首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
A new series of 2-mercapto-quinazolin-4-one analogues was designed, synthesized and evaluated for their in vitro DHFR inhibition, antitumor and antimicrobial activity. Compound 17 proved to be the most active DHFR inhibitor with IC50 value of 0.01 μM, eight fold more active than methotrexate (MTX). Compounds 16 and 24 showed antitumor activity against human Caco2 colon and MCF-7 breast tumor cell lines with IC50 values of 25.4 and 9.5 μg/ml, respectively. Compounds 15, 20, 21 and 30 showed considerable activity against the Gram-positive bacteria Staphylococcus aureus while 24 and 30 proved active against Bacillus subtilis with a magnitude of potency comparable to the broad spectrum antibiotic Ciprofloxacin. Strong activity was observed for 13, 14, 19, 20 and 24 against Candida albicans and Aspergillus flavus. Compound 17 shared a similar molecular docking mode with MTX and made a critical hydrogen bond and arene-arene interactions via Ala9 and Phe34 amino acid residues, respectively.  相似文献   

2.
Eight new C21 steroidal glycosides, namely cynanotins A–H (18), together with fifteen known analogues, were isolated from the roots of Cynanchum otophyllum. Their structures were elucidated by spectroscopic analysis and chemical methods. In this study, all of isolates were tested for their vitro inhibitory activities against five human tumor cell lines (HL-60, SMMC-7721, A-549, MCF-7 and SW480). Compounds 315 showed moderate cytotoxic activities against HL-60 cell lines with IC50 values ranging from 11.4 to 37.9?µM. Compounds 5, 9, and 10 showed marked or moderate cytotoxic activities against five human tumor cell lines with IC50 values ranging from 11.4 to 36.7?µM. Compound 11 displayed moderate cytotoxic activities against HL-60, SMMC-7721, MCF-7 and SW480 cell lines with IC50 values of 12.2–30.8?µM. Compared to the positive control (IC50: 35.0?µM), compounds 5, 911 exhibited more potential inhibitory activity against MCF-7 cells (IC50: 16.1–25.6?µM).  相似文献   

3.
Deregulation of many kinases is directly linked to cancer development and the tyrosine kinase family is one of the most important targets in current cancer therapy regimens. In this study, we have designed and synthesized a series of thieno[2,3-d]pyrimidine derivatives as an EGFR and HER2 tyrosine kinase inhibitors. All the synthesized compounds were evaluated in vitro for their inhibitory activities against EGFRWT; and the most active compounds that showed promising IC50 values against EGFRWT were tested in vitro for their inhibitory activities against mutant EGFRT790M and HER2 kinases. Moreover, the antitumor activities of these compounds were tested against four cancer cell lines (HepG2, HCT-116, MCF-7 and A431). Compounds 13g, 13h and 13k exhibited the highest activities against the examined cell lines with IC50 values ranging from 7.592 ± 0.32 to 16.006 ± 0.58 µM comparable to that of erlotinib (IC50 ranging from 4.99 ± 0.09 to 13.914 ± 0.36 µM). Furthermore, the most potent antitumor agent (13k) was selected for further studies to determine its effect on the cell cycle progression and apoptosis in MCF-7 cell line. The results indicated that this compound arrests G2/M phase of the cell cycle and it is a good apoptotic agent. Finally, molecular docking studies showed a good binding pattern of the synthesized compounds with the prospective target, EGFRWT and EGFRT790M.  相似文献   

4.
derivatives of benzo[g]indazole 5a, b, benzo[h]quinazoline 7, 12a-c, 13a-c and 15a-c and benzo[h]quinoline 17a-c and 19a-c were synthesized from 6-methoxy-3,4-dihydronaphthalen-1(2H)-one (1). Anticancer activity of all the synthesized compounds was evaluated against four cancerous cell lines; HepG2, MCF-7, HCT116 and Caco-2. MCF-7 cells emerged as the most sensitive cell line against the target compounds. All the examined compounds, except 5a and 5b, displayed potent to moderate anticancer activity against MCF-7 cells with an IC50 values ranging from 7.21 to 21.55 µM. In particular, compounds 15c and 19b emerged as the most potent derivatives against EGFR-expressing MCF-7 cells with IC50 values = 7.70 ± 0.39 and 7.21 ± 0.43 μM, respectively. Additionally, both compounds did not display any significant cytotoxicity towards normal BHK-21 fibroblast cells (IC50 value > 200 µM), thereby providing a good safety profile as anticancer agents. Furthermore, compounds 15c and 19b displayed potent inhibitory activity towards EGFR in the sub-micromolar range (IC50 = 0.13 ± 0.01 and 0.14 ± 0.01 μM, respectively), compared to that of Erlotinib (IC50 = 0.11 ± 0.01 μM). Docking studies for 15c and 19b into EGFR active site was carried out to explore their potential binding modes. Therefore, compounds 15c and 19b can be considered as interesting candidates for further development of more potent anticancer agents.  相似文献   

5.
To evaluate the role of COX-2 and 5-LOX as dual inhibitors in controlling the cancer cell proliferation, a set of two series having 42 compounds of 1, 2, 3-Tethered Indole-3-glyoxamide derivatives were synthesized by employing click chemistry approach and were also evaluated for their in vitro cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX) inhibitory activities with in vivo anti-inflammatory and in vitro anti-proliferative potencies. Among the compounds tested, compounds 11q and 13s displayed excellent inhibition of COX-2 (IC50 0.12 µM) with good COX-2 selectivity index (COX-2/COX-1) of 0.058 and 0.046 respectively. Compounds 11q and 13s also demonstrated comparable 5-LOX inhibitory activity with IC50 7.73 and 7.43 µM respectively to that of standard Norhihydroguaiaretic acid (NDGA: IC50 7.31 µM). Among all the selected cell lines, prostate cancer cell line DU145 was found to be susceptible to this class of compounds. Among all the tested compounds, compounds 11g, 11i, 11k, 11q, 13r, 13s and 13u demonstrated excellent to moderate anti-proliferative activity with IC50s ranging between 6.29 and 18.53 µM. Compounds 11q and 11g demonstrated better anti-proliferative activities against DU145 cancer cell line with IC50 values 8.17 and 8.69 µM respectively when compared to the standard drug etoposide (VP16; IC50 9.80 µM). Compounds 11g, 11k, 11q, 13s and 13u showed good dual COX-2/5-LOX inhibitory potentials with excellent anti-proliferative activity. Results from carrageenan-induced hind paw edema demonstrated that compounds 11b, 11l, 11q and 13q exhibited significant anti-inflammatory activity with 69–77% inhibition at 3 h, 75–82% inhibition at 5 h when compared to the standard drug indomethacin (66.6% at 3 h and 77.94% at 5 h). Ulcerogenic study revealed that compounds 11q and 13q did not cause any gastric ulceration. In vitro tubulin assay resuted that compound 11q interfered with microtubulin dynamic and act as tubulin polymerization inhibitor. In silico molecular docking studies demonstrated that compounds 11q and 13s are occupying the colchicines binding site of tubulin polymer and 11q illustrated very good binding affinities towards COX-2 and 5-LOX.  相似文献   

6.
Forskolin C1-isoxazole derivatives (3,5-regioisomers) (11ae, 14, 15ah and 15, 16ag) were synthesized regioselectively by adopting 1,3-dipolar cycloadditions. These derivatives were tested using estrogen receptor positive breast cancer cell lines MCF-7 and BT-474. Majority of the compounds exhibited activity against the p53-positive MCF-7 breast cancer cells but not against the p53-negative BT-474 breast cancer cells. Among forskolin derivatives, compounds 11a, 11c, 14a, 14f, 14g, 14h, 15b, 16g and 17b exhibited higher anti-cancer activity against MCF-7 cell line with an IC50  1 µM. The derivative 14f exhibited highest activity in both p53-positive (MCF-7) and p53-negative (BT-474) breast cancer cell lines with an IC50 of 0.5 µM.  相似文献   

7.
A novel library of coumarin tagged 1,3,4 oxadiazole conjugates was synthesized and evaluated for their antiproliferative activities against MDA-MB-231 and MCF-7 breast cancer cell lines. The evaluation studies revealed that compound 9d was the most potent molecule with an IC50 value of <5?µM against the MCF-7 cell line. Interestingly, compounds 10b and 11a showed a similar trend with lower inhibitory concentration (IC50?=?7.07?µM), in Estrogen Negative (ER?) cells than Estrogen Positive (ER+) cells. Structure–activity relationship (SAR) studies revealed that conjugates bearing benzyl moieties (9b, 9c and 9d) had superior activities compared to their alkyl analogues. The most potent compound 9d showed ~1.4?times more potent activity than tamoxifen against MCF-7 cell line; while the introduction of sulfone unit in compounds 11a, 11b and 11c resulted in significant cytotoxicity against both MCF-7 and MDA-MB-231 cell lines. These results were further supported by docking studies, which revealed that the stronger binding affinity of the synthesized conjugates is due to the presence of sulfone unit attached to the substituted benzyl moiety in their pharmacophores.  相似文献   

8.
A new series of 6-substituted amido, azo or thioureido-quinazolin-4(3H)-one was synthesized and tested for their in-vitro antitumor activity. Compounds 21, 53 and 60 showed broad spectrum antitumor activity with average IC50 values of 6.7, 7.6 and 9.1 μM, respectively compared with methotrexate (1, IC50 19.26 μM). As an attempt to reveal the mechanism of the antitumor potency, cell cycle analysis and DHFR inhibition were performed. Compounds 59 and 61 induced their cytotoxicity in Hela (IC50 10.6 μM) and HCT-116 (IC50 15.5 μM) cell lines, respectively through Pre-G1 apoptosis, inhibiting cell growth at G2-M phase. Compounds 29, 33, 59 and 61 showed DHFR inhibitory potency at IC50 0.2, 0.2, 0.3 and 0.3 μM, respectively. The active DHFR inhibitors showed high affinity binding toward the amino acid residues Thr56, Ser59 and Ser118. The active compounds obeyed Lipinski’s rule of five and could be used as template model for further optimization.  相似文献   

9.
Designed and synthesized novel homopiperazine linked imidazo[1,2-a]pyrimidine derivatives (10a–i, 11a–g, 12), and evaluated them for their in vitro cytotoxicity against HeLa cells (cervical cancer), A549 cells (lung cancer) cells, by MTT assay. Compound 12 (IC50 = 4.14 µM) and compound 10c (IC50 = 5.98 µM) were found to be 2.5 fold, and 1.74 fold more potent when compared with standard Etoposide (IC50 = 10.44 µM), against A549 (lung cancer cells). Compound 12 also found to be 1.57 and 1.13 fold potent against DU145 (IC50 = 6.24 µM) and HeLa (IC50 = 6.54 µM), respectively when compared with Etoposide (DU145, IC50 = 9.8 µM; HeLa, IC50 = 7.43 µM). Compound 10f (IC50 = 6.12 µM) was found to be 1.31 fold more potent than Etoposide (IC50 = 7.43 µM) against HeLa cell lines.Moreover compounds 10a and 11a showed cytotoxicity at low micro-molar concentrations against A549 cells. Synthesized compounds were also evaluated for their antimicrobial activity by Cup plate diffusion method. Compounds 10c, 11b, 11d and 11f displayed remarkable antimicrobial activity relating to their standard drugs Gentamycin, Amphotericin B and Ampicillin. Significantly, compound 10c showed broad spectrum activity against tested microbial strains. All the designed compounds were well occupied the binding site of the colchicine and interacted with both α- and β-tubuline interface (PDB ID: 3E22), which demonstrates that synthesized compounds are promising tubulin inhibitors. Also, the synthesized compounds occupied the catalytic triad and adenine-binding site, in the active site of β-ketoacyl-acyl carrier protein synthase III enzyme (PDB ID: 1MZS). The molecular docking results provided the useful information for the future design of more potent inhibitors. These preliminary results convinced further investigation and modifications on synthesized compounds aiming towards the development of potential cytotoxic as well as antimicrobial agents.  相似文献   

10.
A novel series of acridine linked to thioacetamides 9a–o were synthesized and evaluated for their α-glucosidase inhibitory and cytotoxic activities. All the synthesized compounds exhibited excellent α-glucosidase inhibitory activity in the range of IC50 = 80.0 ± 2.0–383.1 ± 2.0 µM against yeast α-glucosidase, when compared to the standard drug acarbose (IC50 = 750.0 ± 1.5 µM). Among the synthesized compounds, 2-((6-chloro-2-methoxyacridin-9-yl)thio)-N-(p-tolyl) acetamide 9b displayed the highest α-glucosidase inhibitory activity (IC50 = 80.0 ± 2.0 μM). The in vitro cytotoxic assay of compounds 9a–o against MCF-7 cell line revealed that only the compounds 9d, 9c, and 9n exhibited cytotoxic activity. Cytotoxic compounds 9d, 9c, and 9n did not show cytotoxic activity against the normal human cell lines HDF. Kinetic study revealed that the most potent compound 9b is a competitive inhibitor with a Ki of 85 μM. Furthermore, the interaction modes of the most potent compounds 9b and 9f with α-glucosidase were evaluated through the molecular docking studies.  相似文献   

11.
Four series of N-methylpicolinamide moiety and thienopyrimidine moiety bearing pyridazinone were designed and synthesized and evaluated for the IC50 values against three cancer cell lines (A549, HepG2 and MCF-7) and some selected compounds were further evaluated for the activity against c-Met, Flt-3, VEGFR-2, c-Kit and EGFR kinases. Three compounds (35, 39 and 43) showed more active than positive control Foretinib against A549, HepG2 and MCF-7 cell lines. The most promising compound 43 showed superior activity against A549, HepG2 and MCF-7, with the IC50 values of 0.58?±?0.15?µM, 0.47?±?0.06?µM and 0.74?±?0.12?µM, which were 3.73–5.39-fold more activity than Foretinib, respectively. The experiments of enzyme-based showed that 43 restrain the c-Met selectively, with the IC50 values of 16?nM, which showed equal activity to Foretinib (14?nM) and better than the compound 5 (90?nM). Moreover, AO and Annexin V/PI staining and docking studies were carried out.  相似文献   

12.
A series of novel methyl 4-(4-amidoaryl)-3-methoxythiophene-2-carboxylate derivatives were designed against the active site of protein tyrosine phosphatise 1B (PTP1B) enzyme using MOE.2008.10. These molecules are also subjected for in silico toxicity prediction studies and considering their corresponding drug scores, it implied that, the molecules are promising as anticancer agents. The designed compounds were synthesized by using suitable methods and characterized. They were subjected to inhibitory activity against PTP1B and in vitro anticancer activity by MTT assay. Most of the tested compounds showed potent inhibitory activity against PTP1B, among the compounds tested, compound 5b exhibited the highest activity (IC50 = 5.25 µM) and remarkable cytotoxic activity at 0.09 µM of IC50 against the MCF-7 cell line. In addition to this, compound 5c also showed potential anticancer activity at 2.22 µM of IC50 against MCF-7 and 0.72 µM against HepG2 cell lines as well as PTP1B inhibitory activity at IC50 of 6.37 µM.  相似文献   

13.
Two new series of furochromone and benzofuran derivatives were designed, synthesized and evaluated for their in vitro anticancer activity against MCF-7 and MDA231 breast cancer cell lines. Compounds 5, 6, 7, 9, 15a, 16, 17a and 18 exhibited the best antiproliferative activities with IC50 values ranging from 1.19 to 2.78?µM against MCF-7 superior to lapatinib as reference standard (IC50; 4.69?µM). Compounds 15a and 18 revealed significant cytotoxic activity against MCF-7 and MDA231, therefore their inhibitory potencies against p38α MAP kinase were evaluated. Remarkably they exhibited significant IC50 of 0.04?µM comparable to SB203580 (IC50; 0.50?µM) as a reference standard. These promising results of cytotoxic activity and significant inhibition of p38α MAP kinase, were confirmed by exploring the effect of benzofuran derivative (18) on the apoptotic induction and cell cycle progression of MCF-7 cell line. Compound 18 induced preG1 apoptosis and cell growth arrest at G2/M phase preventing the mitotic cycle. Moreover it activated the caspase-7 which executes apoptosis. Molecular docking study was carried out using GOLD program to predict the mode of binding interaction of the synthesized compounds into the target p38α MAPK. Additionally, the physicochemical properties and ADME parameters of compound 18 were examined in silico to investigate its drug-likeness.  相似文献   

14.
Novel β-enaminonitrile/ester compounds (4, 6) and an imidate of 4 (9) were utilized as key scaffolds for the synthesis of newly 2-substituted 4H-benzo[h]chromene (7, 8, 10, 11, 13, 14) and 7H-benzo[h]chromeno[2,3–d]pyrimidine derivatives (1519). The spectral data confirmed the successful isolation of the desired compounds. The targeted compounds were assessed for their in vitro anticancer activity against mammary gland breast cancer cell line (MCF-7), human colon cancer (HCT-116), and liver cancer (HepG-2), while doxorubicin, vinblastine, and colchicine were utilized as standard references drugs. Some of the examined compounds displayed high growth inhibitory activity against the three different cell lines. For example, the aminoimino derivative (18) exhibited excellent antitumor activity versus all cancer cell lines with IC50 values = 0.45 µg/mL, 0.7 µg/mL, and 1.7 µg/mL. Among the tested molecules, compounds 9, 15, and 18 were selected for further study regarding their effects on cell cycle analysis, apoptosis assay, caspase 3/7 activity, and DNA fragmentation. We found that these three potent cytotoxic compounds induce cell cycle arrest at the S and G2/M phases, which causes apoptosis. Furthermore, these compounds significantly inhibit the invasion and migration of the different tested cancer cells. Finally, the SAR survey highlighted the antitumor activity of the new molecules that was remarkably influenced by the hydrophilicity of substituent as well the fused rings at certain positions.  相似文献   

15.
New series of triazolo[4,3-c]quinazolines were designed, synthesized and their structures were elucidated using different spectroscopic techniques. They were evaluated for their in vitro antitumor activity against HepG2, MCF-7, PC-3, HCT-116 and HeLa cancer cell lines using MTT assay. It was found that all compounds showed variable in vitro cytotoxicity. Distinct derivatives exhibited higher inhibitory activity against the tested cell lines with IC50 values ranging from 8.27 to 10.68 µM using DOX standard (IC50 = 4.17–8.87 µM). In vitro epidermal growth factor receptor (EGFR) inhibition assay was performed. Results revealed that compounds 8, 19 and 21 exhibited worthy EGFR inhibitory activity with IC50 values ranging from 0.69 to1.8 µM in comparison to the reference drug Gefitinib (IC50 = 1.74 µM). Further investigation showed that active candidates 8, 19 and 21 caused cell cycle arrest at the G2/M phase, and interestingly, induced cell death by apoptosis of MCF-7 cells cumulatively with 7.14, 17.52 and 24.88%, respectively, compared with DOX as a positive reference (29.09%). Molecular modeling studies, including docking, flexible alignment and surface mapping, were also done to study the interaction mode into the active site of EGFR kinase domain. There was a good agreement between modeling results and biological results. ADMET analysis and parameters of Lipinski’s rule of five were calculated. Pharmacokinetic parameters showed that compound 8 had more expected penetration through blood brain barrier than Gefitinib. The present work displayed new triazoloquinazoline based derivatives with potent cytotoxicity and promising EGFR inhibition activity.  相似文献   

16.
The compounds terrein (1), butyrolactone I (2), and butyrolactone V (3) were isolated from the ethyl acetate extract (EtOAc) of the endophytic fungus Aspergillus terreus—F7 obtained from Hyptis suaveolens (L.) Poit. The extract and the compounds presented schistosomicidal activity against Schistosoma mansoni; at 100 µg/mL for EtOAc extract, 1297.3 µM for compound 1, 235.6 µM for compound 2, and 454.1 µM for compound 3, they killed 100% of the parasites after 72 h of treatment. Compounds 1, 2, and 3 exerted moderate leishmanicidal activity against Leishmania amazonensis (IC50 ranged from 23.7 to 78.6 µM). At 235.6 and 227.0 µM, compounds 2 and 3, respectively, scavenged 95.92 and 95.12% of the DPPH radical (2,2-diphenyl-1-picryl-hydrazyl), respectively. Regarding the cytotoxicity against the breast tumor cell lines MDA-MB-231 and MCF-7, compound 2 gave IC50 of 34.4 and 17.4 µM, respectively, while compound 3 afforded IC50 of 22.2 and 31.9 µM, respectively. At 117.6 µM, compound 2 inhibited the growth of and killed the pathogen Escherichia coli (ATCC 25922). Compounds 1, 2, and 3 displayed low toxicity against the normal line of human lung fibroblasts (GM07492A cells), with IC50 of 15.3?×?103, 3.4?×?103, and 5.8?×?103 µM, respectively. This is the first report on (i) the in vitro schistosomicidal and leishmanicidal activities of the EtOAc extract of A. terreus—F7 and compounds 1, 2, and 3; and (ii) the antitumor activity of compounds 2 and 3 against MDA-MB-231 and MCF-7 cells.  相似文献   

17.
Twenty five newly synthesized coumarin scaffold based derivatives were assayed for their in vitro anticancer activity against MCF-7 breast and PC-3 prostate cancer cell lines and were further assessed for their in vitro VEGFR-2 kinase inhibitory activity. The in vitro cytotoxic studies revealed that most of the synthesized compounds possessed very promising cytotoxicity against MCF-7, particularly; compounds 4a (IC50 = 1.24 µM) and 3d (IC50 = 1.65 µM) exhibited exceptional activities superior to the positive control staurosporine (IC50 = 8.81 µM). Similarly, the majority of the compounds exhibited higher antiproliferative activities compared to the reference standard with IC50 values ranging from 2.07 to 8.68 µM. The two cytotoxic derivatives 4a and 3d were selected to evaluate their inhibitory potencies against VEGFR-2 kinase. Remarkably, compound 4a, exhibited significant IC50 of 0.36 µM comparable to staurosporine (IC50; 0.33 µM). Moreover, it was capable of inducing preG1 apoptosis, cell growth arrest at G2/M phase and activating caspase-9. On the other hand, insignificant cytotoxic activity was observed for all compounds towards PC-3 cell line. Molecular docking study was carried out for the most active anti-VEGFR-2 derivative 4a, which demonstrated the ability of the tested compound to interact with the key amino acids in the target VEGFR-2 kinase binding site. Additionally, the ADME parameters and physicochemical properties of compound 4a were examined in silico.  相似文献   

18.
Novel derivatives of flurbiprofen 118 including flurbiprofen hydrazide 1, substituted aroyl hydrazides 29, 2-mercapto oxadiazole derivative 10, phenacyl substituted 2-mercapto oxadiazole derivatives 1115, and benzyl substituted 2-mercapto oxadiazole derivatives 1618 were synthesized and characterized by EI-MS, 1H and 13C NMR spectroscopic techniques. All derivatives 118 were screened for α-amylase inhibitory activity and demonstrated a varying degree of potential ranging from IC50 = 1.04 ± 0.3 to 2.41 ± 0.09 µM as compared to the standard acarbose (IC50 = 0.9 ± 0.04 µM). Out of eighteen compounds, derivatives 2 (IC50 = 1.69 ± 0.1 µM), 3 (IC50 = 1.04 ± 0.3 µM), 9 (IC50 = 1.25 ± 1.05 µM), and 13 (IC50 = 1.6 ± 0.18 µM) found to be excellent inhibitors while rest of the compounds demonstrated comparable inhibition potential. A limited structure-activity relationship (SAR) was established by looking at the varying structural features of the library. In addition to that, in silico study was conducted to understand the binding interactions of the compounds (ligands) with the active site of α-amylase enzyme.  相似文献   

19.
Five series of N-methylpicolinamide moiety and thienopyrimidine moiety bearing triazole (21–26, 27–34, 35–41, 42–47 and 48–54) were designed and synthesized. And all the target compounds were evaluated for the IC50 values against three cancer cell lines (A549, HepG2 and MCF-7) and some selected compounds (43, 49 and 52) were further evaluated for the activity against c-Met, Flt-3, VEGFR-2, c-Kit and EGFR kinases. Moreover, SARs and docking studies indicated that thieno[3,2-d]pyrimidine bearing triazole moiety was privileged structure for the activity. Especially, the Cl atom on the 4-C position of aryl group showed the best activity. The most promising compound 49 showed 3.7–5.4-fold more activity than the lead drug Foretinib against A549, HepG2 and MCF-7 cell lines, with the IC50 values of 0.9 ± 0.1 µM, 0.5 ± 0.1 µM and 1.1 ± 0.2 µM, respectively. And The experiments of enzyme-based showed that 49 inhibitor the c-Met selectively, with the IC50 values of 16 nM, which showed equal activity to Foretinib (14 nM). What’s more, According to the result of AO single staining and Annexin V/PI staining, it's claimed that the 49 could induce late apoptosis of HepG2 cells and by a concentration-dependent manner.  相似文献   

20.
A series of artemisinin derivatives with MDR reversal activity were designed and synthesized. All hybrids were screened to anticancer activities against four human cancer cell lines (A549, MCF-7, HepG-2, MDA-MB-231) and normal human hepatic cell (L02) in vitro. Most of the new compounds showed higher anticancer activities than artemisinin, among which compounds 11a and 11c displayed superior potency with IC50 6.78?μM and 5.25?μM against MCF-7, respectively. The further research indicated that the most potent 11c induced cell cycle arrest at G2 phase in MCF-7. Additionally, compound 11c showed remarkable MDR reversal activity which reversed adriamycin against MCF-7/ADR cells with IC50 0.76?μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号