首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study deals with design and synthesis of novel benzofuran–pyrazole hybrids as anticancer agents. Eight compounds were chosen by National Cancer Institute (NCI), USA to evaluate their in vitro antiproliferative activity at 10−5 M in full NCI 60 cell panel. The preliminary screening of the tested compounds showed promising broad-spectrum anticancer activity. Compound 4c was further assayed for five dose molar ranges in full NCI 60 cell panel and exhibited remarkable growth inhibitory activity pattern against Leukemia CCRF-CEM, MOLT-4, Lung Cancer HOP-92, Colon Cancer HCC-2998, CNS Cancer SNB-75, Melanoma SK-MEL-2, Ovarian Cancer IGROV1, Renal Cancer 786-0, RXF 393, Breast Cancer HS 578T and T-47D (GI50: 1.00–2.71 μM). Moreover, enzyme assays were carried out to investigate the possible antiproliferative mechanism of action of compound 4c. The results revealed that compound 4c has good c-Src inhibitory activity at 10 μM. In addition, molecular docking studies showed that 4c could bind to the ATP Src pocket sites. Fulfilling the Lipinskiís rule of five in addition to its ADME profile and the biological results, all strongly suggest that 4c is a promising Src kinase inhibitor.  相似文献   

2.
Ras is a small family of GTPases that control numerous cellular functions like cell proliferation, growth, survival, gene expression, and is closely engaged in cancer pathogenesis. The ras-targeted methodology entails a holy grail in oncology. Nevertheless, there are no specific molecules reported targeting the same, although it is a known oncogene for more than three decades. In this study, we have designed and synthesized new phosphate derivatives of Myo-inositol to inhibit the oncogenic KRAS pathway in breast cancer cells, which has been validated by cellular and theoretical studies. The synthesized compound 1b (C2-O-phosphate derivative of Myo-inositol 1,3,5-orthobenzoate) inhibited the downstream signaling pathway of oncogenic KRAS, RAF/MEK/ERK. Furthermore, we also found that this compound induced necrosis/apoptosis and causes cell cycle arrest. This class of molecules may work as a potential inhibitor of breast cancer caused by a mutation in KRAS and its downstream proteins. Though the efficacy of the molecules is in the micromolar scale, they have not been explored previously for RAS inhibition. Impressive preliminary results are presented in this article which could be further explored for its detailed biological studies to get better candidates as RAS inhibitors.  相似文献   

3.
A novel series of 2-(3-phenethyl-4(3H)quinazolin-2-ylthio)-N-substituted anilide and substituted phenyl 2-(3-phenethyl-4(3H) quinazolin-2-ylthio)acetate were designed, synthesized and evaluated for their in-vitro antitumor activity. Compound 15 possessed remarkable broad-spectrum antitumor activity which almost sevenfold more active than the known drug 5-FU with GI50 values of 3.16 and 22.60 μM, respectively. Compound 15 exhibited remarkable growth inhibitory activity pattern against renal cancer (GI50 = 1.77 μM), colon cancer (GI50 = 2.02 μM), non-small cell lung cancer (GI50 = 2.04 μM), breast cancer (GI50 = 2.77 μM), ovarian cancer (GI50 = 2.55 μM) and melanoma cancer (GI50 = 3.30 μM). Docking study was performed for compound 15 into ATP binding site of EGFR-TK which showed similar binding mode to erlotinib.  相似文献   

4.
The indolin-2-one core is a privileged structure for antitumor agents, especially kinase inhibitors. Twenty-three novel indolin-2-ones were designed by molecular dissection of the anticancer drug indirubin. Seventeen of them exhibited significant inhibition against the tested cell lines, and two of them (1c and 1h) showed IC50 values at the submicromolar level against HCT-116 cells. Compounds 1c and 2c were also potent inhibitors of the triple-negative breast cancer (TNBC) cell line MDA-MB-231. Flow cytometry was utilized to explore the antitumor mechanism of 1c and 2c with MDA-MB-231 cells, and distinct effects were observed on 2c. Furthermore, immunocytochemical examination of 1c suggested a destabilization of microtubules, which was significantly different from the effect of IM, an indirubin derivative.  相似文献   

5.
A series of novel 5-phenyl-1H-pyrazole derivatives (5a5u) containing niacinamide moiety were synthesized and evaluated for biological activity as potential BRAFV600E inhibitors. Among them, compound 5h exhibited the most potent inhibitory activity with an IC50 value of 0.33 μM for BRAFV600E. Antiproliferative assay results indicated that compound 5h has better antiproliferative activity against WM266.4 and A375 in vitro with IC50 value of 2.63 and 3.16 μM, respectively, being comparable with the positive control vemurafenib. Molecular docking of 5h into the BRAFV600E active site was performed to determine the probable binding mode. Furthermore, molecular docking and 3D QSAR study by means of DS 3.5 (Discovery Studio 3.5, Accelrys, Co. Ltd) explored the binding modes and the structure and activity relationship (SAR) of these derivatives.  相似文献   

6.
A novel series of 3-pyrrolo[b]cyclohexylene-2-dihydroindolinone derivatives targeting VEGFR-2, PDGFR-β and c-Kit kinases were designed and synthesized. The molecular design was based on the SAR features of indolin-2-ones as kinase inhibitors. SAR study of the series allowed us to identify compounds possessing more potent inhibitory activities against the three kinases than sunitinb with IC50 values in the low nanomolar range in vitro. Additionally, some compounds also showed favorable antiproliferative activities against a panel of cancer cell lines (BXPC-3, T24, BGC, HEPG2 and HT29).  相似文献   

7.
Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a crucial role in tumor angiogenesis, and inhibition of the VEGFR-2 signaling pathway has already become an attractive approach for cancer therapy. In this study, a novel pyrimidine-based derivative 7j was designed as lead compound, and three series of potent VEGFR-2 inhibitors were synthesized and biologically evaluated against A549 and HepG2 cell lines. Compounds 7d, 9s and 13n exhibited superior inhibitory activities against A549 cell with IC50 ranged from 9.19 to 13.17 μM and HepG2 cell with IC50 ranged from 11.94 to 18.21 μM compared to those of Pazopanib (IC50 = 21.18 and 36.66 μM). In addition, molecular docking study was performed to investigate the binding capacity and binding mode between target compounds and VEGFR-2.  相似文献   

8.
In an aim at developing new antiproliferative agents, new series of benzothiazole/benzoxazole and/or benzimidazole substituted pyrazole derivatives 11a-c, 12a-c and 13a-c were prepared and evaluated for their antiproliferative activity against breast carcinoma (MCF-7) and non-small cell lung cancer (A549) cell lines. The target compound, 2-acetyl-4-[(3-(1H-benzimidazol-2-yl)-phenyl]-hydrazono-5-methyl-2,4-dihydropyrazol-3-one (12a) was the most active compound against both MCF-7 and A549 cell lines with half maximal inhibitory concentrations (IC50) = 6.42 and 8.46 μM, respectively. Furthermore, the inhibitory activity of the all the target compounds against COX enzymes was recorded as a proposed mechanism for their antiproliferative activity. The obtained results revealed that the benzothiazolopyrazolone derivative 13c was the most potent COX-2 inhibitor (IC50 = 0.10 μM), while the 5-acetylbenzimidazolylpyrazolone derivative 12a was the most COX-2 selective (S.I. = 104.67) in comparison with celecoxib (COX-2 IC50 = 1.11 μM, S.I. = 13.33). Docking simulation on the most active compounds 12a and 13c had been performed to investigate the binding interaction of these active compounds within the binding site of COX-2 enzyme. Collectively, this work demonstrated the promising activity of the newly designed compounds as leads for further development into antiproliferative agents.  相似文献   

9.
In the present work, a new series of thiopyrimidine-benzenesulfonamide conjugates was designed, synthesized and tested as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. Our design strategy was based on the molecular hybridization of the benzenesulfonamide moiety as a zinc binding group (ZBG), an alkylated thiopyrimidine moiety as a spacer and (un)substituted phenyl moieties with various electronic and hydrophobic environments as a tail. The designed and synthesized compounds were evaluated against four human (h) CA isoforms hCA I, hCA II, hCA IX and hCA XII. Series 6 showed promising activity and selectivity toward the cytosolic isoforms hCA I and hCA II versus the membrane bound isoforms hCA IX and hCA XII. Compounds 6e and 6f showed Ki of 0.04 µM against hCA II with a selectivity of 15.8- to 980-fold towards hCA II over hCA I, hCA IX, hCA XII isoforms. Molecular docking in the hCA II active site attributed the promising inhibitory activity of series 6 to the interaction of their sulfonamide moiety with the active site Zn2+ ion as well as its hydrogen bonding with the key amino acids Thr199 and Thr200. Through hydrophobic interaction, the benzenesulfonamide and the thiopyrimidine moieties interact with the hydrophobic side chains of the amino acids Val121/Leu198 and Ile91/Phe131, respectively. These results indicated that the designed and synthesized series is an interesting scaffold that can be further optimized for the development of selective antiglaucoma drugs.  相似文献   

10.
A series of benzamide derivatives including two scaffolds were designed and synthesized as potential histone deacetylase inhibitors. Most of synthesized compounds showed moderate enzymatic potency at the same order of magnitude, and compound 12b possessed better potency to the positive control (3.8 μM vs 13.0 μM). It also showed a 50-fold increase in vitro anticancer activity against DU-145 cell-lines. Molecular docking studies were carried out and used to explain the structure-activity relationships observed in vitro. Then we found that the cavity surrounded by ASP104, HIS33, PRO34 and PHE155 may be crucial for the inhibitors’ activity. The docking results provide some useful information for future design of more potent inhibitors.  相似文献   

11.
The autotaxin-lysophophatidic acid (ATX-LPA) signaling pathway is involved in several human diseases such as cancer, autoimmune diseases, inflammatory diseases neurodegenerative diseases and fibrotic diseases. Herein, a series of 4-phenyl-thiazole based compounds was designed and synthesized. Compounds were evaluated for their ATX inhibitory activity using FS-3 and human plasma assays. In the FS-3 assay, compounds 20 and 21 significantly inhibited the ATX at low nanomolar level (IC50 = 2.99 and 2.19 nM, respectively). Inhibitory activity of 21 was found to be slightly better than PF-8380 (IC50 = 2.80 nM), which is one of the most potent ATX inhibitors reported till date. Furthermore, 21 displayed higher potency (IC50 = 14.99 nM) than the first clinical ATX inhibitor, GLPG1690 (IC50 = 242.00 nM) in the human plasma assay. Molecular docking studies were carried out to explore the binding pattern of newly synthesized compounds within active site of ATX. Docking studies suggested the putative binding mode of the novel compounds. Good ATX inhibitory activity of 21 was attributed to the hydrogen bonding interactions with Asn230, Trp275 and active site water molecules; electrostatic interaction with catalytic zinc ion and hydrophobic interactions with amino acids of the hydrophobic pocket.  相似文献   

12.
A novel series of aminopyrimidinylisoindoline derivatives 1a-w having an aminopyrimidine scaffold as a hinge region binding motif were designed and synthesized. Among them, six compounds showed potent inhibitory activities against AXL kinase with IC50 values of submicromolar range. Especially, compound 1u possessing (4-acetylpiperazin-1-yl)phenyl moiety exhibited extremely excellent efficacy (IC50?=?<0.00050?μM). Their in vitro antiproliferative activities were tested over five cancer cell lines. Most compounds showed good antiproliferative activities against HeLa cell line. The kinase panel profiling of 50 different kinases and the selected inhibitory activities for the representative compound 1u were carried out. The compound 1u exhibited excellent inhibitory activities (IC50?=?<0.00050, 0.025, and 0.050?μM for AXL, MER, and TYRO3, respectively) against TAM family, together with potent antiproliferative activity against MV4-11 cell line (GI50?=?0.10?μM) related to acute myeloid leukemia (AML).  相似文献   

13.
Tubulin-targeting drugs have increasingly become the focus of anticancer drugs research. Twenty-five novel benzimidazole grafted benzsulfamide-containing pyrazole ring derivatives were synthesized and evaluated for bioactivity as potential tubulin polymerization inhibitors. Among them, compound 30 showed the most excellent inhibition against tubulin assembly (IC50?=?1.52?μM) and in vitro growth inhibitory activity against a panel of four human cancer cell lines (IC50?=?0.15, 0.21, 0.33 and 0.17?μM, respectively for A549, Hela, HepG2 and MCF-7). It could also validly induce A549 cell apoptosis, cause cell cycle arrest in G2/M phase and disrupt the cellular microtubule network. These results, along with molecular docking data, provided an important basis for further optimization of compound 30 as a potential anticancer agent.  相似文献   

14.
A series of novel compounds carrying 1,2,4-triazole scaffold was synthesized and evaluated for their anticancer activity against a panel of cancer cell lines using MTT assay. Compounds 8a, 8b, 8c, 8d, 10b, 10e, and 10 g showed remarkable antiproliferative activity against the tested cell lines. Compounds 8a, 8b, 8c, 8d, 10b, 10e, and 10 g with the least IC50 values in MTT assay were tested against three known anticancer targets including EGFR, BRAF and Tubulin. The results revealed that compounds 8c and 8d showed almost same BRAF inhibitory activity and were discovered to be potent inhibitors of cancer cell proliferation and were also observed to be strong Tubulin inhibitors. Moreover, 8c also showed the best EGFR inhibition with IC50 = 3.6 μM. Finally molecular modeling studies were performed to explore the binding mode of the most active compounds to the target enzymes.  相似文献   

15.
A new series of triazinoindole analogs 111 were synthesized, characterized by EI-MS and 1H NMR, evaluated for α-glucosidase inhibitory potential. All eleven (11) analogs showed different range of α-glucosidase inhibitory potential with IC50 value ranging between 2.46 ± 0.008 and 312.79 ± 0.06 μM when compared with the standard acarbose (IC50, 38.25 ± 0.12 μM). Among the series, compounds 1, 3, 4, 5, 7, 8, and 11 showed excellent inhibitory potential with IC50 values 2.46 ± 0.008, 37.78 ± 0.05, 28.91 ± 0.0, 38.12 ± 0.04, 37.43 ± 0.03, 36.89 ± 0.06 and 37.11 ± 0.05 μM respectively. All other compounds also showed good enzyme inhibition. The binding modes of these analogs were confirmed through molecular docking.  相似文献   

16.
Glucagon receptor antagonists possess a great potential for treatment of type 2 diabetes mellitus. A series of pyrazole-containing derivatives were designed, synthesized and evaluated by biological assays as glucagon receptor antagonists. Most of the compounds exhibited good in vitro efficacy. Two of them, compounds 17f and 17k, displayed relatively potent antagonist effects on glucagon receptors with IC50 values of 3.9 and 3.6 μM, respectively. The possible binding modes of 17f and 17k with the cognate receptor were explored by molecular docking simulation.  相似文献   

17.
We report herein, first ever synthesis of series of novel differently substituted quinoxalinyl chalcones using Claisen Schmidt condensation, its molecular docking studies, and potential to be good anti-microbial, anti-tubercular and anti-cancer agents. The antimicrobial studies were carried out against Staphylococcus aureus, Escherichia coli and Candida albicans using disc diffusion procedure. The selected chalcones were tested for anti-cancer and cytotoxicity activity against MCF-7 cancer cell line using MTT assay method. All the synthesized compounds were screened for in vitro anti-tubercular screening against MtbH37RV strains by Alamar blue dye method. These results were compared with molecular docking studies carried out on Mycobacterium tuberculosis enzyme enoyl ACP reductase using Surflex-Dock program that is interfaced with Sybyl-X 2.0. SAR analysis for antimicrobial and antitubercular activity has also been proposed.  相似文献   

18.
As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3ad, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50’s in 1.79–4.35 μM range; COX-2 selectivity index (SI) = 6.8–16.7 range). Compound 3b emerged as most potent (COX-2 IC50 = 1.79 μM; COX-1 IC50 >30 μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5 h) in comparison to celecoxib (51.44% inhibition of edema at 5 h) in carrageenan-induced rat paw edema assay. Structure–activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1.  相似文献   

19.
A series of novel (E)-3-(3,4-dihydroxyphenyl)acrylylpiperazine derivatives had been synthesized and evaluated their biological activities as potential tubulin polymerization inhibitors. Among these compounds, compound 3q exhibited potent antiproliferative activities against three cancer cell lines in vitro, and antitubulin polymerization activity with IC50 of 0.92 μM, which was superior to that of colchicine (IC50 = 1.34 μM). Docking simulation was performed to insert compound 3q into the crystal structure of tubulin at colchicine binding site to determine the probable binding model. These results suggested that compound 3q may be a promising antitubulin agent for the potential treatment of cancer.  相似文献   

20.
The inhibition of the UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC) represents a promising strategy to combat infections caused by multidrug-resistant Gram-negative bacteria. In order to elucidate the functional groups being important for the inhibition of LpxC, the structure of our previously reported hydroxamic acid 4 should be systematically varied. Therefore, a series of benzyloxyacetohydroxamic acids was prepared, of which the diphenylacetylene derivatives 28 (Ki = 95 nM) and 21 (Ki = 66 nM) were the most potent inhibitors of Escherichia coli LpxC. These compounds could be synthesized in a stereoselective manner employing a Sharpless asymmetric dihydroxylation and a Sonogashira coupling in the key steps. The obtained structure–activity relationships could be rationalized by molecular docking studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号