首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 4,5,6,7-tetrabromo-1,3-dioxoisoindolin-2-yl benzenesulfonamide derivatives (compounds 18) was synthesized by reaction of benzene sulfonamide derivatives with 4,5,6,7-tetrabromophthalic anhydride moiety. These new sulfonamides were investigated as inhibitors of the zinc metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) and more specifically against the human (h) cytosolic isoforms hCA I, II and VII and the transmembrane tumor-associated isoform hCA IX and XII. The new compounds were good hCA I inhibitors (Kis in the range of 143 to >10,000 nM), but were moderately effective, as hCA II inhibitors (Kis of 47–190 nM) and poor hCA VII inhibitors (Kis in the range of 54–175 nM) compared to acetazolamide. The tumor-associated hCA IX was effectively inhibited with Kis ranging between 8.5 and 234 nM and hCA XII with inhibition constants in the range of 6.1–197 nM with high selectivity ratio. The structure–activity relationship (SAR) with this series of sulfonamides is straightforward, with the main features leading to good activity for each isoforms being established. The high sequence hCA alignment homology and molecular docking study of compounds was performed to rationalize the SAR reported over here.  相似文献   

2.
A novel class of fluoro-substituted tris-chalcones derivatives (5a-5i) was synthesized from phloroglucinol and corresponding benzaldehydes. A three step synthesis method was followed for the production of these tris-chalcone compounds. The structures of the newly synthesized compounds (5a-5i) were confirmed on the basis of IR, 1H NMR, 13C NMR, and elemental analysis. The compounds’ inhibitory activities were tested against human carbonic anhydrase I and II isoenzymes (hCA I and hCA II), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase (α-Gly). These chalcone derivatives had Ki values in the range of 19.58–78.73 nM for hCA I, 12.23–41.70 nM for hCA II, 1.09–6.84 nM for AChE, 8.30–32.30 nM for BChE and 0.93 ± 0.20–18.53 ± 5.06 nM against α-glycosidase. These results strongly support the promising nature of the tris-chalcone scaffold as selective carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase inhibitor. Overall, due to these derivatives’ inhibitory potential on the tested enzymes, they are promising drug candidates for the treatment of diseases like glaucoma, leukemia, epilepsy; Alzheimer’s disease; type-2 diabetes mellitus that are associated with high enzymatic activity of carbonic anhydrase, acetylcholine esterase, butyrylcholinesterase, and α-glycosidase.  相似文献   

3.
Fluorescent sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) were essential for demonstrating the role played by the tumor-associated isoform CA IX in acidification of tumors, cancer progression towards metastasis and for the development of imaging and therapeutic strategies for the management of hypoxic tumors which overexpress CA IX. However, the presently available such compounds are poorly water soluble which limits their use. Here we report new fluorescent sulfonamides 7, 8 and 10 with increased water solubility. The new derivatives showed poor hCA I inhibitory properties, but were effective inhibitors against the hCA II (KIs of 366–127 nM), CA IX (KIs of 8.1–36.9 nM), CA XII (KIs of 4.1–20.5 nM) and CA XIV (KIs of 12.8–53.6 nM). A high resolution X-ray crystal structure of one of these compounds bound to hCA II revealed the factors associated with the good inhibitory properties. Furthermore, this compound showed a three-fold increase of water solubility compared to a similar derivative devoid of the triazole moiety, making it an interesting candidate for ex vivo/in vivo studies.  相似文献   

4.
A series of 4 and 5 nitro-1,3-dioxoisoindolin-2-yl benzenesulfonamide derivatives (compounds 18) was synthesized by reaction of benzenesulfonamide derivatives with 4 and 3-nitrophthalic anhydrides. These new sulfonamides were investigated as inhibitors of the zinc metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) and more specifically against the human (h) cytosolic isoforms hCA I and II and the transmembrane, tumor-associated hCA IX and XII. Most of the novel compounds were medium potency-weak hCA I inhibitors (Kis in the range of 295–10,000 nM), but were more effective hCA II inhibitors (Kis of 1.7–887 nM). The tumor-associated hCA IX was also inhibited, with Kis in the micromolar range, whereas against hCA XII the inhibition constants were in the range of 90–3746 nM. The structure–activity relationship (SAR) with this series of sulfonamides is straightforward, with the main features leading to good activity for each isoforms being established. The high sequence hCA alignment homology and molecular docking studies was performed in order to rationalize the activities reported and binding mode to different hCA as inhibitors.  相似文献   

5.
In the present study a series of urea and sulfamide compounds incorporating the tetralin scaffolds were synthesized and evaluated for their acetylcholinesterase (AChE), human carbonic anhydrase (CA, EC 4.2.1.1) isoenzyme I, and II (hCA I and hCA II) inhibitory properties. The urea and their sulfamide analogs were synthesized from the reactions of 2-aminotetralins with N,N-dimethylcarbamoyl chloride and N,N-dimethylsulfamoyl chloride, followed by conversion to the corresponding phenols via O-demethylation with BBr3. The novel urea and sulfamide derivatives were tested for inhibition of hCA I, II and AChE enzymes. These derivatives exhibited excellent inhibitory effects, in the low nanomolar range, with Ki values of 2.61–3.69 nM against hCA I, 1.64–2.80 nM against hCA II, and in the range of 0.45–1.74 nM against AChE. In silico techniques such as, atomistic molecular dynamics (MD) and molecular docking simulations, were used to understand the scenario of the inhibition mechanism upon approaching of the ligands into the active site of the target enzymes. In light of the experimental and computational results, crucial amino acids playing a role in the stabilization of the enzyme–inhibitor adducts were identified.  相似文献   

6.
The first synthesis of (E)-4-(3-bromo-4,5-dihydroxyphenyl)but-3-en-2-one (1), (E)-4-(2-bromo-4,5-dihydroxyphenyl)but-3-en-2-one (2), and (E)-4-(2,3-dibromo-4,5-dihydroxyphenyl)but-3-en-2-one (3) was realized as natural bromophenols. Derivatives with mono OMe of 2 and 3 were obtained from the reactions of their derivatives with di OMe with AlCl3. These novel 4-phenylbutenone derivatives were effective inhibitors of the cytosolic carbonic anhydrase I and II isoenzymes (hCA I and II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with Ki values in the range of 158.07–404.16 pM for hCA I, 107.63–237.40 pM for hCA II, 14.81–33.99 pM for AChE and 5.64–19.30 pM for BChE. The inhibitory effects of the synthesized novel 4-phenylbutenone derivatives were compared to acetazolamide as a clinical hCA I and II isoenzymes inhibitor and tacrine as a clinical AChE and BChE enzymes inhibitor.  相似文献   

7.
A library of Schiff bases was synthesized by condensation of aromatic amines incorporating sulfonamide, carboxylic acid or carboxymethyl functionalities as Zn2+-binding groups, with aromatic aldehydes incorporating tert-butyl, hydroxy and/or methoxy groups. The corresponding amines were thereafter obtained by reduction of the imines. These compounds were assayed for the inhibition of two cytosolic human carbonic anhydrase (hCA, EC 4.2.1.1) isoenzymes, hCA I and II. The Ki values of the Schiff bases were in the range of 7.0–21,400 nM against hCA II and of 52–8600 nM against hCA I, respectively. The corresponding amines showed Ki values in the range of 8.6 nM–5.3 μM against hCA II, and of 18.7–251 nM against hCA I, respectively. Unlike the imines, the reduced Schiff bases are stable to hydrolysis and several low-nanomolar inhibitors were detected, most of them incorporating sulfonamide groups. Some carboxylates also showed interesting CA inhibitory properties. Such hydrosoluble derivatives may show pharmacologic applications.  相似文献   

8.
A series of 4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl benzenesulfonamide derivatives (compounds 18) was synthesized by reaction of benzene sulfonamides incorporating primary amino moieties with 4,5,6,7-tetrachlorophthalic anhydride. These sulfonamides were assayed as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Some of these compounds showed very good in vitro human carbonic anhydrase (hCA) isoforms I, II and VII inhibitory properties, with affinities in the low nanomolar range. Inhibition activities against hCA I were in the range of 159–444 nM; against hCA II in the range of 2.4–4515 nM, and against hCA VII in the range of 1.3–469 nM. The structure–activity relationship (SAR) with this series of sulfonamides is straightforward, with the main features leading to good activity for each isoform being established.  相似文献   

9.
The synthesis, characterization and biological evaluation of a series of novel N-substituted phthalazine sulfonamide (5a-l) are disclosed. Phthalazines which are nitrogen-containing heterocyclic compounds are biologically preferential scaffolds, endowed with versatile pharmacological activity, such as anti-inflammatory, cardiotonic vasorelaxant, anticonvulsant, antihypertensive, antibacterial, anti-cancer action. The compounds were investigated for the inhibition against the cytosolic hCA I, II and AChE. Most screened sulfonamides showed high potency in inhibiting hCA II, widely involved in glaucoma, epilepsy, edema, and other pathologies (Kis in the ranging from 6.32 ± 0.06 to 128.93 ± 23.11 nM). hCA I was inhibited with Kis in the range of 6.80 ± 0.10–85.91 ± 7.57 nM, whereas AChE in the range of 60.79 ± 3.51–249.55 ± 7.89 nM. ADME prediction study of the designed N-substituted phthalazine sulfonamides showed that they are not only with carbonic anhydrase and acetylcholinesterase inhibitory activities but also with appropriate pharmacokinetic, physicochemical parameters and drug-likeness properties. Also, in silico docking studies were investigated the binding modes of selected compounds, to hCA I, II, and AChE.  相似文献   

10.
A series of novel non-covalent piperidine-containing dipeptidyl derivatives were designed, synthesized and evaluated as proteasome inhibitors. All target compounds were tested for their proteasome chymotrypsin-like inhibitory activities, and selected derivatives were evaluated for the anti-proliferation activities against two multiple myeloma (MM) cell lines RPMI 8226 and MM-1S. Among all of these compounds, eight exhibited significant proteasome inhibitory activities with IC50 less than 20 nM, and four are more potent than the positive control Carfilzomib. Compound 28 displayed the most potent proteasome inhibitory activity (IC50: 1.4 ± 0.1 nM) and cytotoxicities with IC50 values at 13.9 ± 1.8 nM and 9.5 ± 0.5 nM against RPMI 8226 and MM-1S, respectively. Additionally, the ex vivo blood cell proteasome inhibitory activities of compounds 24 and 2729 demonstrated that the enzymatic metabolism in the whole blood could be well tolerated. All these experiments confirmed that the piperidine-containing non-covalent proteasome inhibitors are potential leads for exploring new anti-cancer drugs.  相似文献   

11.
Starting from vanillin, known four benzyl bromides with Br were synthesized. The first synthesis of natural product 3,4-dibromo-5-((methylsulfonyl)methyl)benzene-1,2-diol (2) and 3,4,6-tribromo-5-((methylsulfonyl)methyl)benzene-1,2-diol (3) and derivatives were carried out by demethylation, acetylatilation, oxidation and hydrolysis reactions of the benzyl bromides. Also, these compounds were tested against some important enzymes like acetylcholinesterase and butyrylcholinesterase enzymes, carbonic anhydrase I, and II isoenzymes. The novel bromophenols showed Ki values of in range of 53.75 ± 12.54–234.68 ± 46.76 nM against hCA I, 42.84 ± 9.36 and 200.54 ± 57.25 nM against hCA II, 0.84 ± 0.12–14.63 ± 3.06 nM against AChE and 0.93 ± 0.20–18.53 ± 5.06 nM against BChE. Induced fit docking process performed on the compounds inhibiting hCA I, hCA II, AChE, and BChE receptors. Hydroxyl group should exist at the aromatic ring of the compounds for inhibition of the enzymes. The moieties reported in this study will be useful for design of more potent and selective inhibitors against the enzymes.  相似文献   

12.
A series of new biphenyl bis-sulfonamide derivatives 2a3p were synthesized in good to excellent yield (76–98%). The inhibitory potential of the synthesized compounds on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was investigated. Most of the screened compounds showed modest in vitro inhibition for both AChE and BChE. Compared to the reference compound eserine (IC50 0.04 ± 0.0001 μM for AChE) and (IC50 0.85 ± 0.0001 μM for BChE), the IC50 values of these compounds were ranged from 2.27 ± 0.01 to 123.11 ± 0.04 μM for AChE and 7.74 ± 0.07 to <400 μM for BuChE. Among the tested compounds, 3p was found to be the most potent against AChE (IC50 2.27 ± 0.01 μM), whereas 3g exhibited the highest inhibition for BChE (IC50 7.74 ± 0.07 μM). Structure–activity relationship (SAR) of these compounds was developed and elaborated with the help of molecular docking studies.  相似文献   

13.
The crystal structure of 4-phenylacetamidomethyl-benzenesulfonamide (4ITP) bound to human carbonic anhydrase (hCA, EC 4.2.1.1) II is reported. 4ITP is a medium potency hCA I and II inhibitor (KIs of 54–75 nM), a strong mitochondrial CA VA/VB inhibitor (KIs of 8.3–8.6 nM) and a weak transmembrane CA inhibitor (KIs of 136–212 nM against hCA IX and XII). This elongated compound binds in an extended conformation to hCA II, with its tail lying towards the hydrophobic half of the active site whereas the sulfonamide moiety coordinates the zinc ion. The present structure was compared to that of structurally related aromatic sulfonamides, such as 4-phenylacetamido-benzene-sulfonamide (3OYS), 4-(2-mercaptophenylacetamido)-benzene-sulfonamide (2HD6) and 4-(3-nitrophenyl)-ureido-benzenesulfonamide (3N2P). Homology models of the hCA I, VA, VB, IX and XII structures were build which afforded an understanding of the amino acids involved in the binding of these compounds to these isoforms. The main conclusion of the study is that the orientation of the tail moiety and the presence of flexible linkers as well polar groups in it, strongly influence the potency and the selectivity of the sulfonamides for the inhibition of cytosolic, mitochondrial or transmembrane CA isoforms.  相似文献   

14.
A series of novel 1,3,4-oxadiazole thioether derivatives (compounds 9–44) were designed and synthesized as potential inhibitors of thymidylate synthase (TS) and as anticancer agents. The in vitro anticancer activities of these compounds were evaluated against three cancer cell lines by the MTT method. Among all the designed compounds, compound 18 bearing a nitro substituent exhibited more potent in vitro anticancer activities with IC50 values of 0.7 ± 0.2, 30.0 ± 1.2, 18.3 ± 1.4 μM, respectively, which was superior to the positive control. In the further study, it was identified as the most potent inhibitor against two kinds of TS protein (for human TS and Escherichia coli TS, IC50 values: 0.62 and 0.47 μM, respectively) in the TS inhibition assay in vitro and the most potent antibacterial agents with MIC (minimum inhibitory concentrations) of 1.56–3.13 μg/mL against the tested four bacterial strains. Molecular docking and 3D-QSAR study supported that compound 18 can be selected as dual antitumor/antibacterial candidate in the future study.  相似文献   

15.
Recently, inhibition effects of enzymes such as acetylcholinesterase (AChE) and carbonic anhydrase (CA) has appeared as a promising approach for pharmacological intervention in a variety of disorders such as epilepsy, Alzheimer’s disease and obesity. For this purpose, novel N-substituted rhodanine derivatives (RhAs) were synthesized by a green synthetic approach over one-pot reaction. Following synthesis the novel compounds, RhAs derivatives were tested against AChE and cytosolic carbonic anhydrase I, and II (hCAs I, and II) isoforms. As a result of this study, inhibition constant (Ki) were found in the range of 66.35 ± 8.35 to 141.92 ± 12.63 nM for AChE, 43.55 ± 14.20 to 89.44 ± 24.77 nM for hCA I, and 16.97 ± 1.42 to 64.57 ± 13.27 nM for hCA II, respectively. Binding energies were calculated with docking studies as −5.969, −5.981, and −9.121 kcal/mol for hCA I, hCA II, and AChE, respectively.  相似文献   

16.
4-Amino-N-(4-sulfamoylphenyl)benzamide was synthesized by reduction of 4-nitro-N-(4-sulfamoylphenyl)benzamide and used to synthesize novel acridine sulfonamide compounds, by a coupling reaction with cyclic-1,3-diketones and aromatic aldehydes. The new compounds were investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), and more precisely the cytosolic isoforms hCA I, II and VII. hCA I was inhibited in the micromolar range by the new compounds (KIs of 0.16–9.64 μM) whereas hCA II and VII showed higher affinity for these compounds, with KIs in the range of 15–96 nM for hCA II, and of 4–498 nM for hCA VII. The structure–activity relationships for the inhibition of these isoforms with the acridine–sulfonamides reported here were also elucidated.  相似文献   

17.
In this study, a series of sulfamoyl carbamates and sulfamide derivatives were synthesized. Six commercially available benzyl amines and BnOH were reacted with chlorosulfonyl isocyanate (CSI) to give sulfamoyl carbamates. Pd–C catalyzed hydrogenolysis reactions of carbamates afforded sulfamides. The inhibition effects of novel benzylsulfamides on the carbonic anhydrase I, and II isoenzymes (CA I, and CA II) purified from fresh human blood red cells were determined by Sepharose-4B-L-Tyrosine-sulfanilamide affinity chromatography. In vitro studies were shown that all of novel synthesized benzylsulfamide analogs inhibited, concentration dependently, both hCA isoenzyme activities. The novel benzylsulfamide compounds investigated here exhibited nanomolar inhibition constants against the two isoenzymes. Ki values were in the range of 28.48 ± 0.01–837.09 ± 0.19 nM and 112.01 ± 0.01–268.01 ± 0.22 nM for hCAI and hCA II isoenzymes, respectively. Molecular modeling approaches were also applied for studied compounds.  相似文献   

18.
In this study, a series of novel β-benzylphenethylamines and their sulfamide derivatives were synthesized starting from (Z)-2,3-diphenylacrylonitriles. Pd-C catalysed hydrogenation of diphenylacrylonitriles, reduction of propanenitriles with LiAlH4 in the presence of AlCl3 followed by addition of conc. HCl afforded β-benzylphenethylamine hydrochloride salts. The reactions of these amine hydrochloride salts with chlorosulfonyl isocyanate (CSI) in the presence of tert-BuOH and excess Et3N gave sulfamoylcarbamates. Removing of Boc group from the synthesized sulfamoylcarbamates with trifluoroacetic acid (TFA) yielded novel sulfamides in good yields. These novel sulfamides derived from β-benzylphenethylamines were effective inhibitors of the cytosolic carbonic anhydrase I and II isoenzymes (hCA I and II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with Ki values in the range of 0.278–2.260 nM for hCA I, 0.187–1.478 nM for hCA II, 0.127–2.452 nM for AChE and 0.494–1.790 nM for BChE. The inhibitory effects of the synthesized novel sulfamides derived from β-benzylphenethylamines were compared to those of acetazolamide and dorzolamide as clinical hCA I and II isoenzymes inhibitors and tacrine as a clinical AChE and BChE enzymes inhibitors. In addition to in vitro tests, molecular modeling approaches are implemented not only for prediction of the binding affinities of the compounds but also to study their inhibition mechanisms in atomic level at the catalytic domains.  相似文献   

19.
Three series of novel heterocyclic compounds (3a3g, 4a4g and 5a5g) containing benzenesulfonamide moiety and incorporating a 1,2,4-triazole ring, have been synthesized and investigated as inhibitors against four isomers of the α-class carbonic anhydrases (CAs, EC 4.2.1.1), comprising hCAs I and II (cytosolic, ubiquitous isozymes) and hCAs IX and XII (transmembrane, tumor associated isozymes). Against the human isozymes hCA I and II, compounds of two series (3a3g and 4a4g) showed Ki values in the range of 84–868 nM and 5.6–390 nM, respectively whereas compounds of series 5a5g were found to be poor inhibitors (Ki values exceeding 10,000 nM in some cases). Against hCA IX and XII, all the tested compounds exhibited excellent to moderate inhibitory potential with Ki values in the range of 2.8–431 nM and 1.3–63 nM, respectively. Compounds 3d, 3f and 4f exhibited excellent inhibitory potential against all of the four isozymes hCA I, II, IX and XII, even better than the standard drug acetazolamide (AZA) whereas compound of the series 5a5g were comparatively less potent but more selective towards hCA IX and XII.  相似文献   

20.
In this study, a series of novel bromophenols were synthesized from benzoic acids and methoxylated bromophenols. The synthesized compounds were evaluated by using different bioanalytical antioxidant assays including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS+) radical scavenging assays. Also, reducing power of novel bromophenols were evaluated by Cu2+-Cu+ reducing, Fe3+-Fe2+ reducing and [Fe3+-(TPTZ)2]3+-[Fe2+-(TPTZ)2]2+ reducing and ferrous ions (Fe2+) chelating abilities. The compounds demonstrate powerful antioxidant activities when compared to standard antioxidant molecules of α-tocopherol, trolox, butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT). Also in the last part of this studies novel bromophenols were tested against some metabolic enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE) enzymes and carbonic anhydrase I, and II (hCA I and hCA II) isoenzymes. The newly synthesized bromophenols showed Ki values in a range of 6.78 ± 0.68 to 126.07 ± 35.6 nM against hCA I, 4.32 ± 0.23 to 72.25 ± 12.94 nM against hCA II, 4.60 ± 1.15 to 38.13 ± 5.91 nM against AChE and 7.36 ± 1.31 to 29.38 ± 3.68 nM against BChE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号