution through the finger. The Intrinsic model has four degrees of freedom and seven muscles (with a 14 component extensor mechanism). A novel plugin developed for the OpenSim modelling software applied the EMG-constrained static optimization solution method. Ten participants performed static pressing in three finger postures and five dynamic free motion tasks. Index finger 3D kinematics, force (5, 15, 30 N), and EMG (4 extrinsic muscles and first dorsal interosseous) were used in the analysis. The Intrinsic model predicted co-contraction increased by 29% during static pressing over the existing model. Further, tendon tension distribution patterns and forces, known to be essential to produce finger action, were determined by the model across all postures. The Intrinsic model and custom solution method improved co-contraction estimates to facilitate force propagation through the finger. These tools improve our interpretation of loads in the finger to develop better rehabilitation and workplace injury risk reduction strategies.  相似文献   

12.
Strategies for the control of human movement are constrained by the neuroanatomical characteristics of the motor system. In particular, there is evidence that the capacity of muscles for producing force has a strong influence on the stability of coordination in certain movement tasks. In the present experiment, our aim was to determine whether physiological adaptations that cause relatively long-lasting changes in the ability of muscles to produce force can influence the stability of coordination in a systematic manner. We assessed the effects of resistance training on the performance of a difficult coordination task that required participants to synchronize or syncopate movements of their index finger with an auditory metronome. Our results revealed that training that increased isometric finger strength also enhanced the stability of movement coordination. These changes were accompanied by alterations in muscle recruitment patterns. In particular, the trained muscles were recruited in a more consistent fashion following the programme of resistance training. These results indicate that resistance training produces functional adaptations of the neuroanatomical constraints that underlie the control of voluntary movement.  相似文献   

13.
The muscular-hydrostat model of tongue function proposes a constant interaction of extrinsic (external bony attachment, insertion into base of tongue) and intrinsic (origin and insertion within the tongue) tongue muscles in all tongue movements (Kier WM and Smith KK. Zool J Linn Soc 83: 207-324, 1985). Yet, research that examines the respiratory-related effects of tongue function in mammals continues to focus almost exclusively on the respiratory control and function of the extrinsic tongue protrusor muscle, the genioglossus muscle. The respiratory control and function of the intrinsic tongue muscles are unknown. Our purpose was to determine whether intrinsic tongue muscles have a respiration-related activity pattern and whether intrinsic tongue muscles are coactivated with extrinsic tongue muscles in response to respiratory-related sensory stimuli. Esophageal pressure and electromyographic (EMG) activity of an extrinsic tongue muscle (hyoglossus), an intrinsic tongue muscle (superior longitudinal), and an external intercostal muscle were studied in anesthetized, tracheotomized, spontaneously breathing rats. Mean inspiratory EMG activity was compared at five levels of inspired CO2. Intrinsic tongue muscles were often quiescent during eupnea but active during hypercapnia, whereas extrinsic tongue muscles were active in both eupnea and hypercapnia. During hypercapnia, the activities of the airway muscles were largely coincident, although the onset of extrinsic muscle activity generally preceded the onset of intrinsic muscle activation. Our findings provide evidence, in an in vivo rodent preparation, of respiratory modulation of motoneurons supplying intrinsic tongue muscles. Distinctions noted between intrinsic and extrinsic activities could be due to differences in motoneuron properties or the central, respiration-related control of each motoneuron population.  相似文献   

14.
This study examined the effect of computer keyboard keyswitch design on muscle activity patterns during finger tapping. In a repeated-measures laboratory experiment, six participants tapped with their index fingers on five isolated keyswitch designs with varying force–displacement characteristics that provided pairwise comparisons for the design factors of (1) activation force (0.31 N vs. 0.59 N; 0.55 N vs. 0.93 N), (2) key travel (2.5 mm vs. 3.5 mm), and (3) shape of the force–displacement curve as realized through buckling-spring vs. rubber-dome switch designs. A load cell underneath the keyswitch measured vertical fingertip forces, and intramuscular fine wire EMG electrodes measured muscle activity patterns of two intrinsic (first lumbricalis, first dorsal interossei) and three extrinsic (flexor digitorum superficialis, flexor digitorum profundus, and extensor digitorum communis) index finger muscles. The amplitude of muscle activity for the first dorsal interossei increased 25.9% with larger activation forces, but not for the extrinsic muscles. The amplitude of muscle activity for the first lumbricalis and the duration of muscle activities for the first dorsal interossei and both extrinsic flexor muscles decreased up to 40.4% with longer key travel. The amplitude of muscle activity in the first dorsal interossei increased 36.6% and the duration of muscle activity for all muscles, except flexor digitorum profundus, decreased up to 49.1% with the buckling-spring design relative to the rubber-dome design. These findings suggest that simply changing the force–displacement characteristics of a keyswitch changes the dynamic loading of the muscles, especially in the intrinsic muscles, during keyboard work.  相似文献   

15.
The objective of this work was to increase our understanding of how motor patterns are produced during movement tasks by quantifying adaptations in muscle coordination in response to altered task mechanics. We used pedaling as our movement paradigm because it is a constrained cyclical movement that allows for a controlled investigation of test conditions such as movement speed and effort. Altered task mechanics were introduced using an elliptical chainring. The kinematics of the crank were changed from a relatively constant angular velocity using a circular chainring to a widely varying angular velocity using an elliptical chainring. Kinetic, kinematic and muscle activity data were collected from eight competitive cyclists using three different chainrings--one circular and two different orientations of an elliptical chainring. We tested the hypotheses that muscle coordination patterns (EMG timing and magnitude), specifically the regions of active muscle force production, would shift towards regions in the crank cycle in which the crank angular velocity, and hence muscle contraction speeds, were favorable to produce muscle power as defined by the skeletal muscle power-velocity relationship. The results showed that our hypothesis with regards to timing was not supported. Although there were statistically significant shifts in muscle timing, the shifts were minor in absolute terms and appeared to be the result of the muscles accounting for the activation dynamics associated with muscle force development (i.e. the delay in muscle force rise and decay). But, significant changes in the magnitude of muscle EMG during regions of slow crank angular velocity for the tibialis anterior and rectus femoris were observed. Thus, the nervous system used adaptations to the muscle EMG magnitude, rather than the timing, to adapt to the altered task mechanics. The results also suggested that cyclists might work on the descending limb of the power-velocity relationship when pedaling at 90 rpm and sub-maximal power output. This finding might have important implications for preferred pedaling rate selection.  相似文献   

16.
The activity of 17 hand muscles was monitored by electromyography (EMG) in three subjects during hard hammer percussion manufacture of Oldowan tools. Two of the subjects were archaeologists experienced in the replication of prehistoric stone tools. Simultaneous videotapes recorded grips associated with the muscle activities. The purpose of the study was to identify the muscles most likely to have been strongly and repeatedly recruited by early hominids during stone tool-making. This information is fundamental to the identification of skeletal features that may reliably predict tool-making capabilities in early hominids. The muscles most frequently recruited at high force levels for strong precision pinch grips required to control the hammerstone and core are the intrinsic muscles of the fifth finger and the thumb/index finger regions. A productive search for skeletal evidence of habitual Oldowan tool-making behavior will therefore be in the regions of the hand stressed by these intrinsic muscles and in the joint configurations affecting the relative lengths of their moment arms. Am J Phys Anthropol 105:315–332, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The aim of the present study was to determine how the intra-muscular segments of three shoulder muscles were coordinated to produce isometric force impulses around the shoulder joint and how muscle segment coordination was influenced by changes in movement direction, mechanical line of action and moment arm (ma). Twenty male subjects (mean age 22 years; range 18-30 years) with no known history of shoulder pathologies, volunteered to participate in this experiment. Utilising an electromyographic technique, the timing and intensity of contraction within 19 muscle segments of three superficial shoulder muscles (Pectoralis Major, Deltoid and Latissimus Dorsi) were studied and compared during the production of rapid (e.g. approximately 400ms time to peak) isometric force impulses in four different movement directions of the shoulder joint (flexion, extension, abduction and adduction). The results of this investigation have suggested that the timing and intensity of each muscle segment's activation was coordinated across muscles and influenced by the muscle segment's moment arm and its mechanical line of action in relation to the intended direction of shoulder movement (e.g. flexion, extension, abduction or adduction). There was also evidence that motor unit task groups were formed for individual motor tasks which comprise motor units from both adjacent and distant muscles. It was also confirmed that for any particular motor task, individual muscle segments can be functionally classified as prime mover, synergist or antagonist - classifications which are flexible from one movement to the next.  相似文献   

18.
The purpose of the present study was to investigate whether corticospinal projections from human supplementary motor area (SMA) are functional during precise force control with the precision grip (thumb-index opposition). Since beta band corticomuscular coherence (CMC) is well-accepted to reflect efferent corticospinal transmission, we analyzed the beta band CMC obtained with simultaneous recording of electroencephalographic (EEG) and electromyographic (EMG) signals. Subjects performed a bimanual precise visuomotor force tracking task by applying isometric low grip forces with their right hand precision grip on a custom device with strain gauges. Concurrently, they held the device with their left hand precision grip, producing similar grip forces but without any precision constraints, to relieve the right hand. Some subjects also participated in a unimanual control condition in which they performed the task with only the right hand precision grip while the device was held by a mechanical grip. We analyzed whole scalp topographies of beta band CMC between 64 EEG channels and 4 EMG intrinsic hand muscles, 2 for each hand. To compare the different topographies, we performed non-parametric statistical tests based on spatio-spectral clustering. For the right hand, we obtained significant beta band CMC over the contralateral M1 region as well as over the SMA region during static force contraction periods. For the left hand, however, beta band CMC was only found over the contralateral M1. By comparing unimanual and bimanual conditions for right hand muscles, no significant difference was found on beta band CMC over M1 and SMA. We conclude that the beta band CMC found over SMA for right hand muscles results from the precision constraints and not from the bimanual aspect of the task. The result of the present study strongly suggests that the corticospinal projections from human SMA become functional when high precision force control is required.  相似文献   

19.
During submaximal isometric contraction, there are two different load types: production of a constant force against a rigid restraint (force task), and maintenance of position against a constant load (position task). Previous studies reported that the time to task failure during a fatigue task was twice as long in the force task compared with the position task. Sensory feedback processing may contribute to these differences. The purpose of the current study was to determine the influence of load types during static muscle contraction tasks on the gating effect, i.e., attenuation of somatosensory-evoked potentials (SEPs) and the cortical silent period (cSP). Ten healthy subjects contracted their right first dorsal interosseus muscle by abducting their index finger for 90 s, to produce a constant force against a rigid restraint that was 20% of the maximum voluntary contraction (force task), or to maintain a constant position with 10° abduction of the metacarpophalangeal joint against the same load (position task). Somatosensory evoked potentials (SEPs) were recorded from C3′ by stimulating either the right ulnar or median nerve at the wrist while maintaining contraction. The cortical silent period (cSP) was also elicited by transcranial magnetic stimulation. Reduction of the amplitude of the P45 component of SEPs was significantly larger during the position task than during the force task and under control rest conditions when the ulnar nerve, but not the median nerve, was stimulated. The position task had a significantly shorter cSP duration than the force task. These results suggest the need for more proprioceptive information during the position task than the force task. The shorter duration of the cSP during the position task may be attributable to larger amplitude of heteronymous short latency reflexes. Sensorimotor modulations may differ with load type during constant finger force or position tasks.  相似文献   

20.
Risk factors for activity-related tendon disorders of the hand include applied force, duration, and rate of loading. Understanding the relationship between external loading conditions and internal tendon forces can elucidate their role in injury and rehabilitation. The goal of this investigation is to determine whether the rate of force applied at the fingertip affects in vivo forces in the flexor digitorum profundus (FDP) tendon and the flexor digitorum superficialis (FDS) tendon during an isometric task. Tendon forces, recorded with buckle force transducers, and fingertip forces were simultaneously measured during open carpal tunnel surgery as subjects (N=15) increased their fingertip force from 0 to 15N in 1, 3, and 10s. The rates of 1.5, 5, and 15N/s did not significantly affect FDP or FDS tendon to fingertip force ratios. For the same applied fingertip force, the FDP tendon generated more force than the FDS. The mean FDP to fingertip ratio was 2.4+/-0.7 while the FDS to tip ratio averaged 1.5+/-1.0 (p<0.01). The fine motor control needed to generate isometric force ramps at these specific loading rates probably required similar high activation levels of multiple finger muscles in order to stabilize the finger and control joint torques at the force rates studied. Therefore, for this task, no additional increase in muscle force was observed at higher rates. These findings suggest that for high precision, isometric pinch maneuvers under static finger conditions, tendon forces are independent of loading rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号