首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 400 毫秒
1.
Biomechanics of the double rocker sole shoe: gait kinematics and kinetics   总被引:2,自引:0,他引:2  
The use of footwear with contoured soles is common in treatment and care of patients with diabetes; these rocker sole shoes are designed to alleviate loading in key areas on the plantar surface of the foot, reducing pressure in key areas and alleviating pain, and potential soft tissue damage. While investigations of pressure changes have been conducted, no quantitative study to date has addressed the three-dimensional (3D) kinematic and kinetic changes that result from using these shoes. Forty subjects were tested wearing both unmodified and double rocker sole shoes, and the resulting motion patterns were compared to assess change caused by the rocker sole. Overall walking speed remained unchanged throughout testing; slightly increased flexion (<5 degrees ) was apparent at the hip, knee, and ankle during early and mid-stance. These results demonstrate the maintenance of gait function with minimal kinematic changes when using the rocker sole shoe. Investigations of multisegmental foot motion may reveal additional information about the contour effects; analysis of contour variations may also be warranted to investigate the possibility of controlling motion based on rocker sole parameters.  相似文献   

2.
Vibration characteristics were recorded for the soft tissues of the triceps surae, tibialis anterior, and quadriceps muscles. The frequency and damping of free vibrations in these tissues were measured while isometric and isotonic contractions of the leg were performed. Soft tissue vibration frequency and damping increased with both the force produced by and the shortening velocity of the underlying muscle. Both frequency and damping were greater in a direction normal to the skin surface than in a direction parallel to the major axis of each leg segment. Vibration characteristics further changed with the muscle length and between the individuals tested. The range of the measured vibration frequencies coincided with typical frequencies of impact forces during running. However, observations suggest that soft tissue vibrations are minimal during running. These results support the strategy that increases in muscular activity may be used by some individuals to move the frequency and damping characteristics of the soft tissues away from those of the impact force and thus minimize vibrations during walking and running.  相似文献   

3.
Inverse dynamics is a standard tool in biomechanics, which requires low-pass filtering of external force and kinematic signals. Unmatched filtering procedures are reported to affect joint moment amplitudes in high impact movements, like landing or cutting, but are also common in the analysis of distance running. We analyzed the effects of cut-off frequencies in 94 rearfoot runners at a speed of 3.5 m/s. Additionally, we investigated whether the evaluation of footwear interventions is affected by the choice of cut-off frequencies. We performed 3D inverse dynamics for the hip, knee and ankle joints using different low-pass filter cut-off frequency combinations for a recursive fourth-order Butterworth filter. We observed fluctuations of joint moment curves in the first half of stance, which were most pronounced for the most unmatched cut-off frequency combination (kinematics: 10 Hz; ground reaction forces (GRFs): 100 Hz) and for more proximal joints. Peak sagittal plane hip joint moments were altered by 94% on average. We observed a change in the ranking of subjects based on joint moment amplitude. We found significant (p < 0.001) footwear by cut-off frequency combination interaction effects for most peak joint moments. These findings highlight the importance of cut-off frequency choice in the analysis of joint moments and the assessment of footwear interventions in distance running. Based on our results, we propose to use matched cut-off frequencies around 20 Hz in order to avoid large artificial fluctuations in joint moment curves while at the same time avoiding a severe removal of physiological high-frequency signal content from the GRF signals.  相似文献   

4.
Recent studies have determined a seemingly consistent feature of able-bodied level ground walking, termed the roll-over shape, which is the effective rocker (cam) shape that the lower limb system conforms to between heel contact and contralateral heel contact during walking (first half of the gait cycle). The roll-over shape has been found to be largely unaffected by changes in walking speed, load carriage, and shoe heel height. However, it is unclear from previous studies whether persons are controlling their lower limb systems to maintain a consistent roll-over shape or whether this finding is a byproduct of their attempt to keep ankle kinematic patterns similar during the first half of the gait cycle. We measured the ankle–foot roll-over shapes and ankle kinematics of eleven able-bodied subjects while walking on rocker shoes of different radii. We hypothesized that the ankle flexion patterns during single support would change to maintain a similar roll-over shape. We also hypothesized that with decrease in rocker shoe radii, the difference in ankle flexion between the end and beginning of single support would decrease. Our results supported these hypotheses. Ankle kinematics were changed significantly during walking with the different rocker shoe radii (p<0.001), while ankle–foot roll-over shape radii (p=0.146) and fore–aft position (p=0.132) were not significantly affected. The results of this study have direct implications for designers of ankle–foot prostheses, orthoses, walking casts/boots, and rocker shoes. The results may also be relevant to researchers studying control of human movements.  相似文献   

5.
A local minimum for running energetics has been reported for a specific bending stiffness, implying that shoe stiffness assists in running propulsion. However, the determinant of the metabolic optimum remains unknown. Highly stiff shoes significantly increase the moment arm of the ground reaction force (GRF) and reduce the leverage effect of joint torque at ground push-off. Inspired by previous findings, we hypothesized that the restriction of the natural metatarsophalangeal (MTP) flexion caused by stiffened shoes and the corresponding joint torque changes may reduce the benefit of shoe bending stiffness to running energetics. We proposed the critical stiffness, kcr, which is defined as the ratio of the MTP joint (MTPJ) torque to the maximal MTPJ flexion angle, as a possible threshold of the elastic benefit of shoe stiffness. 19 subjects participated in a running test while wearing insoles with five different bending stiffness levels. Joint angles, GRFs, and metabolic costs were measured and analyzed as functions of the shoe stiffness. No significant changes were found in the take-off velocity of the center of mass (CoM), but the horizontal ground push-offs were significantly reduced at different shoe stiffness levels, indicating that complementary changes in the lower-limb joint torques were introduced to maintain steady running. Slight increases in the ankle, knee, and hip joint angular impulses were observed at stiffness levels exceeding the critical stiffness, whereas the angular impulse at the MTPJ was significantly reduced. These results indicate that the shoe bending stiffness is beneficial to running energetics if it does not disturb the natural MTPJ flexion.  相似文献   

6.
Quantification of the input signal for soft tissue vibration during running   总被引:1,自引:0,他引:1  
Soft tissue compartment vibrations are initiated at heel-strike in heel-toe running. The concept of muscle tuning suggests that the body tries to minimize these vibrations with a muscle adaptation that changes the mechanical properties of the soft tissue compartment. A muscle tuning adaptation can be quantified by determining the biodynamic response, of the soft tissue compartment for different experimental conditions. To determine the biodynamic response a measure of both the input signal and the soft tissue compartment vibrations are required. The input signal for the vibrations is the rapid deceleration of the leg after initial ground contact. The aim of this study was to evaluate three non-invasive methods to quantify the input signal for the triceps surae soft tissue vibrations. Data from a force platform, a shoe mounted accelerometer and a video analysis of a reflective skin marker were used to quantify leg deceleration. Both the shoe mounted accelerometer and skin marker method provided a satisfactory evaluation of the input signal and could be used to determine the biodynamic response of the soft tissue compartment. The impact portion of the ground reaction force is primarily due to the deceleration of the leg at landing. However, due to the influence of the effective body mass on the impact magnitude, the force plate data was not appropriate for quantifying a muscle tuning response.  相似文献   

7.
Biomechanical aspects of running injuries are often inferred from external loading measurements. However, previous research has suggested that relationships between external loading and potential injury-inducing internal loads can be complex and nonintuitive. Further, the loading response to training interventions can vary widely between subjects. In this study, we use a subject-specific computer simulation approach to estimate internal and external loading of the distal tibia during the impact phase for two runners when running in shoes with different midsole cushioning parameters. The results suggest that: (1) changes in tibial loading induced by footwear are not reflected by changes in ground reaction force (GRF) magnitudes; (2) the GRF loading rate is a better surrogate measure of tibial loading and stress fracture risk than the GRF magnitude; and (3) averaging results across groups may potentially mask differential responses to training interventions between individuals.  相似文献   

8.
Many running injuries are successfully treated with footwear modifications designed to reduce pronation, but the underlying mechanism of treatment is not well understood. Previous attempts to correlate reduction in pronation with changes in ground reaction parameters have been unsuccessful. In this study, the free moment of ground reaction (Mz') was measured for 10 rearfoot strikers running at 4.5 m s-1 in each of three different pairs of running shoes designed to vary the extent of pronation during ground contact. Mz' patterns were highly variable between feet, but were repeatable within a given foot/footwear combination. Mz' was greatest in magnitude during the first half of support, when it acted in a direction resisting foot abduction, a component of pronation. It was opposite in sign and smaller in magnitude during the last 30% of support. The peak magnitude and the net angular impulse of Mz' were both increased significantly with increases in pronation. A net ground reaction moment was also calculated about a vertical axis fixed in the shoe, and was used in a first approximation model of the shoe/ground interface to predict when the foot is most likely to ab/adduct during running. In conclusion, this study characterized the Mz' pattern for a well-defined group of runners, and found that Mz' is sensitive to relatively large within-subject changes in pronation.  相似文献   

9.
Possible benefits of barefoot running have been widely discussed in recent years. Uncertainty exists about which footwear strategy adequately simulates barefoot running kinematics. The objective of this study was to investigate the effects of athletic footwear with different minimalist strategies on running kinematics. Thirty-five distance runners (22 males, 13 females, 27.9 ± 6.2 years, 179.2 ± 8.4 cm, 73.4 ± 12.1 kg, 24.9 ± 10.9 km.week-1) performed a treadmill protocol at three running velocities (2.22, 2.78 and 3.33 m.s-1) using four footwear conditions: barefoot, uncushioned minimalist shoes, cushioned minimalist shoes, and standard running shoes. 3D kinematic analysis was performed to determine ankle and knee angles at initial foot-ground contact, rate of rear-foot strikes, stride frequency and step length. Ankle angle at foot strike, step length and stride frequency were significantly influenced by footwear conditions (p<0.001) at all running velocities. Posthoc pairwise comparisons showed significant differences (p<0.001) between running barefoot and all shod situations as well as between the uncushioned minimalistic shoe and both cushioned shoe conditions. The rate of rear-foot strikes was lowest during barefoot running (58.6% at 3.33 m.s-1), followed by running with uncushioned minimalist shoes (62.9%), cushioned minimalist (88.6%) and standard shoes (94.3%). Aside from showing the influence of shod conditions on running kinematics, this study helps to elucidate differences between footwear marked as minimalist shoes and their ability to mimic barefoot running adequately. These findings have implications on the use of footwear applied in future research debating the topic of barefoot or minimalist shoe running.  相似文献   

10.
目的测量青少年运动员途中跑阶段足底连续三维力,以揭示不同水平青少年运动员途中跑阶段三维力特征。方法选取10名身体健康高中男性运动员作为受试者,应用作者研发的新型足底三维测力跑鞋,测试与记录每位受试者100m短跑途中跑阶段的足底连续三维力,并加以分析。结果青少年运动员在冲击时相时Fx分量有明显的峰值,其中优秀组运动员的Fx第一负波峰值均值小于对照组;Fy分量是客观存在的,优秀组运动员Fy的标准差较对照组要小,并且优秀组运动员的Fy分量的连续波动更加平稳;Fy分量与Fz分量具有相同的变化趋势。结论结果表明,前撑阶段Fx第一负波峰值对运动员向前有阻力的作用;Fy分量是客观存在的且与Fz分量具有相同的变化趋势;Fy分量的大幅波动影响运动员的身体平稳性,不利于运动员大腿充分发力。  相似文献   

11.
In this study, vibrations of human gastrocnemius during an exhaustive run protocol are considered for analysis. Previous studies have shown increased vibration intensity and damping coefficient within the soft tissue with fatigue. The question of this study was to investigate if the vibration settling time remains constant during a prolonged running. Eleven semi-professional middle/long distance runners ran to exhaustion on a treadmill with their preferred constant speed (4.29 ± 0.33 m/s) for 3873 ± 1147 m. Vibration of the gastrocnemius lateralis, electrical activity of the tibialis anterior and the gastrocnemius medialis along with ground reaction force (GRF) were recorded. The results demonstrated significant increase in impact peak and loading rate, and the frequency content of the impact, with no significant change in active peak of the vertical GRF. Fatigue resulted in increased vibration intensity, damping coefficient, and energy dissipation of vibration with no change in vibration settling time. Furthermore, peak acceleration significantly linearly (R = 0.59) increased as a function of running time. The mean frequency of muscle activity of the gastrocnemius medialis and the intensity of muscle activity in TA significantly decreased. The results suggest that constant vibration settling time might either be an objective for muscle tuning which is more pronounced in fatigued state or a passive by-product of muscle function in running. Further studies are needed to address this point.  相似文献   

12.
The concept of muscle tuning suggests that vibrations of the soft tissue compartments of the leg initiated by impacts are minimized by muscular activity prior to heel-strike of heel-toe running. For the quantification of muscle tuning it has been assumed (1) that the soft tissue compartment acts as one lumped mass and (2) that vibration energy dissipation does occur within one muscle. The purpose of this study was to test these two assumptions. It was hypothesized that (H1) the movement of the soft tissue compartment is not homogeneous, (H2) the vibration frequencies for different muscles within one soft tissue compartment are different and (3) attenuation of vibration movement within one muscle does occur. Soft tissue vibrations were measured using accelerometers on four locations on the quadriceps soft tissue compartment during heel-toe running. There were differences in the peak soft tissue acceleration and time of peak acceleration between accelerometer locations. The dominant frequency was similar throughout the soft tissue compartment, however; there was an attenuation of high-frequency vibration energy between distal and proximal points overlying one muscle. This evidence suggests that accelerometer placement is important when quantifying the acceleration magnitude and timing of peak soft tissue compartment but not when estimating the resonant vibration characteristics of a soft tissue compartment. It also provides initial evidence to support the idea that vibration control through muscle tuning may be achieved through changes in energy dissipating properties within the soft tissue compartment.  相似文献   

13.
To date it has been thought that shoe midsole hardness does not affect vertical impact peak forces during running. This conclusion is based partially on results from experimental data using homogeneous samples of participants that found no difference in vertical impact peaks when running in shoes with different midsole properties. However, it is currently unknown how apparent joint stiffness is affected by shoe midsole hardness. An increase in apparent joint stiffness could result in a harder landing, which should result in increased vertical impact peaks during running. The purpose of this study was to quantify the effect of shoe midsole hardness on apparent ankle and knee joint stiffness and the associated vertical ground reaction force for age and sex subgroups during heel-toe running. 93 runners (male and female) aged 16-75 years ran at 3.33 ± 0.15 m/s on a 30 m-long runway with soft, medium and hard midsole shoes. The vertical impact peak increased as the shoe midsole hardness decreased (mean(SE); soft: 1.70BW(0.03), medium: 1.64BW(0.03), hard: 1.54BW(0.03)). Similar results were found for the apparent ankle joint stiffness where apparent stiffness increased as the shoe midsole hardness decreased (soft: 2.08BWm/º x 100 (0.05), medium: 1.92 BWm/º x 100 (0.05), hard: 1.85 BWm/º x 100 (0.05)). Apparent knee joint stiffness increased for soft (1.06BWm/º x 100 (0.04)) midsole compared to the medium (0.95BWm/º x 100 (0.04)) and hard (0.96BWm/º x 100 (0.04)) midsoles for female participants. The results from this study confirm that shoe midsole hardness can have an effect on vertical impact force peaks and that this may be connected to the hardness of the landing. The results from this study may provide useful information regarding the development of cushioning guidelines for running shoes.  相似文献   

14.
Muscle tuning during running: implications of an un-tuned landing   总被引:1,自引:0,他引:1  
BACKGROUND: The impact force in heel-toe running is an input signal into the body that initiates vibrations of the soft tissue compartments of the leg. These vibrations are heavily damped and the paradigm of muscle tuning suggests the body adapts to different input signals to minimize these vibrations. The objectives of the present study were to investigate the implications of not tuning a muscle properly for a landing with a frequency close to the resonance frequency of a soft tissue compartment and to look at the effect of an unexpected surface change on the subsequent step of running. METHOD: Thirteen male runners were recruited and performed heel-toe running over two surface conditions. The peak accelerations and biodynamic responses of the soft tissue compartments of the leg along with the EMG activity of related muscles were determined for expected soft, unexpected hard and expected hard landings. RESULTS AND CONCLUSIONS: For the unexpected hard landing there was a change in the input frequency of the impact force, shifting it closer to the resonance frequency of the soft tissue compartments. For the unexpected landing there was no muscle adaptation, as subjects did not know the running surface was going to change. In support of the muscle-tuning concept an increase in the soft tissue acceleration did occur. This increase was greater when the proximity of the input signal frequency was closer to the resonance frequency of the soft tissue compartment. Following the unexpected change in the input signal a change in pre-contact muscle activity to minimize soft tissue compartment vibrations was not found. This suggests if muscle tuning does occur it is not a continuous feedback response that occurs with every small change in the landing surface properties. In previous studies with significant adaptation periods to new input signals significant correlations between the changes in the input signal frequency and the EMG intensity have been shown, however, changes in soft tissue accelerations have not been found. The results of the present study showed that changes in these soft tissue accelerations can occur in response to a resonance frequency input signal when a muscle reaction has not happened.  相似文献   

15.
Shock-induced vibrations to the feet have been related to the feel of comfort, the biomechanical control of performance, and the risk of fatigue or injury. Up to recently, the complexity of measuring the human biodynamic response to vibration exposure implied to focus most of the research on the axial acceleration at the tibia. Using wireless three-dimensional accelerometers, this paper investigates the propagation of shock-induced vibrations through the whole lower-limb during running in the temporal and the spectral domains. Results indicated that the vibrations were not consistent across the lower-limb, showing various spatial and spectral distributions of energy. The amount of energy was not constantly decreasing from the distal to the proximal extremity of the runner’s lower-limb, especially regarding the lateral epicondyle of the femur. Vibrations in the transversal plane of the segments were substantial compared to the longitudinal axis regarding the distal extremity of the tibia, and the lateral epicondyle of the femur. Further, the spectral content was wider at the distal than at the proximal end of the lower-limb. Finally, to get a thorough understanding of the risks incurred by the runners, the need to account for shock-induced vibrations up to 50 Hz has been stressed when investigating three-dimensional vibrations. The overall study raises attention on the substantial importance of the transverse components of the acceleration, and their potential relation to shear fatigue and injury during running.  相似文献   

16.
Objectives: Although overuse running injury risks for the ankle and knee are high, the effect of different shoe designs on Achilles tendon force (ATF) and Patellofemoral joint contact force (PTF) loading rates are unclear. Therefore, the primary objective of this study was to compare the ATF at the ankle and the PTF and Patellofemoral joint stress force (PP) at the knee using different running shoe designs (forefoot shoes vs. normal shoes). Methods: Fourteen healthy recreational male runners were recruited to run over a force plate under two shoe conditions (forefoot shoes vs. normal shoes). Sagittal plane ankle and knee kinematics and ground reaction forces were simultaneously recorded. Ankle joint mechanics (ankle joint angle, velocity, moment and power) and the ATF were calculated. Knee joint mechanics (knee joint angle velocity, moment and power) and the PTF and PP were also calculated. Results: No significant differences were observed in the PTF, ankle plantarflexion angle, ankle dorsiflexion power, peak vertical active force, contact time and PTF between the two shoe conditions. Compared to wearing normal shoes, wearing the forefoot shoes demonstrated that the ankle dorsiflexion angle, knee flexion velocity, ankle dorsiflexion moment extension, knee extension moment, knee extension power, knee flexion power and the peak patellofemoral contact stress were significantly reduced. However, the ankle dorsiflexion velocity, ankle plantarflexion velocity, ankle plantarflexion moment and Achilles tendons force increased significantly. Conclusions: These findings suggest that wearing forefoot shoes significantly decreases the patellofemoral joint stress by reducing the moment of knee extension, however the shoes increased the ankle plantarflexion moment and ATF force. The forefoot shoes effectively reduced the load on the patellofemoral joint during the stance phase of running. However, it is not recommended for new and novice runners and patients with Achilles tendon injuries to wear forefoot shoes.  相似文献   

17.

Background

Achilles tendon injuries are known to commonly occur in runners. During running repeated impacts are transferred in axial direction along the lower leg, therefore possibly affecting the oscillation behavior of the Achilles tendon. The purpose of the present study was to explore the effects of different footwear modifications and different ground conditions (over ground versus treadmill) on oscillations at the Achilles tendon.

Methods

Oscillations were measured in 20 male runners using two tri-axial accelerometers. Participants ran in three different shoe types on a treadmill and over ground. Data analysis was limited to stance phase and performed in time and frequency space. Statistical comparison was conducted between oscillations in vertical and horizontal direction, between running shoes and between ground conditions (treadmill versus over ground running).

Results

Differences in the oscillation behavior could be detected between measurement directions with peak accelerations in the vertical being lower than those in the horizontal direction, p < 0.01. Peak accelerations occurred earlier at the distal accelerometer than at the proximal one, p < 0.01. Average normalized power differed between running shoes (p < 0.01) with harder damping material resulting in higher power values. Little to no power attenuation was found between the two accelerometers. Oscillation behavior of the Achilles tendon is not influenced by ground condition.

Conclusion

Differences in shoe configurations may lead to variations in running technique and impact forces and therefore result in alterations of the vibration behavior at the Achilles tendon. The absence of power attenuation may have been caused by either a short distance between the two accelerometers or high stiffness of the tendon. High stiffness of the tendon will lead to complete transmission of the signal along the Achilles tendon and therefore no attenuation occurs.  相似文献   

18.
Identifying foot strike patterns in running is an important issue for sport clinicians, coaches and footwear industrials. Current methods allow the monitoring of either many steps in laboratory conditions or only a few steps in the field. Because measuring running biomechanics during actual practice is critical, our purpose is to validate a method aiming at identifying foot strike patterns during continuous field measurements. Based on heel and metatarsal accelerations, this method requires two uniaxial accelerometers. The time between heel and metatarsal acceleration peaks (THM) was compared to the foot strike angle in the sagittal plane (αfoot) obtained by 2D video analysis for various conditions of speed, slope, footwear, foot strike and state of fatigue. Acceleration and kinematic measurements were performed at 1000 Hz and 120 Hz, respectively, during 2-min treadmill running bouts. Significant correlations were observed between THM and αfoot for 14 out of 15 conditions. The overall correlation coefficient was r=0.916 (P<0.0001, n=288). The THM method is thus highly reliable for a wide range of speeds and slopes, and for all types of foot strike except for extreme forefoot strike during which the heel rarely or never strikes the ground, and for different footwears and states of fatigue. We proposed a classification based on THM: FFS<−5.49 ms<MFS<15.2 ms<RFS. With only a few precautions being necessary to ensure appropriate use of this method, it is reliable for distinguishing rearfoot and non-rearfoot strikers in situ.  相似文献   

19.
This study characterizes the stiffness of the human forefoot during running. The forefoot stiffness, defined as the ratio of ground reaction moment to angular deflection of the metatarsophalangeal joint, is measured for subjects running barefoot. The joint deflection is obtained from video data, while the ground reaction moment is obtained from force plate and video data. The experiments show that during push-off, the forefoot stiffness rises sharply and then decreases steadily, showing that the forefoot behaves not as a simple spring, but rather as an active mechanism that exhibits a highly time-dependent stiffness. The forefoot stiffness is compared with the bending stiffness of running shoes. For each of four shoes tested, the shoe stiffness is relatively constant and generally much lower than the mean human forefoot stiffness. Since forefoot stiffness and shoe bending stiffness act in parallel (i.e., are additive), the total forefoot stiffness of the shod foot is dominated by that of the human foot.  相似文献   

20.
The objective of the study was to investigate the adjustment of running mechanics by wearing five different types of running shoes on tartan compared to barefoot running on grass focusing on the gearing at the ankle and knee joints. The gear ratio, defined as the ratio of the moment arm of the ground reaction force (GRF) to the moment arm of the counteracting muscle tendon unit, is considered to be an indicator of joint loading and mechanical efficiency. Lower extremity kinematics and kinetics of 14 healthy volunteers were quantified three dimensionally and compared between running in shoes on tartan and barefoot on grass. Results showed no differences for the gear ratios and resultant joint moments for the ankle and knee joints across the five different shoes, but showed that wearing running shoes affects the gearing at the ankle and knee joints due to changes in the moment arm of the GRF. During barefoot running the ankle joint showed a higher gear ratio in early stance and a lower ratio in the late stance, while the gear ratio at the knee joint was lower during midstance compared to shod running. Because the moment arms of the counteracting muscle tendon units did not change, the determinants of the gear ratios were the moment arms of the GRF's. The results imply higher mechanical stress in shod running for the knee joint structures during midstance but also indicate an improved mechanical advantage in force generation for the ankle extensors during the push-off phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号