共查询到20条相似文献,搜索用时 15 毫秒
1.
Bernadette Marrero Jane L. Messina Richard Heller 《In vitro cellular & developmental biology. Animal》2009,45(9):523-534
An in vitro 3D model was developed utilizing a synthetic microgravity environment to facilitate studying the cell interactions. 2D monolayer cell culture models have been successfully used to understand various cellular reactions that occur in vivo. There are some limitations to the 2D model that are apparent when compared to cells grown in a 3D matrix. For example, some proteins that are not expressed in a 2D model are found up-regulated in the 3D matrix. In this paper, we discuss techniques used to develop the first known large, free-floating 3D tissue model used to establish tumor spheroids. The bioreactor system known as the High Aspect Ratio Vessel (HARVs) was used to provide a microgravity environment. The HARVs promoted aggregation of keratinocytes (HaCaT) that formed a construct that served as scaffolding for the growth of mouse melanoma. Although there is an emphasis on building a 3D model with the proper extracellular matrix and stroma, we were able to develop a model that excluded the use of matrigel. Immunohistochemistry and apoptosis assays provided evidence that this 3D model supports B16.F10 cell growth, proliferation, and synthesis of extracellular matrix. Immunofluorescence showed that melanoma cells interact with one another displaying observable cellular morphological changes. The goal of engineering a 3D tissue model is to collect new information about cancer development and develop new potential treatment regimens that can be translated to in vivo models while reducing the use of laboratory animals. 相似文献
2.
The mechanisms governing the efficient tumor spheroid penetration and transport by poly(amidoamine) (PAMAM) dendrimers displaying varying numbers of cyclic RGD targeting peptides (2, 3, 7, or 10) were evaluated in this work. The cell-free binding affinities and cellular internalization kinetics of PAMAM-RGD conjugates to malignant glioma cells were determined experimentally, and the results were incorporated into a mathematical model to predict the transport of these materials through a multicellular tumor spheroid. The theoretical analysis demonstrated that greater RGD crosslinking may improve transport through tumor spheroids due to their decreased integrin-binding affinity. This study provides evidence that altering the density of tumor-targeting ligands from a drug delivery platform is a feasible way to optimize the tumor-penetration efficiency of an anticancer agent, and provides insight into the physicochemical mechanisms governing the relative effectiveness of these conjugates. 相似文献
3.
4.
Hongbo Tang Yang Zhang John A. Jansen Jeroen J.J.P. van den Beucken 《Tissue & cell》2017,49(4):461-469
This study aimed to investigate the distinctive roles of the monocytes and macrophages on osteogenic differentiation of adipose-derived mesenchymal stromal cells (ADMSCs) in 3D spheroid co-cultures. We hypothesized that monocytes or macrophages (subtypes pro-inflammatory M1 and pro-wound healing M2) would affect the osteogenic differentiation of ADMSCs in 3D spheroids and that cell–cell interactions between monocytes/macrophages and ADMSCs play an important role in the osteogenic differentiation process of ADMSCs. The obtained results indicated that the osteogenic differentiation of ADMSCs was inhibited by monocytes and both macrophage subtypes in 3D spheroids. Monocytes and M2 macrophages had a stronger inhibiting effect than M1 macrophages. Cell-cell interactions mediated by N-cadherin likely played a role in the inhibiting effect of monocytes/macrophages on the osteogenic differentiation of ADMSCs. 相似文献
5.
An outstanding problem in cancer therapy is the battle against treatment-resistant disease. This is especially true for ovarian cancer, where the majority of patients eventually succumb to treatment-resistant metastatic carcinomatosis. Limited perfusion and diffusion, acidosis, and hypoxia play major roles in the development of resistance to the majority of front-line therapeutic regimens. To overcome these limitations and eliminate otherwise spared cancer cells, we utilized the cationic photosensitizer EtNBS to treat hypoxic regions deep inside in vitro 3D models of metastatic ovarian cancer. Unlike standard regimens that fail to penetrate beyond ~150 μm, EtNBS was found to not only penetrate throughout the entirety of large (>200 μm) avascular nodules, but also concentrate into the nodules' acidic and hypoxic cores. Photodynamic therapy with EtNBS was observed to be highly effective against these hypoxic regions even at low therapeutic doses, and was capable of destroying both normoxic and hypoxic regions at higher treatment levels. Imaging studies utilizing multiphoton and confocal microscopies, as well as time-lapse optical coherence tomography (TL-OCT), revealed an inside-out pattern of cell death, with apoptosis being the primary mechanism of cell killing. Critically, EtNBS-based photodynamic therapy was found to be effective against the model tumor nodules even under severe hypoxia. The inherent ability of EtNBS photodynamic therapy to impart cytotoxicity across a wide range of tumoral oxygenation levels indicates its potential to eliminate treatment-resistant cell populations. 相似文献
6.
Journal of Mathematical Biology - In this article, we present a multispecies reaction–advection–diffusion partial differential equation coupled with linear elasticity for modeling tumor... 相似文献
7.
Touitou E Waknine JH Godin B Golenser J 《International journal for parasitology》2006,36(14):1493-1498
The goal of this work was to investigate intranasal dihydroartemisinin (DHA) delivery as a non-invasive method for treatment of malaria. ICR female mice were infected with Plasmodium berghei ANKA, a model for severe malaria with similarities to the human disease. DHA, at a dose of 2 × 5 mg/kg/day, was administered to mice either intranasally or i.p. Two dosage regimens were tested: prophylaxis and treatment. Parasitemia was monitored every other day, from the time of infection, by thin smears prepared from tail blood. The survival rates in prophylaxis and treatment regimens were 93% and 75%, respectively, for intranasal DHA and this route was at least as effective as the i.p. route used for comparison. All mice in the untreated control and placebo groups succumbed due to the parasitemia. The results show that DHA nasal administration to mice was highly efficient in the treatment of Plasmodium infection in infected rodents. This novel mode of drug administration may be considered as an alternative to conventional treatment. 相似文献
8.
《Biochemical and biophysical research communications》2020,521(2):296-302
Anti-angiogenic drugs are an effective therapeutic method for the treatment of melanomas. Apatinib is a small-molecule tyrosine kinase inhibitor, which has potent inhibitory activity on tumor angiogenesis. Due to the low water solubility and stability of Apatinib, we aimed to design and develop poly (lactic-co-glycolic acid) (PLGA) and Poloxamer 407 nanoparticles to encapsulate Apatinib (Apa/p NPs) to improve the efficacy of application in melanoma treatment. The size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro proliferation assays were used to assess the capacity of Apa/p NPs to suppress the growth of B16 cells. Furthermore, we constructed melanoma models using C57BL/6 mice, and preliminary evaluation of the effect and mechanism of Apa/p NPs on tumor inhibition was performed in vivo. The results showed that the size of Apa/p NPs averaged 136 ± 0.27 nm and the nanoparticles were evenly dispersed. Moreover, Apa/p NPs significantly inhibited the growth of B16 cells and melanoma tumors, compared with the naked drug treatment and control groups. The protein levels of VEGFR-2, phosphorylated (p)-VEGFR-2 and p-ERK1/2 in tumor tissues were inhibited by Apa/p NP treatment, as detected by Western blot. The results of this study suggested that Apa/p NPs could inhibit the growth of melanoma tumors by inhibiting the phosphorylation and expression of VEGFR-2 and downstream ERK1/2, providing a theoretical basis for the clinical application of Apatinib in the treatment of melanoma. 相似文献
9.
Left ventricular flow is intrinsically complex, three-dimensional and unsteady. Its features are susceptible to cardiovascular pathology and treatment, in particular to surgical interventions involving the valves (mitral valve replacement). To improve our understanding of intraventricular fluid mechanics and the impact of various types of prosthetic valves thereon, we have developed a custom-designed versatile left ventricular phantom with anatomically realistic moving left ventricular membrane. A biological, a tilting disc and a bileaflet valve (in two different orientations) were mounted in the mitral position and tested under the same settings. To investigate 3D flow within the phantom, a four-view tomographic particle image velocimetry setup has been implemented. The results compare side-by-side the evolution of the 3D flow topology, vortical structures and kinetic energy in the left ventricle domain during the cardiac cycle. Except for the tilting disc valve, all tested prosthetic valves induced a crossed flow path, where the outflow crosses the inflow path, passing under the mitral valve. The biological valve shows a strong jet with a peak velocity about twice as high compared to all mechanical heart valves, which makes it easier to penetrate deeply into the cavity. Accordingly, the peak kinetic energy in the left ventricle in case of the biological valve is about four times higher than the mechanical heart valves. We conclude that the tomographic particle imaging velocimetry setup provides a useful ground truth measurement of flow features and allows a comparison of the effects of different valve types on left ventricular flow patterns. 相似文献
10.
We have examined the effect of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on mitogen-stimulated growth and on c-myc proto-oncogene expression in a keratinocyte model of tumor progression. A dose-dependent inhibition of cell growth by 1,25-(OH)2D3 was demonstrated in both established (HPK1A) and malignant (HPK1A-ras) cells. However, this inhibition was observed with the addition of 1,25-(OH)2D3 at a higher concentration in HPK1A-ras cells than in HPK1A cells. Cell cycle analysis revealed a blockage of the normal progression of the cell cycle from G0 to S phase in the presence of 1,25-(OH)2D3. A higher concentration of 1,25-(OH)2D3 was required in HPK1A-ras cells to overcome the mitogen-stimulated progression into S phase, when compared with HPK1A cells. Analysis of c-myc messenger RNA revealed a strong inhibition of its expression at early time points with higher concentrations of 1,25-(OH)2D3 being required to obtain an inhibition in HPK1A-ras cells similar to that obtained in HPK1A cells. 1,25-(OH)2D3 receptor characterization by sucrose gradient analysis and equilibrium binding demonstrated the presence of a single 3.7 S protein with similar receptor numbers and affinity in both cell lines. These observations therefore demonstrate that an alteration of the growth inhibitory response to 1,25-(OH)2D3 occurs when keratinocytes acquire the malignant phenotype and suggest that the alteration lies beyond the interaction of the ligand with its receptor. In addition, relative resistance to 1,25-(OH)2D3 was also observed in the expression of the cell-cycle associated oncogene c-myc. These studies may therefore have important implications in vivo in the development and growth of epithelial cell cancers. 相似文献
11.
In order to better understand and predict the release of proteins from bioerodible microspheres or nanospheres, it is important
to know the influences of different initial factors on the release mechanisms, though often it is difficult to assess what
exactly is at the origin of a certain dissolution profile. We propose here a new class of fine-grained multi-agent models
built to incorporate increasing complexity, permitting the exploration of the role of different parameters, especially that
of the internal morphology of the spheres, in the exhibited release profile. This approach, based on Monte Carlo (MC) and
cellular automata (CA) techniques, has permitted the testing of various assumptions and hypotheses about several experimental
systems of nanospheres encapsulating proteins. Results have confirmed that this modelling approach has increased the resolution
over the complexity involved, opening promising perspectives for future developments, especially complementing in vitro experimentation.
相似文献
Martin CraneEmail: |
12.
The results of the present work demonstrate that core histones are able to penetrate the plasma membrane of plant cells. Confocal microscopy has revealed that incubation of petunia protoplasts with fluorescently labeled core histones resulted in cell penetration and nuclear import of the externally added histones. Intracellular accumulation was also confirmed by an ELISA-based quantitative method using biotin-labeled histones. Penetration into petunia protoplasts and cultured cells was found to be non-saturable, occurred at room temperature and at 4 °C and was not inhibited by Nocodazole. Furthermore, penetration of the biotinylated histone was neither blocked by the addition of an excess of free biotin molecules, nor by non-biotinylated histone molecules. All these results clearly indicate that the observed uptake is due to direct translocation through the cell plasma membrane and does not occur via endocytosis. Our results also show that the histones H2A and H4 were able to mediate penetration of covalently attached BSA molecules demonstrating the potential of the histones as carriers for the delivery of macromolecules into plant cells. To the best of our knowledge, the findings of the present paper demonstrate, for the first time, the activity of cell penetrating proteins (CPPs) in plant cells. 相似文献
13.
Eriksson F Culp WD Massey R Egevad L Garland D Persson MA Pisa P 《Cancer immunology, immunotherapy : CII》2007,56(5):677-687
Within cancer research, phage display libraries have been widely used for the identification of tumor targeting peptides and
antibodies. Additionally, phages are known to be highly immunogenic; therefore we evaluated the immunotherapeutic potential
of tumor specific phages to treat established solid tumors in a mouse model of melanoma. We developed two tumor specific phages,
one derived from a peptide phage display library and one Fab expressing phage with known specificity, for the treatment of
mice bearing palpable B16-F10 or B16/A2Kb tumors. Therapy in B16-F10 tumor bearing mice with tumor specific phages was superior to treatment with non-tumor specific
phages and lead to delayed tumor growth and increased survival. In B16/A2Kb tumor bearing mice, therapy with tumor specific phages resulted in complete tumor regression and long-term survival in 50%
of the mice. Histological analysis of tumors undergoing treatment with tumor specific phages revealed that phage administration
induced a massive infiltration of polymorphonuclear neutrophils. Furthermore, phages induced secretion of IL-12 (p70) and
IFN-γ as measured in mouse splenocyte culture supernatants. These results demonstrate a novel, immunotherapeutic cancer treatment
showing that tumor specific phages can promote regression of established tumors by recruitment of inflammatory cells and induction
of Th1 cytokines. 相似文献
14.
15.
Sergey A. Dergunov Elizabeth A. Bowles Weston Gordon Michael Green August Bierman Mary L. Ellsworth Eugene Pinkhassik Randy S. Sprague 《Biochemistry and Biophysics Reports》2015
ATP release from erythrocytes in response to low oxygen tension requires an increase in cAMP, the level of which is regulated by phosphodiesterase 3 (PDE3). Such release is defective in erythrocytes of humans with type 2 diabetes (DM2). This study tested a hypothesis that direct delivery of the clinically useful PDE3 inhibitor, cilostazol, to erythrocytes of humans with type 2 diabetes using liposomes would restore low-oxygen tension-induced ATP release. Cilostazol was incorporated into liposomes prepared from dimyristoylphosphatidylcholine (DMPC). Liposome-delivery of cilostazol restored ATP release from DM2 erythrocytes to levels which were not different from that released from non-cilostazol treated healthy erythrocytes under the same conditions. There were no observed adverse effects of the liposomes on either healthy or DM2 erythrocytes. The directed liposomal delivery of PDE inhibitors to erythrocytes may help prevent or slow the development of peripheral vascular disease in individuals with DM2 by restoring an important physiological controller of microvascular perfusion while minimizing side effects associated with systemic delivery of some of these inhibitors. 相似文献
16.
17.
Tumor progression is controlled by signals from cellular and extra-cellular microenvironment including stromal cells and the extracellular matrix. Consequently, three-dimensional in vitro tumor models are essential to study the interaction of tumor cells with their microenvironment appropriately in a biologically relevant manner. We have previously used organotypic co-cultures to analyze the malignant growth of human squamous cell carcinoma (SCC) cell lines on a stromal equivalent in vitro. In this model, SCC cell lines are grown on a collagen-I gel containing fibroblasts. Since macrophages play a critical role in the progression of many tumor types, we now have expanded this model by integrating macrophages into the collagen gel of these organotypic tumor co-cultures. This model was established as a murine and a human system of skin SCCs. The effect of macrophages on tumor progression depends on their polarization. We demonstrate that macrophage polarization in organotypic co-cultures can be modulated towards and M1 or an M2 phenotype by adding recombinant IFN-γ and LPS or IL-4 respectively to the growth medium. IL-4 stimulation of macrophage-containing cultures resulted in enhanced tumor cell invasion evidenced by degradation of the basement membrane, enhanced collagenolytic activity and increased MMP-2 and MMP-9. Interestingly, extended co-culture with tumor cells for three weeks resulted in spontaneous M2 polarization of macrophages without IL-4 treatment. Thus, we demonstrate that macrophages can be successfully integrated into organotypic co-cultures of murine or human skin SCCs and that this model can be exploited to analyze macrophage activation towards a tumor supporting phenotype. 相似文献
18.
EDIII‐DENV3 nanospheres drive immature dendritic cells into a mature phenotype in an in vitro model 下载免费PDF全文
19.
Anil-Inevi Muge Sağlam-Metiner Pelin Kabak Evrim Ceren Gulce-Iz Sultan 《Molecular biology reports》2020,47(1):97-109
Molecular Biology Reports - Breast cancer is one of the most common cancer types among women in which early tumor invasion leads to metastases and death. EpCAM (epithelial cellular adhesion... 相似文献
20.
Thore Nederman Jörgen Carlsson Magnus Malmqvist 《In vitro cellular & developmental biology. Plant》1981,17(4):290-298
Summary The penetration of [3H]thymidine, [3H]d-leucine, [125I]albumin, and the drugs [3H]5-fluorouracil and [3H]vinblastine into human glioma spheroids (in vitro tumor models) was studied by a method based on rapid freezing, freeze
drying, vapor fixation, wax embedding, dry sectioning, and contact autoradiography. No significant disturbances in the distribution
of water soluble substances were observed. Thymidine andd-leucine penetrated the whole spheroids relatively fast, whereas albumin showed reduced penetration. the concentration of
albumin was highest at the periphery of the spheroids, but only smaller amounts were detected in the deeper regions. A significant
difference between the penetration patterns of the drugs studied was also observed. Fluorouracil penetrated rather freely,
but the penetration of vinblastine was limited.
The work was supported financially by Lennanders Foundation, OE and Edla Johanssons Foundation, and the Swedish Cancer Society. 相似文献