首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was carried out to characterize Angiotensin-converting enzyme (ACE) inhibitory peptides which are released from the trypsin hydrolysate of wheat gluten protein. The binding of two inhibitory peptide (P4 and P6) to human serum albumin (HSA) under physiological conditions has been investigated by multi-spectroscopic in combination with molecular modeling techniques. Time-resolved and quenching fluorescence spectroscopies results revealed that the quenching of HSA fluorescence by P4 and P6 in the binary and ternary systems caused HSA-peptides complexes formation. The results indicated that both peptides quenched the fluorescence intensity of HSA through a static mechanism. The binding affinities and number of binding sites were obtained for the HSA-peptides complexes. The circular dichroism (CD) data revealed that the presence of both peptides increased the α-helix content of HSA and induced the remarkable folding of the polypeptide of the protein. Therefore, the CD data determined that the protein structure has been stabilized in the percent of ACE inhibitory peptides in binary and ternary systems. The binding distances between HSA and both peptides were estimated by the Forster theory, and it was revealed that nonradiative energy transfer from HSA to peptides occurred with a high probability. ITC experiments reveal that, in the absence and presence of P6, the dominant forces are electrostatic in binary and ternary systems. Furthermore, molecular modeling studies confirmed the experimental results. Molecular modeling investigation suggested that P4 bound to the site IA and IIA of HSA in binary and ternary systems, respectively. This study on the interaction of peptides with HSA should prove helpful for realizing the distribution and transportation of food compliments and drugs in vivo, elucidating the action mechanism and dynamics of food compliments and drugs at the molecular level. It should moreover be of great use for understanding the pharmacokinetic and pharmacodynamic mechanism of the food compliments and drugs.  相似文献   

2.
血管紧张素转换酶(angiotensin converting enzyme,ACE)通过作用于维持血压正常的肾素-血管紧张系统(rennin-angiotensin system, RAS)和激肽释放酶 激肽系统(kallikrein-kinin system, KKS),使其失衡导致血压升高.而ACE活性抑制肽可以竞争性地与ACE的活性中心结合,从而抑制ACE的活性,使血压降低.天然来源的ACE抑制肽与传统的降压药物相比效果较好,无毒副作用,对正常血压没有影响,对于高血压的治疗和人类健康具有重要意义. 本文以酪蛋白中提取的ACE活性抑制肽KVLPVP为先导肽,根据ACE抑制肽的结构特点,设计合成一系列的类ACE肽(similar ACE-like peptides). 利用反相高效液相色谱法(RP-HPLC)直接测定其体外ACE抑制活性. 结果表明,当芳香性的氨基酸残基Phe、Tyr、His和疏水性Val残基位于C-端时会提高多肽的ACE抑制活性,尤其是His位于C 端时,ACE抑制活性更强. 通过对比先导肽与所合成的类ACE肽的ACE活性抑制率,可以发现,类ACE肽的ACE活性抑制率均高于先导肽.基于不同氨基酸残基位于C-端时对多肽的ACE抑制活性的研究,可以为降血压药物分子设计和筛选提供基础.  相似文献   

3.
The effect of enzymatic hydrolysis by Savinase on the interfacial properties and antihypertensive activity of shrimp waste proteins was evaluated. The physicochemical characterization, interfacial tension, and surface characteristics of shrimp waste protein hydrolysates (SWPH) using different enzyme/substrate (E/S) (SWPH5 (SWPH using E/S = 5), SWPH15 (SWPH using E/S = 15), and SWPH40 (SWPH using E/S = 40)) were also studied. SWPH5, SWPH15, and SWPH40 had an isoelectric pH around 2.07, 2.17, and 2.54 respectively. SWPH5 exhibited the lowest interfacial tension (68.96 mN/m) followed by SWPH15 (69.36 mN/m) and SWPH40 (70.29 mN/m). The in vitro ACE inhibitory activity of shrimp waste protein hydrolysates showed that the most active hydrolysate was obtained using an enzyme/substrate of 15 U/mg (SWPH15). SWPH15 had a lower IC50 value (2.17 mg/mL) than that of SWPH5 and SWPH40 (3.65 and 5.7 mg/mL, respectively). This hydrolysate was then purified and characterized. Fraction F1 separated by Sephadex G25 column which presents the best ACE inhibition activity was then separated by reversed‐phase high performance liquid chromatography. Four ACE inhibitory peptides were identified and their molecular masses and amino acid sequences were determined using ESI–MS and ESI–MS/MS, respectively. The structures of the most potent peptides were SSSKAKKMP, HGEGGRSTHE, WLGHGGRPDHE, and WRMDIDGDIMISEQEAHQR. The structural modeling of anti‐ACE peptides from shrimp waste through docking simulations results showed that these peptides bound to ACE with high affinity.  相似文献   

4.
5.

Background

Microbial antibiotic resistance is a challenging medical problem nowadays. Two scorpion peptides displaying antibiotic activity: hadrurin and vejovine were taken as models for the design of novel shorter peptides with similar activity.

Methods

Using the standard Fmoc-based solid phase synthesis technique of Merrifield twelve peptides (18 to 29 amino acids long) were synthesized, purified and assayed against a variety of multi-drug resistant Gram-negative bacteria from clinical isolates. Hemolytic and antiparasitic activities of the peptides and their possible interactions with eukaryotic cells were verified. Release of the fluorophore calcein from liposomes treated with these peptides was measured.

Results

A peptide with sequence GILKTIKSIASKVANTVQKLKRKAKNAVA), and three analogs: Δ(Α29), Δ(K12-Q18; Ν26−Α29), and K4N Δ(K12-Q18; Ν26−Α29) were shown to inhibit the growth of Gram-negative (E. coli ATCC25922) and Gram-positive bacteria (S. aureus), as well as multi-drug resistant (MDR) clinical isolated. The antibacterial and antiparasitic activities were found with peptides at 0.78 to 25 μM and 5 to 25 μM concentration, respectively. These peptides have low cytotoxic and hemolytic activities at concentrations significantly exceeding their minimum inhibitory concentrations (MICs), showing values between 40 and 900 μM for their EC50, compared to the parent peptides vejovine and hadrurin that at the same concentration of their MICs lysed more than 50% of human erythrocytes cells.

Conclusions

These peptides promise to be good candidates to combat infections caused by Gram-negative bacteria from nosocomial infections.

General significance

Our results confirm that well designed synthetic peptides can be an alternative for solving the lack of effective antibiotics to control bacterial infections.  相似文献   

6.
Current study deals with the evaluation of indane-1,3-dione based compounds as new class of urease inhibitors. For that purpose, benzylidine indane-1,3-diones (130) were synthesized and fully characterized by different spectroscopic techniques including EI-MS, HREI-MS, 1H, and 13C NMR. All synthetic molecules 130 were evaluated for urease inhibitory activity and showed good to moderate inhibitory potential within the range of (IC50 = 11.60 ± 0.3–257.05 ± 0.7 µM) as compared to the standard acetohydroxamic acid (IC50 = 27.0 ± 0.5 µM). Compound 1 (IC50 = 11.60 ± 0.3 µM) was found to be most potent inhibitor amongst all derivatives. The key binding interactions of most active compounds within the enzyme pocket were evaluated through in silico studies.  相似文献   

7.
《Process Biochemistry》2014,49(5):898-904
The ACE inhibitory activity of pistachio (Pistacia vera L.) kernel's hydrolysates by gastrointestinal enzymes was studied. Results indicated that hydrolysate successively hydrolyzed by pepsin and trypsin, Pe–Tr–H, presented in vitro ACE inhibitory activity as IC50 0.87 ± 0.04 mg/ml. The Pe–Tr–H can in vivo decrease around 22 mmHg in systolic blood pressure (SBP) and 16 mmHg in the diastolic blood pressure (DBP) at 4 h after the oral administration, however the pistachio kernel powder can slightly lower SBP and DBP. The Pe–Tr–H with the highest activity was then separated by ultrafiltration membrane of 3 kDa, size exclusion chromatography on Sephadex G-15 and G-10 columns and reversed phase high-performance liquid chromatography (RP-HPLC) consecutively. A novel ACE inhibitory peptide, ACKEP, with the IC50 value of 126 μM, was identified by MALDI–TOF/TOF system. ACKEP has the same C-terminal residue as Lisinopril and Enalapril, which plays a key role in binding with ACE. The binding mechanism was explored at a molecular basis by docking experiments, which revealed that seven residues from ACE active site (His383, His387, Glu384, Arg522, Asp358, Ala356 and Asn70) and two atoms of ACKEP (O5, H60) greatly contributed to the combinative stabilization.  相似文献   

8.
Chen J  Wang Y  Zhong Q  Wu Y  Xia W 《Peptides》2012,33(1):52-58
Peptides inhibiting angiotensin-I converting enzyme (ACE, EC. 3.4.15.1) are possible cures of hypertension. Food-derived ACE-inhibitory peptides are particularly attractive because of reduced side effects. Previously, we reported ACE-inhibitory activity of grass carp protein hydrolysates. In this work, we report steps for purifying the ACE-inhibitory peptide from the hydrolysate and its biochemical properties. Following steps of ultrafiltration, macroporous adsorption resin, and two steps of reversed phase high performance liquid chromatography (RE-HPLC), a single Val-Ala-Pro (VAP) tripeptide was identified. The tripeptide with excellent ACE-inhibitory activity (IC(50) value of 0.00534 mg/mL) was a competitive ACE inhibitor and stable against both ACE and gastrointestinal enzymes of pepsin and chymotrypsin. This is the first report of food-derived VAP. The identified unique biochemical properties of VAP may enable the application of grass carp protein hydrolysates as a functional food for treatments of hypertension. The developed purification conditions also allow the production of VAP for pharmaceutical applications.  相似文献   

9.
The antimicrobial hexapeptide PAF26 was de novo designed towards phytopathogenic fungi of agricultural importance. To analyze its clinical potential, the activity of PAF26 has been determined against several microorganisms of clinical relevance including Staphylococcus, Candida, and several dermatophytes. For comparison purposes, the peptides KR20 and KI26 derived from the human cathelicidin LL37 were selected and fungal pathogens of agronomic relevance were included. PAF26 has similar antimicrobial activity in vitro compared to KR20 despite their different lengths and amino acid compositions. Moreover, neither peptide is lytic to human erythrocytes or keratinocytes. The hybrid peptide PAF26:KR20 showed better antimicrobial properties than the original peptides against most of the pathogens tested. The structural properties of PAF26:KR20 compared to related 26-amino acid peptides support the idea that the increment in toxicity correlates with positive charge and hydrophobicity. However, the degree of peptide helicity was not a predictor of antimicrobial activity.  相似文献   

10.
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
12.
AIMS: The objective of this study was to evaluate the effectiveness of antibiotics and antimicrobial peptides against 10 strains of Xylella fastidiosa. METHODS AND RESULTS: The minimal inhibitory concentration (MIC) of 12 antibiotics and 18 antimicrobial peptides were determined by agar dilution tests and growth inhibition assays. Antibiotics with the lowest MIC for X. fastidiosa strains were gentamicin, tetracycline, ampicillin, kanamycin, and novobiocin, chloramphenicol, and rifampin. Plate growth inhibition assays showed that four of the antimicrobial peptides (Magainin 2, Indolicidin, PGQ, and Dermaseptin) were toxic to all X. fastidiosa strains. CONCLUSION: All X. fastidiosa strains were sensitive to several groups of antibiotics, and minor differences in sensitivity to several antimicrobial peptides were observed among strains. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that antibiotics and antimicrobial peptides have some activity against the pathogen, X. fastidiosa and may have application in protecting plants from developing Pierce's disease.  相似文献   

13.
D Becker-Ursic  J Davies 《Biochemistry》1976,15(11):2289-2296
From the high salt wash of the ribosomes of the yeast Saccharomyces cerevisiae, three protein kinases have been isolated and separated by DEAE-cellulose chromatography. The three kinases differ in their abilities to phosphorylate substrates such as histones (calf thymus), casein, and S. cerevisiae ribosomes; two of the kinases showed increased activity in the presence of cyclic adenosine 3',5'-monophosphate when histones and 40S ribosomal subunits were used as substrates. The protein kinases catalyzed phosphorylation of certain proteins of the 40S and 60S ribosomal subunits, and 80S ribosomes in vitro. Nine proteins of the 80S ribosome, seven proteins of the 40S subunit, and eleven of the 60S subunit were phosphorylated; different proteins were modified to various extents when different kinases were used. We have identified several proteins of 40S and 60S ribosomal subunits which are not available to the kinases in the 80S particles. Ribosomes isolated from S. cerevisiae cells growing in logarithmic phase of growth were found to contain a number of phosphorylated proteins. Studies by two-dimensional polyacrylamide gel electrophoresis indicated that the ribosomal proteins phosphorylated in vivo correspond with those phosphorylated in vitro. The relationship of in vivo phsophorylation of ribosomes to the growth and physiology of S. cerevisiae is not known.  相似文献   

14.
Vasodilator effects of peptides derived from egg white proteins   总被引:1,自引:0,他引:1  
The aim of this work was to investigate the effect of several peptides, identified before and after simulated gastrointestinal digestion of an egg white hydrolysate, on the vascular function, in rat aorta. The sequences IVF, RADHPFL and YAEERYPIL (0.1 mM) induced vasodilatation in intact aortic rings, with the maximum percentage of dilation corresponding to RADHPFL (40.5 ± 7.0%). Two of the end products of the gastrointestinal digestion, RADHP and YPI, also showed vasodilator activity with degrees of relaxation higher than 50%. However, all these peptides failed to induce relaxation in endothelium-denuded aortic rings. The relaxation induced by RADHP was concentration-dependent and it was partially blocked by the nitric oxide synthase inhibitor l-NAME (100 μM) and by the B1 bradykinin receptor antagonist Des-HOE 140 (30 nM), thus showing that it was mediated by NO production through the activation of B1 bradykinin receptors. These findings suggest that these peptides could reduce the vascular resistance and could be used as functional food ingredients in the prevention and treatment of hypertension.  相似文献   

15.
Black cumin (Nigella sativa) seed protein (BCSP) was individually hydrolyzed with pepsin, trypsin, and α-chymotrypsin. After ultrafiltration, the α-chymotrypsin hydrolysate (< 3 kDa) exhibited the highest ACE inhibitory (ACEI) activity with an IC50 value of 34.4 ± 1.5 μg/mL. This hydrolysate was orthogonally fractionalized using reversed-phase high-performance liquid chromatography (RP-HPLC) and strong cation exchange (SCX) chromatography, and the most active RP-HPLC and SCX fractions (F7 and H4, respectively) were individually screened out by ACEI assay. These two fractions were analyzed with liquid chromatography-tandem mass spectrometry (LC–MS/MS) followed by automated de novo peptide sequencing, and totally 43 ACEI candidate peptides were identified. Three overlapping peptides (VTPVGVPKW, VVTPVGVPKW, and LVLTL) were simultaneously contained in both fractions, and VTPVGVPKW (VW-9) was speculated as to the most potent ACEI peptide based on the in silico analysis. Synthetic VW-9 was used to confirm the identity, and a remarkable IC50 value of VW-9 (1.8 ± 0.09 μM) was determined. Preincubation and inhibition mechanism studies indicated that VW-9 was a true inhibitor as well as a non-competitive inhibitor on ACE, which was further illustrated with the molecular docking simulation. Our study revealed that the application of VW-9 to antihypertensive products is promising.  相似文献   

16.
Acetes chinensis is an underutilized shrimp species thriving in the Bo Hai Gulf of China. In a previous study, we had used the protease from Bacillus sp. SM98011 to digest this kind of shrimp and found that the oligopeptide-enriched hydrolysate possessed antioxidant activity and high angiotensin I-converting enzyme (ACE) inhibitory activity with an IC50 value of 0.97 mg/ml. In this paper, by ultrafiltration, gel permeation chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC), five peptides with high ACE inhibitory activity were purified from the shrimp hydrolysates and their sequences were identified by amino acid composition analysis and molecular weight (MW) analysis. Three of them, FCVLRP (a), IFVPAF (f) and KPPETV (j), were novel ACE inhibitory peptides. Their IC50 values were 12.3 microM, 3.4 microM and 24.1 microM, respectively, and their recoveries were 30 mg/100 g (solid basis of shrimp), 19 mg/100 g and 33 mg/100 g, respectively. Lineweaver-Burk plots for the three novel peptides showed that they are all competitive inhibitors. To test the ACE inhibitory activity of peptide a, f, j after they were digested by digestive enzymes in vivo, 12 derived peptides from FCVLRP and IFVPAF were synthesized based on their amino acid sequences and the cleavage sites of digestive enzymes. No digestive enzyme cleavage site was found in KPPETV. The IC50 values of the derived peptides were determined and the result showed that except for VPAF, FC and FCVL, the ACE inhibitory activity of the other nine derived peptides did not significantly change when compared with their original peptides. Surprisingly, five peptides had lower IC50 values than their original peptides, particularly for RP (IC50 value = 0.39 microM), which is about 30 times lower than its original peptide and almost the lowest IC50 value for ACE inhibitory peptides reported. Therefore, the novel peptides identified from A. chinensis hydrolysates probably still maintain a high ACE inhibitory activity even if they are digested in vivo. This is the first report about novel ACE inhibitory peptides from hydrolysates of marine shrimp A. chinensis. The novel peptides from hydrolysate of A. chinensis and some of their derived peptides with high ACE inhibitory activity probably have potential in the treatment of hypertension or in clinical nutrition.  相似文献   

17.
We have developed a combination of in vivo and in vitro methods which allows us to determine the effect of practically every structural change, deletions as well as point mutations, on various biological functions of a ribosomal protein (r-protein). We have used this approach to delineate the functional domains of r-protein L25 from Saccharomyces cerevisiae. By analysis of the intracellular distribution of fusion proteins carrying various portions of L25 linked to Escherichia coli beta-galactosidase we traced the nuclear localization signal(s) of L25 to the region encompassing the N-terminal 61 amino acids of the protein. On the other hand, using in vitro prepared fragments of L25 we located the domain responsible for its specific binding to 26S rRNA to the region between amino acids 61 and 135. In order to be able to analyze the effect of mutations in L25 on ribosome biogenesis and function in vivo we constructed a mutant yeast strain in which the chromosomal L25 gene is placed under control of the inducible yeast GAL promoter. Since this strain is unable to grow on glucose as a carbon source the L25 gene must be essential for cell viability. Growth on glucose can be restored by introduction of a wild-type L25 gene on a plasmid, demonstrating that under these conditions the cells are dependent upon an extrachromosomally supplied copy of the gene.  相似文献   

18.
Reported is the preparation of wheat germ (WG) hydrolyzate with potent angiotensin I‐converting enzyme (ACE) inhibitory activity, and the characterization of peptides responsible for ACE inhibition. Successful hydrolyzate with the most potent ACE inhibitory activity was obtained by 0.5 wt.%–8 h Bacillus licheniformis alkaline protease hydrolysis after 3.0 wt.%–3 h α‐amylase treatment of defatted WG (IC50; 0.37 mg protein ml−1). The activity of WG hydrolyzate was markedly increased by ODS and subsequent AG50W purifications (IC50; 0.018 mg protein ml−1). As a result of isolations by high performance liquid chromatographies, 16 peptides with the IC50 value of less than 20 μm , composed of 2–7 amino acid residues were identified from the WG hydrolyzate. Judging from the high content (260 mg in 100 g of AG50W fraction) and powerful ACE inhibitory activity (IC50; 0.48 μm ), Ile‐Val‐Tyr was identified as a main contributor to the ACE inhibition of the hydrolyzate. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Among the main learning methods reviewed in this study and used in synthetic biology and metabolic engineering are supervised learning, reinforcement and active learning, and in vitro or in vivo learning.In the context of biosynthesis, supervised machine learning is being exploited to predict biological sequence activities, predict structures and engineer sequences, and optimize culture conditions.Active and reinforcement learning methods use training sets acquired through an iterative process generally involving experimental measurements. They are applied to design, engineer, and optimize metabolic pathways and bioprocesses.The nascent but promising developments with in vitro and in vivo learning comprise molecular circuits performing simple tasks such as pattern recognition and classification.  相似文献   

20.
Gu  Yuxiang  Li  Xing  Qi  Xiaofen  Ma  Ying  Chan  Eric Chun Yong 《Amino acids》2023,55(2):161-171

The capacity of buffalo milk proteins to release bioactive peptides was evaluated and novel bioactive peptides were identified. The sequential similarity between buffalo milk proteins and their cow counterparts was analysed. Buffalo milk proteins were simulated to yield theoretical peptides via in silico proteolysis. The potential of selected proteins to release specific bioactive peptides was evaluated by the A value obtained from the BIOPEP–UWM database (Minkiewicz et al. in Int J Mol Sci 20(23):5978, 2019). Buffalo milk protein is a suitable precursor to produce bioactive peptides, particularly dipeptidyl peptidase IV (DPP-IV) and angiotensin I-converting enzyme (ACE) inhibitory peptides. Two novel ACE inhibitory peptides (KPW and RGP) and four potential DPP-IV inhibitory peptides (RGP, KPW, FPK and KFTW) derived from in silico proteolysis of buffalo milk proteins were screened using different integrated bioinformatic approaches (PeptideRanker, Innovagen, peptide-cutter and molecular docking). The Lineweaver–Burk plots showed that KPW (IC50?=?136.28?±?10.77 μM) and RGP (104.72?±?8.37 μM) acted as a competitive inhibitor against ACE. Similarly, KFTW (IC50?=?873.92?±?32.89 μM) was also a competitive inhibitor of DPP-IV, while KPW and FPK (82.52?±?10.37 and 126.57?±?8.45 μM, respectively) were mixed-type inhibitors. It should be emphasized that this study does not involve any clinical trial.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号