首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee HJ  Chou LS 《Journal of biomechanics》2007,40(11):2530-2536
Stair negotiation is among the most challenging and hazardous types of locomotion for older people. However, the effect of aging on balance control during stair negotiation has not been investigated. Instantaneous inclination angles between the center of mass (CoM) and center of pressure (CoP) have been reported to detect gait instability effectively in the elderly. The purpose of this study was to compare the CoM-CoP inclination angles between 12 healthy elderly and 13 healthy young adults when performing stair ascent (SA) and descent (SD) on a three-step staircase. Whole body motion data were collected with an eight-camera motion analysis system. Four force plates were mounted on the floor as well as the first two steps to measure ground reaction forces. No significant group differences were detected in any of the temporal-distance gait measures and CoM-CoP inclination angles during SA and SD. Compared to the floor-to-stair transition phase, both groups demonstrated a significantly greater CoM-CoP medial inclination angle while ascending the stairs. However, a significant reduction in medial inclination was only detected in young adults when transferring from SD to level ground walking. Elderly adults were found to demonstrate a significantly greater medial inclination angle during the stair-to-floor transition phase when compared to young adults. Age-related degenerations in the elderly could compromise their ability to regulate body sway during the stair-to-floor transition, which may subsequently increase the risk of falling.  相似文献   

2.
It has been shown that an original attitude in forward or backward inclination of the trunk is maintained at gait initiation and during locomotion, and that this affects lower limb loading patterns. However, no studies have shown the extent to which shoulder, thorax and pelvis three-dimensional kinematics are modified during gait due to this sagittal inclination attitude. Thirty young healthy volunteers were analyzed during level walking with video-based motion analysis. Reflecting markers were mounted on anatomical landmarks to form a two-marker shoulder line segment, and a four-marker thorax and pelvis segments. Absolute and relative spatial rotations were calculated, for a total of 11 degrees of freedom. The subjects were divided into two groups of 15 according to the median of mean thorax inclination angle over the gait cycle. Preliminary MANOVA analysis assessed whether gender was an independent variable. Then two-factor nested ANOVA was used to test the possible effect of thorax inclination on body segments, planes of motion and gait periods, separately. There was no significant difference in all anthropometric and spatio-temporal parameters between the two groups, except for subject mass. The three-dimensional kinematics of the thorax and pelvis were not affected by gender. Nested ANOVA revealed group effect in all segment rotations apart those at the pelvis, in the sagittal and frontal planes, and at the push-off. Attitudes in sagittal thorax inclination altered trunk segments kinematics during gait. Subjects with a backward thorax showed less thorax-to-pelvis motion, but more shoulder-to-thorax and thorax-to-laboratory motion, less motion in flexion/extension and in lateral bending, and also less motion during push-off. This contributes to the understanding of forward propulsion and sideways load transfer mechanisms, fundamental for the maintenance of balance and the risk of falling.  相似文献   

3.
Single cycles of hopping and climbing were investigated in Japanese Pygmy Woodpeckers Picoides kizuki using motion analyses on video. Body movements on substrate angled from 0-90 degrees were compared for every 10 degrees. The body was inclined forward during stance phase for both small and large substrate angles, and the inclination amplitude increased when the substrate angle increased. The tail was bent ventrally almost simultaneously to this body inclination, and its amplitude was apparently high at large substrate angles. Most of the gait parameters changed when the stride length increased. The minimum body-tail angle and most of the parameters representing body movements during stance phase changed when the substrate angle increased, probably because gravity pulled the birds further backward when they were moving on a steeper slope. These parameters showed a clear difference between the data on substrate steeper than 40 degrees and lower than 30 degrees. The abrupt changes in these parameters most likely mean that the motor pattern changed from hopping to climbing between these angles.  相似文献   

4.
Gait patterns of the elderly are often adjusted to accommodate for reduced function in the balance control system and a general reduction in skeletal muscle strength. Recent studies have demonstrated that measures related to motion of whole body center of mass (COM) can distinguish elderly individuals with balance impairment from healthy peers. Accurate COM estimation requires a multiple-segment anthropometric model, which may restrict its broad application in assessment of dynamic instability. Although temporal-distance measures and electromyography have been used in evaluation of overall gait function and determination of gait dysfunction, no studies have examined the use of gait measurements in predicting COM motion during gait. The purpose of this study was to demonstrate the effectiveness of an artificial neural network (ANN) model in mapping gait measurements onto COM motion in the frontal plane. Data from 40 subjects of varied age and balance impairment were entered into a 3-layer feed-forward model with back-propagated error correction. Bootstrap re-sampling was used to enhance the generalization accuracy of the model, using 20 re-sampling trials. The ANN model required minimal processing time (5 epochs, with 20 hidden units) and accurately mapped COM motion (R-values up to 0.89). As training proportion and number of hidden units increased, so did model accuracy. Overall, this model appears to be effective as a mapping tool for estimating balance control during locomotion. With easily obtained gait measures as input and a simple, computationally efficient architecture, the model may prove useful in clinical scenarios where electromyography equipment exists.  相似文献   

5.
Single cycles of hopping and climbing were investigated in Japanese Pygmy Woodpeckers Picoides kizuki using motion analyses on video. Body movements on substrate angled from 0–90° were compared for every 10°. The body was inclined forward during stance phase for both small and large substrate angles, and the inclination amplitude increased when the substrate angle increased. The tail was bent ventrally almost simultaneously to this body inclination, and its amplitude was apparently high at large substrate angles. Most of the gait parameters changed when the stride length increased. The minimum body–tail angle and most of the parameters representing body movements during stance phase changed when the substrate angle increased, probably because gravity pulled the birds further backward when they were moving on a steeper slope. These parameters showed a clear difference between the data on substrate steeper than 40° and lower than 30°. The abrupt changes in these parameters most likely mean that the motor pattern changed from hopping to climbing between these angles.  相似文献   

6.
Biomechanical models are important tools in the study of human motion. This work proposes a computational model to analyse the dynamics of lower limb motion using a kinematic chain to represent the body segments and rotational joints linked by viscoelastic elements. The model uses anthropometric parameters, ground reaction forces and joint Cardan angles from subjects to analyse lower limb motion during the gait. The model allows evaluating these data in each body plane. Six healthy subjects walked on a treadmill to record the kinematic and kinetic data. In addition, anthropometric parameters were recorded to construct the model. The viscoelastic parameter values were fitted for the model joints (hip, knee and ankle). The proposed model demonstrated that manipulating the viscoelastic parameters between the body segments could fit the amplitudes and frequencies of motion. The data collected in this work have viscoelastic parameter values that follow a normal distribution, indicating that these values are directly related to the gait pattern. To validate the model, we used the values of the joint angles to perform a comparison between the model results and previously published data. The model results show a same pattern and range of values found in the literature for the human gait motion.  相似文献   

7.
The imposing mass of the trunk in relation to the whole body has an important impact on human motion. The objective of this study is to determine the influence of trunk''s natural inclination - forward (FW) or backward (BW) with respect to the vertical - on body kinematics and stance limb kinetics during gait initiation.Twenty-five healthy males were divided based on their natural trunk inclination (FW or BW) during gait initiation. Instantaneous speed was calculated at the center of mass at the first heel strike. The antero-posterior impulse was calculated by integrating the antero-posterior ground reaction force in time. Ankle, knee, hip and thoraco-lumbar (L5) moments were calculated using inverse dynamics and only peaks of the joint moments were analyzed. Among all the investigated parameters, only joint moments present significant differences between the two groups. The knee extensor moment is 1.4 times higher (P<0.001) for the BW group, before the heel contact. At the hip, although the BW group displays a flexor moment 2.4 times higher (P<0.001) before the swing limb''s heel-off, the FW group displays an extensor moment 3.1 times higher (P<0.01) during the swing phase. The three L5 extensor peaks after the toe-off are respectively 1.7 (P<0.001), 1.4 (P<0.001) and 1.7 (P<0.01) times higher for the FW group. The main results support the idea that the patterns described during steady-state gait are already observable during gait initiation. This study also provides reference data to further investigate stance limb kinetics in specific or pathologic populations during gait initiation. It will be of particular interest for elderly people, knowing that this population displays atypical trunk postures and present a high risk of falling during this forward stepping.  相似文献   

8.
Regulation of whole-body angular momentum (WBAM) is essential for maintaining dynamic balance during gait. Patients with hemiparesis frequently fall toward the anterior direction; however, whether this is due to impaired WBAM control in the sagittal plane during gait remains unknown. The present study aimed to investigate the differences in WBAM in the sagittal plane during gait between patients with hemiparesis and healthy individuals. Thirty-three chronic stroke patients with hemiparesis and twenty-two age- and gender-matched healthy controls walked along a 7-m walkway while gait data were recorded using a motion analysis system and force plates. WBAM and joint moment were calculated in the sagittal plane during each gait cycle. The range of WBAM in the sagittal plane in the second half of the paretic gait cycle was significantly larger than that in the first and second halves of the right gait cycle in the controls (P = 0.015 and P = 0.011). Furthermore, multiple regression analysis revealed the slower walking speed (P < 0.001) and larger knee extension moment on the non-paretic side (P = 0.003) contributed to the larger range of WBAM in the sagittal plane in the second half of the paretic gait cycle. Our findings suggest that dynamic stability in the sagittal plane is impaired in the second half of the paretic gait cycle. In addition, the large knee extension moment on the non-paretic side might play a role in the dynamic instability in the sagittal plane during gait in patients with hemiparesis.  相似文献   

9.
Around 60% of persons with multiple sclerosis (MS) experience falls, however the dynamic balance differences between those who fall and those who don’t are not well understood. The purpose of this study is to identify distinct biomechanical features of dynamic balance during gait that are different between fallers with MS, non-fallers with MS, and healthy controls. 27 recurrent fallers with MS, 28 persons with MS with no falls history, and 27 healthy controls walked on a treadmill at their preferred speed for 3 min. The variability of trunk accelerations and the average and variability of minimum toe clearance, spatiotemporal parameters, and margin of stability were compared between groups. Fallers with MS exhibited a slower cautious gait compared to non-fallers and healthy controls, but had decreased anterior-posterior margin of stability and minimum toe clearance. Fallers walked with less locally stable and predictable trunk accelerations, and increased variability of step length, stride time, and both anterior-posterior and mediolateral margin of stability compared to non-fallers and healthy controls. The present work provides evidence that within a group of persons with MS, there are gait differences that are influenced by falls history. These differences indicate that in persons with MS who fall, the center of mass is poorly controlled through base of support placement and the foot is closer to the ground during swing phase relative to the non-fallers. These identified biomechanical differences could be used to evaluate dynamic balance in persons with MS and to help improve fall prevention strategies.  相似文献   

10.
11.
Structural, neurochemical, and functional abnormalities have been identified in the brains of individuals with bipolar disorder, including in key brain structures implicated in postural control, i.e. the cerebellum, brainstem, and basal ganglia. Given these findings, we tested the hypothesis that postural control deficits are present in individuals with bipolar disorder. Sixteen participants with bipolar disorder (BD) and 16 age-matched non-psychiatric healthy controls were asked to stand as still as possible on a force platform for 2 minutes under 4 conditions: (1) eyes open-open base; (2) eyes closed-open base; (3) eyes open-closed base; and (4) eyes closed-closed base. Postural sway data were submitted to conventional quantitative analyses of the magnitude of sway area using the center of pressure measurement. In addition, data were submitted to detrended fluctuation analysis, a nonlinear dynamical systems analytic technique that measures complexity of a time-series, on both the anterior-posterior and medio-lateral directions. The bipolar disorder group had increased sway area, indicative of reduced postural control. Decreased complexity in the medio-lateral direction was also observed for the bipolar disorder group, suggesting both a reduction in dynamic range available to them for postural control, and that their postural corrections were primarily dominated by longer time-scales. On both of these measures, significant interactions between diagnostic group and visual condition were also observed, suggesting that the BD participants were impaired in their ability to make corrections to their sway pattern when no visual information was available. Greater sway magnitude and reduced complexity suggest that individuals with bipolar disorder have deficits in sensorimotor integration and a reduced range of timescales available on which to make postural corrections.  相似文献   

12.

Aim

Diabetes Mellitus progressively leads to impairments in stability and joint motion and might affect coordination patterns, mainly due to neuropathy. This study aims to describe changes in intralimb joint coordination in healthy individuals and patients with absent, mild and, severe stages of neuropathy.

Methods

Forty-seven diabetic patients were classified into three groups of neuropathic severity by a fuzzy model: 18 without neuropathy (DIAB), 7 with mild neuropathy (MILD), and 22 with moderate to severe neuropathy (SVRE). Thirteen healthy subjects were included as controls (CTRL). Continuous relative phase (CRP) was calculated at each instant of the gait cycle for each pair of lower limb joints. Analysis of Variance compared each frame of the CRP time series and its standard deviation among groups (α = 5%).

Results

For the ankle-hip CRP, the SVRE group presented increased variability at the propulsion phase and a distinct pattern at the propulsion and initial swing phases compared to the DIAB and CTRL groups. For the ankle-knee CRP, the 3 diabetic groups presented more anti-phase ratios than the CTRL group at the midstance, propulsion, and terminal swing phases, with decreased variability at the early stance phase. For the knee-hip CRP, the MILD group showed more in-phase ratio at the early stance and terminal swing phases and lower variability compared to all other groups. All diabetic groups were more in-phase at early the midstance phase (with lower variability) than the control group.

Conclusion

The low variability and coordination differences of the MILD group showed that gait coordination might be altered not only when frank evidence of neuropathy is present, but also when neuropathy is still incipient. The ankle-knee CRP at the initial swing phase showed distinct patterns for groups from all degrees of neuropathic severity and CTRLs. The ankle-hip CRP pattern distinguished the SVRE patients from other diabetic groups, particularly in the transitional phase from stance to swing.  相似文献   

13.
While total knee replacement is successful, hemiarthroplasty is necessary for some young, obese and active patients who are especially not suitable for unicompartmental or total knee prostheses. Hemiarthroplasty also provides an opportunity for children with bone tumors. The design ofhemiarthroplasty should be patient-specific to reduce contact stress and friction as well as instability, compared to conventional hemi-knee prosthesis. A novel bipolar hemi-knee prosthesis with two flexion stages was developed according to a healthy male's knee morphological profile. The motion mode of the bipolar hemi-knee prosthesis was observed through roentgenoscopy in vitro experiment. The biomechanical properties in one gait cycle were evaluated though finite element simulation. The bipolar hemi-knee prosthesis was found to produce knee flexion at two stages through X-ray images. The first stage is the motion from upright posture to a specified 60~ flexion, followed by the second stage of motion subsequently to deep flexion. The finite element simulation results also show that the designed hemi-knee prosthesis has the ability to reduce stresses on the joint contact surfaces. Therefore, it is possible for the bipolar hemi-knee prosthesis to provide better biotribological performances because it can reduce stresses and potentially wear on the opposing contacting surface during a gait cycle, orovidin~ a t~romisin~ treatment strate~v in future Joint renair znd renlneement  相似文献   

14.
Accurate knowledge of the dynamic knee motion in-vivo is instrumental for understanding normal and pathological function of the knee joint. However, interpreting motion of the knee joint during gait in other than the sagittal plane remains controversial. In this study, we utilized the dual fluoroscopic imaging technique to investigate the six-degree-of-freedom kinematics and condylar motion of the knee during the stance phase of treadmill gait in eight healthy volunteers at a speed of 0.67 m/s. We hypothesized that the 6DOF knee kinematics measured during gait will be different from those reported for non-weightbearing activities, especially with regards to the phenomenon of femoral rollback. In addition, we hypothesized that motion of the medial femoral condyle in the transverse plane is greater than that of the lateral femoral condyle during the stance phase of treadmill gait. The rotational motion and the anterior–posterior translation of the femur with respect to the tibia showed a clear relationship with the flexion–extension path of the knee during the stance phase. Additionally, we observed that the phenomenon of femoral rollback was reversed, with the femur noted to move posteriorly with extension and anteriorly with flexion. Furthermore, we noted that motion of the medial femoral condyle in the transverse plane was greater than that of the lateral femoral condyle during the stance phase of gait (17.4±2.0 mm vs. 7.4±6.1 mm, respectively; p<0.01). The trend was opposite to what has been observed during non-weightbearing flexion or single-leg lunge in previous studies. These data provide baseline knowledge for the understanding of normal physiology and for the analysis of pathological function of the knee joint during walking. These findings further demonstrate that knee kinematics is activity-dependent and motion patterns of one activity (non-weightbearing flexion or lunge) cannot be generalized to interpret a different one (gait).  相似文献   

15.
The modulation of walking speed results in adaptations to the lower limbs which can be quantified using mechanical work. A 6 degree-of-freedom (DOF) power analysis, which includes additional translations as compared to the 3 DOF (all rotational) approach, is a comprehensive approach for quantifying lower limb work during gait. The purpose of this study was to quantify the speed-related 6 DOF joint and distal foot work adaptations of all the lower extremity limb constituents (hip, knee, ankle, and distal foot) in healthy individuals. Relative constituent 6 DOF work, the amount of constituent work relative to absolute limb work, was calculated during the stance and swing phases of gait. Eight unimpaired adults walked on an instrumented split-belt treadmill at slow, moderate, and typical walking speeds (0.4, 0.6, and 0.8 statures/s, respectively). Using motion capture and force data, 6 DOF powers were calculated for each constituent. Contrary to previously published results, 6 DOF positive relative ankle work and negative relative distal foot work increased significantly with increased speed during stance phase (p < 0.05). Similar to previous rotational DOF results in the sagittal plane, negative relative ankle work decreased significantly with increased speed during stance phase (p < 0.05). Scientifically, these findings provide new insight into how healthy individuals adapt to increased walking speed and suggest limitations of the rotational DOF approach for quantifying limb work. Clinically, the data presented here for unimpaired limbs can be used to compare with speed-matched data from limbs with impairments.  相似文献   

16.
Usually the measurement of multi-segment foot and ankle complex kinematics is done with stationary motion capture devices which are limited to use in a gait laboratory. This study aimed to propose and validate a wearable system to measure the foot and ankle complex joint angles during gait in daily conditions, and then to investigate its suitability for clinical evaluations. The foot and ankle complex consisted of four segments (shank, hindfoot, forefoot, and toes), with an inertial measurement unit (3D gyroscopes and 3D accelerometers) attached to each segment. The angles between the four segments were calculated in the sagittal, coronal, and transverse planes using a new algorithm combining strap-down integration and detection of low-acceleration instants. To validate the joint angles measured by the wearable system, three subjects walked on a treadmill for five minutes at three different speeds. A camera-based stationary system that used a cluster of markers on each segment was used as a reference. To test the suitability of the system for clinical evaluation, the joint angle ranges were compared between a group of 10 healthy subjects and a group of 12 patients with ankle osteoarthritis, during two 50-m walking trials where the wearable system was attached to each subject. On average, over all joints and walking speeds, the RMS differences and correlation coefficients between the angular curves obtained using the wearable system and the stationary system were 1 deg and 0.93, respectively. Moreover, this system was able to detect significant alteration of foot and ankle function between the group of patients with ankle osteoarthritis and the group of healthy subjects. In conclusion, this wearable system was accurate and suitable for clinical evaluation when used to measure the multi-segment foot and ankle complex kinematics during long-distance walks in daily life conditions.  相似文献   

17.
The purpose of this study is to develop a system capable of performing calculation of temporal gait parameters using two low-cost wireless accelerometers and artificial intelligence-based techniques as part of a larger research project for conducting human gait analysis. Ten healthy subjects of different ages participated in this study and performed controlled walking tests. Two wireless accelerometers were placed on their ankles. Raw acceleration signals were processed in order to obtain gait patterns from characteristic peaks related to steps. A Bayesian model was implemented to classify the characteristic peaks into steps or nonsteps. The acceleration signals were segmented based on gait events, such as heel strike and toe-off, of actual steps. Temporal gait parameters, such as cadence, ambulation time, step time, gait cycle time, stance and swing phase time, simple and double support time, were estimated from segmented acceleration signals. Gait data-sets were divided into two groups of ages to test Bayesian models in order to classify the characteristic peaks. The mean error obtained from calculating the temporal gait parameters was 4.6%. Bayesian models are useful techniques that can be applied to classification of gait data of subjects at different ages with promising results  相似文献   

18.
Purpose: to develop a marker set for simultaneously assessing upper and lower limb biomechanics during gait.Methods: 24 healthy young subjects (mean age: 23.80 years) were assessed quantitatively using an optoelectronic system, two force platform and a video system. Passive markers were positioned according to the proposed marker set which enables acquiring the upper and lower limb movement simultaneously during Gait Analysis. In addition to the traditional parameters obtained from Gait Analysis, the shoulder and elbow angles were computed from markers coordinates of upper limbs; then, some significant parameters were identified and calculated. From shoulder and elbow position, angles, angular velocities, angular acceleration, moments, and powers were calculated for shoulder and elbow joints. Results: Kinematic and kinetic data were obtained in the three planes (sagittal, frontal, and transversal) for the shoulder and in the sagittal plane for the elbow. Normative ranges were obtained for these parameters from data of healthy participants. Conclusions: The proposed experimental set-up enables simultaneous assessment of upper and lower limb movement during gait. Thus, no further trials are required in addition to those acquired during standard gait analysis in order to assess upper limb motion, which also makes the experimental set-up feasible for clinical applications.  相似文献   

19.
Standing and walking balance control in humans relies on the transformation of sensory information to motor commands that drive muscles. Here, we evaluated whether sensorimotor transformations underlying walking balance control can be described by task-level center of mass kinematics feedback similar to standing balance control. We found that delayed linear feedback of center of mass position and velocity, but not delayed linear feedback from ankle angles and angular velocities, can explain reactive ankle muscle activity and joint moments in response to perturbations of walking across protocols (discrete and continuous platform translations and discrete pelvis pushes). Feedback gains were modulated during the gait cycle and decreased with walking speed. Our results thus suggest that similar task-level variables, i.e. center of mass position and velocity, are controlled across standing and walking but that feedback gains are modulated during gait to accommodate changes in body configuration during the gait cycle and in stability with walking speed. These findings have important implications for modelling the neuromechanics of human balance control and for biomimetic control of wearable robotic devices. The feedback mechanisms we identified can be used to extend the current neuromechanical models that lack balance control mechanisms for the ankle joint. When using these models in the control of wearable robotic devices, we believe that this will facilitate shared control of balance between the user and the robotic device.  相似文献   

20.
Depression and bipolar disorder are two of the commonest illnesses in the developed world. While some patients can be treated effectively with available drugs, many do not respond, especially in the depression related to bipolar disorder. Depression is associated with diabetes, cardiovascular disease, immunological abnormalities, multiple sclerosis, cancer, osteoporosis and ageing: in each case depressed individuals have a worse outcome than non-depressed individuals. In all of these conditions there is now evidence of impaired phospholipid metabolism and impaired fatty acid-related signal transduction processes. Impaired fatty acid and phospholipid metabolism may be a primary cause of depression in many patients and may explain the interactions with other diseases. Several novel gene candidates for involvement in depression and bipolar disorder are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号