首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioreduction catalyzed by alcohol dehydrogenase/reductase is one of the most valuable biotransformation processes widely used in industry. The (S)-2-Chloro-1-(3, 4-difluorophenyl) ethanol is a key chiral synthon for synthesizing the antithrombotic agent ticagrelor. Herein, a new alcohol dehydrogenase (named Rhky-ADH) identified from Rhodococcus kyotonensis by an enzyme promiscuity-based genome mining method was successfully cloned and functionally expressed in Escherichia coli. The whole cell biocatalyst harboring Rhky-ADH was biochemically characterized and was shown to be able to convert 2-Chloro-1-(3, 4-difluorophenyl) ethanone to (S)-2-Chloro-1-(3, 4-difluorophenyl) ethanol with more than 99 % enantiomeric excess (ee) and 99 % conversion. Our data showed that the optimum temperature and pH for Rhky-ADH were 25 °C and pH 8.0, respectively. The addition of NADH and an appropriate concentration of isopropanol enhanced the activity of Rhky-ADH, and 1 mM Mn2+ increased the enzyme activity by about 8 %. Substrate specificity experiments showed that Rhky-ADH had notable enzyme promiscuity and could reduce several ketones with high stereoselectivity. Our investigation on this novel enzyme adds another rare biocatalyst to the toolbox for producing chiral alcohols, which are widely used in the pharmaceutical industry.  相似文献   

2.
We report a plant (Beta vulgaris L. subsp. vulgaris.) cell culture-mediated reduction of prochiral 1-(3,4-dimethylphenyl)ethanone into the chiral alcohol (1R)-1-(3,4-dimethylphenyl)ethanol in natural deep eutectic solvents (NADES). To the best of our knowledge, this is the first report on plant culture cell behaviour during incubation in these solvents, where the novelty is transformation in callus culture. Three different choline chloride-based NADES (aqueous solutions containing 30, 50 and 80 % water [w/w]) containing sugar (glucose) or polyalcohols (glycerol and ethylene glycol) were screened for conversion and enantiomeric excess during the bioreduction. Both the conversion and the enantiomeric excess differed considerably when using different hydrogen bond donors, with the (R)-alcohol configuration predominating in the reactions conducted in most NADES. Changing the water content in NADES also altered the enantioselectivity. Testing the biocompatibility of NADES with sugar beet cell cultures revealed that NADES cause permeabilisation of cell membranes, leading to stress conditions that change plant metabolism. The potential for recycling and reusing plant biomass was tested for sugar beet cell cultures. The results indicate that recycling may be possible after 3–7 days of incubation, but longer incubations lead to too high a toxicity to cellular metabolism.  相似文献   

3.
A wide spectrum of commercially available lipases and microbial whole cells catalysts were tested for biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid 1 and its butyryl ester. The best results were achieved for biocatalytic hydrolysis of ester: 2-butyryloxy-2-(ethoxyphenylphosphinyl)acetic acid 2 performed by lipase from Candida cylindracea, what gave optically active products with 85% enantiomeric excess, 50% conversion degree and enantioselectivity 32.9 for one pair of enantiomers. Also enzymatic systems of Penicillium minioluteum and Fusarium oxysporum were able to hydrolyze tested compound with high enantiomeric excess (68–93% ee), enantioselectivity (44 for one pair of enantiomers) and conversion degree about 50–55%. Enzymatic acylation of hydroxyphosphinate was successful in case when porcine pancreas lipase was used. After 4 days of biotransformation the conversion reaches 45% but the enantiomeric enrichment of the isomers mixture do not exceed 43%. Obtained chiral compounds are valuable derivatizing agents for spectroscopic (NMR) evaluation of enantiomeric excess for particular compounds (e.g. amino acids).  相似文献   

4.
Abstract

Aromatic α-halohydrins, particularly 2-haloethanols as significant precursor of drugs, can easily be converted to chiral β-adrenergic receptor blockers. Eight strains of Lactobacillus curvatus were tested as biocatalysts for asymmetric reduction of 2-bromo-1-(naphthalen-2-yl)ethanone 1 to 2-bromo-1- (naphthalen-2-yl) ethanol 2. The parameters of the bioreduction were optimized using L. curvatus N4, the best biocatalyst found. As a result, (R)-2-bromo-1-(naphthalen-2-yl)ethanol 2, which can be β-adrenergic receptor blocker precursor, was produced for the first time in high yield and enantiomerically pure form using biocatalysts. Moreover, the gram scale synthesis was performed and 7.54?g of (R)-2 was synthesized as enantiopure form (enantiomeric excess >99%) in 48?h. The important advantages of this process are that it produces of (R)-2 for the first time in enantiopure form, in excellent yield and under environmentally friendly and moderate reaction conditions. This system is of the potential to be applied at a commercial scale.  相似文献   

5.
Biotransformations of two substrates: chalcone (1) and 2′-hydroxychalcone (4) were carried out using four yeast strains and five filamentous fungi cultures. Substrate 1 was effectively hydrogenated in all of tested yeast cultures (80–99% of substrate conversion after 1 h of biotransformation) affording dihydrochalcone 2. In the cultures of filamentous fungi the reaction was much slower, however, Chaetomium sp. gave product 2 in 97% yield. After 12 h of incubation a reduction of dihydrochalcone 2 to alcohol 3 was additionally observed. After 3 days of biotransformation in the culture of Rhodotorula rubra product (S)-3 was obtained with 75% ee (enantiomeric excess) and 99% of conversion. Also after a 3-day biotransformation using the strain Fusarium culmorum product (R)-3 was obtained with 98% ee and 97% of conversion. In most of the tested strains a change in enantiomeric excess of compound 3 during the biotransformation process was noticed. In the culture of Rhodotorula glutinis after 3 h of transformation alcohol (R)-3 was formed with 47% ee and 31% of substrate conversion, whereas after 6 days the (S)-3 enantiomer was obtained with 99% ee and 91% of conversion. In the case of 2′-hydroxychalcone (4), the hydrogenation proceeded much slower and led to 2′-hydroxydihydrochalcone (5) – in the culture of Yarrowia lipolytica 97% of conversion was observed after 3 days. In all cultures of the tested strains no products of 2′-hydroxydihydrochalcone reduction were detected.  相似文献   

6.
The obligate photoautotrophic cyanobacterium Synechococcus PCC7942 and the photoheterotrophic heterocystous cyanobacterium Noctoc muscorum are able to reduce prochiral ketones asymmetrically to optical pure chiral alcohols without light. An example is the synthesis of S-pentafluoro(phenyl-)ethanol with an enantiomeric excess >99% if 2′-3′-4′-5′-6′-pentafluoroacetophenone is used as substrate. If no light is available for regeneration of the cofactor nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH), glucose is used as cosubstrate. Membrane disintegration during asymmetric reduction promotes cytosolic energy generating metabolic pathways. Observed regulatory effects depicted by an adenosine triphosphate (ATP) to nicotinamide adenine dinucleotide phosphate (oxidized form) (NADP+) ratio of 3:1 for efficient cofactor recycling indicate a metabolization via glycolisis. The stoichiometric formation of the by-product acetate (1 mol acetate/1 mol chiral alcohol) indicates homoacetic acid fermentation for cofactor regeneration including the obligate photoautotrophic cyanobacterium Synechococcus PCC7942.  相似文献   

7.
Didymosphaeria igniaria is a promising biocatalyst in asymmetric reductions of prochiral aromatic-aliphatic ketones such as acetonaphthones, acetophenones, and acetylpyridines. The organism converted the substrates mainly to (S)-alcohols. Excellent results in terms of conversion and enantioselectivity (100% yield, >99% ee) were obtained with acetonaphthones. In case of acetyl pyridines, the optical purity of the product depended on the position of the carbonyl group on the pyridine ring and followed the order 2-acetyl ? 4-acetyl > 3-acetyl-pyridine. Transformation of o-methoxy-acetophenone gave optically pure (S)-(-)-1-(2-methoxyphenyl)-ethanol in 95% yield. The transformation of para-methyl ketone gave (R)-alcohol (81% ee), whereas para-bromo ketone gave (S)-alcohol (98% ee). Monitoring of the biotransformation of these substrates over time led to the conclusion that for both substrates, non-selective carbonyl group reduction occurred in the first step, followed by selective oxidation of the (R)-isomer of p-bromo-phenylethanol and selective oxidation of the (S)-isomer of p-methyl-phenylethanol. D. igniaria exhibited poor enantioselectivity in the reduction of bicyclic aryl-aliphatic ketones such as 1- and 2-tetralones. Only (S)-5-methoxy-1-tetralol was obtained in optically pure (>99% ee) form.  相似文献   

8.
Different strategies for stereoselective microbial preparation of various chiral aromatic compounds are described. Optically pure 2-methyl-3-phenyl-1-propanol, ethyl 2-methyl-3-phenylpropanoate, 2-methyl-3-phenylpropanal, 2-methyl-3-phenylpropionic acid and 2-methyl-3-phenylpropyl acetate have been prepared using different microbial biotransformations starting from different prochiral and/or racemic substrates. (S)-2-Methyl-3-phenyl-1-propanol and (S)-2-methyl-3-phenylpropanal were prepared by biotransformation of 2-methyl cinnamaldehyde using the recombinant strain Saccharomyces cerevisiae BY4741ΔOye2Ks carrying a heterologous OYE gene from Kazachstania spencerorum. (R)-2-Methyl-3-phenylpropionic acid was obtained by oxidation of racemic 2-methyl-3-phenyl-1-propanol with acetic acid bacteria. Kinetic resolution of racemic 2-methyl-3-phenylpropionic acid was carried out by direct esterification with ethanol using dry mycelia of Rhizopus oryzae CBS 112.07 in organic solvent, giving (R)-ethyl 2-methyl-3-phenylpropanoate as major enantiomer. Finally, (R,S)-2-methyl-3-phenylpropyl acetate was enantioselectively hydrolysed employing different bacteria and yeasts having cell-bound carboxylesterases with prevalent formation of (R)- or (S)-2-methyl-3-phenyl-1-propanol, depending on the strain employed.  相似文献   

9.
Phenylacetaldehyde reductase (PAR) (systematic name, 2-phenylethanol: NAD+ oxidoreductase) isolated from styrene-assimilating Corynebacterium strain ST-10 was used to produce chiral alcohols. This enzyme with a broad substrate range reduced various prochiral 2-alkanones and aromatic ketones to yield optically active secondary alcohols with an enantiomeric purity of 87–100% enantiomeric excess (e.e.). The stereochemistry of PAR revealed that the pro-R hydrogen of NADH was transferred to carbonyl moiety of acetophenone derivatives or alkanones through its re face. The combination with a NADH-regenerating system using formate dehydrogenase and formate was able to practically produce optically pure alcohols.  相似文献   

10.
Racemic indan derivatives have been resolved by the hydrolysis of amide bonds using Corynebacterium ammoniagenes IFO12612 to produce (S)-amine and (R)-amides. In the kinetic resolution of 1 (N-12-(6-methoxy-indan-1-yl)ethyl]acetamide), it was possible to run the reaction to 44% conversion on a 10-g scale, obtaining (S)-amine 4 ((S)-2-(6-methoxy-indan-1-yl)ethylamine) at >99% enantiomeric excess (ee) and (R)-1 at 98% ee.  相似文献   

11.
Pig liver esterase (PLE) was used for the preparation of optically active alkyl allenecarboxylates with axial chirality. Free and immobilized enzymes were used as biocatalysts for the kinetic resolution of racemic ester substrates. Whereas the biotransformations using the free biocatalyst resulted in moderately to high enantiomeric ratios, the immobilization significantly decreased the E-value. The reaction conditions were optimized with respect to the enantiomeric ratio and scaled up. The enantiomeric ratio (E-value) was thereby enhanced by a factor of four to E=60. Under optimized conditions (free enzyme, addition of acetone as a cosolvent and Triton X-100 as an emulgator) in a preparative scale biotransformation, 282 mg of optically pure S-(+)-2-ethyl-4-phenyl-2,3-hexadiene-carboxylic acid methylester (96% ee, 82% yield) and 257 mg of R-(−)-2-ethyl-4-phenyl-2,3-hexadiene-carboxylic acid (83% ee, 80% yield) could be synthesized from the racemic substrate.  相似文献   

12.
Chiral secondary alcohols are convenient mediator for the synthesis of biologically active compounds and natural products. In this study fifteen yeast strains belonging to three food originated yeast species Debaryomyces hansenii, Saccharomyces cerevisiae and Hanseniaspora guilliermondii were tested for their capability for the asymmetric reduction of acetophenone to 1-phenylethanol as biocatalyst microorganisms. Of these strains, Debaryomyces hansenii P1 strain showed an effective asymmetric reduction ability. Under optimized conditions, substituted acetophenones were converted to the corresponding optically active secondary alcohols in up to 99% enantiomeric excess and at high conversion rates. This is the first report on the enantioselective reduction of acetophenone by D. hansenii P1 from past?rma, a fermented Turkish meat product. The preparative scale asymmetric bio reduction of 3-methoxy acetophenone 1g by D. hansenii P1 gave (R)-1-(3-methoxyphenyl) ethanol 2g 82% yield, and >99% enantiomeric excess. Compound 2g can be used for the synthesis of (+)-NPS-R-568 [3-(2-chlorophenyl)-N-[(1R)-1-(3-methoxyphenly) ethyl] propan-1-amine] which have a great potential for the treatment of primary and secondary hyper-parathyroidism. In addition, D. hansenii P1 successfully reduced acetophenone derivatives. This study showed that this yeast can be used industrially to produce enantiomerically pure chiral secondary alcohols, which can be easily converted to different functional groups.  相似文献   

13.
Carbon-11-labeled aminoalkylindole derivatives (1-butyl-7-[11C]methoxy-1H-indol-3-yl)(naphthalene-1-yl)methanone ([11C]3), 1-butyl-7-[11C]methoxy-3-(naphthalene-1-ylmethyl)-1H-indole ([11C]5), and 1-butyl-7-[11C]methoxy-3-(naphthalene-2-yl)-1H-indole ([11C]8) were prepared by O-[11C]methylation of their corresponding precursors with [11C]CH3OTf under basic condition (2 N NaOH) and isolated by a simplified solid-phase extraction (SPE) method in 50–60% radiochemical yields based on [11C]CO2 and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 23 min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 185–555 GBq/μmol.  相似文献   

14.

Objective

To produce (S)-3-hydroxy-1-(3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-4-(2,4,5-trifluorophenyl)butan-1-one (S)-1 from 4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro [1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)-1-(2,4,5-trifluorophenyl)butan-2-one (2) by microbial bioreduction.

Results

A new isolate of Pseudomonas pseudoalcaligenes reduced enantioselectively prochiral ketone 2 to chiral alcohol (S)-1. Whole cells of the bacterium were tolerant towards 20 % (v/v) DMSO and 10 g 2/l. Under the optimal conditions, the preparative-scale bioreduction yielded (S)-1 at 90 % yield and >99 % ee. Cells could be re-used with the yield and ee of product being 45 % and >99 %, respectively, after five cycles.

Conclusion

Bioreduction using whole cells of P. pseudoalcaligenes is an attractive approach to produce (S)-1, as a chiral intermediate of the anti-diabetic drug, sitagliptin.
  相似文献   

15.
2-[1-(5,8-Dihydro quinoxalino[2,3-b]indoloacetyl)-3-(1-benzofuran-2-yl)-4,5-dihydro-1H-pyrazol-5-yl] phenyl derivatives were synthesized from 2-(5,8-dihydro quinoxalino[2,3-b]indol-5-yl) acetohydrazide and (2E)-1-(1-benzofuran-2-yl)-4-phenylbut-2-en-1-ones derivatives using microwave-assisted route. The structures of all the compounds have been established on the basis of analytical and spectral data. Among the 14 compounds IPB-1, IPB-5, IPB-10, IPB-11 and IPB-12 were found good antibacterial activity and MICs were found bellow 10 μg/mL against Escherichia coli, Pseudomonas aeruginosa and Streptococcus aureus, which can compared with sparfloxacin and norfloxacin.  相似文献   

16.
Abstract

Asymmetric reduction studies of heteroaryl ketones, including phenyl(pyridin-2-yl)methanone in enantioselective form with biocatalysts are very few, and chiral heteroaryl alcohols have been synthesized generally in the small scale. In this study, seven bacterial strains have been used to produce the (S)-phenyl(pyridin-2-yl)methanol in high enantiomeric excess and yield. Among the tested strains, Lactobacillus paracasei BD101, was found to be the best biocatalyst for the reducing phenyl(pyridin-2-yl)methanone to the (S)-phenyl(pyridin-2-yl)methanol at gram scale. The asymmetric bioreduction conditions were systematically optimized using L. paracasei BD101, which demonstrated excellent enantioselectivity and high level of conversion for the bioreduction reaction. (S)-phenyl(pyridin-2-yl)methanol, which is an analgesic, was produced enantiomerically pure form in the first time on gram scale using a biocatalyst. In total, 5.857?g of (S)-phenyl(pyridin-2-yl)methanol in enantiomerically pure form (>99% enantiomeric excess) was obtained in 52?h with 93% yield using whole cells of L. paracasei BD101. Enantiomerically pure (S)-phenyl (pyridin-2-yl)methanol, which is an analgesic, was first produced in the gram scale using a biocatalyst with excellent ee (>99%) and yield (93%).  相似文献   

17.
Cunninghamella blakesleeana DSM 1906 was found to be an efficient biocatalyst for the biotransformation of cycloalkylcarboxylic acids into hydroxy and oxo derivatives. When cultivated in submerged culture, the fungus grew in pellets. In comparison with malt extract-glucose-peptone-yeast extract medium (medium E), Czapek-Dox medium was found to reduce pellet size. Cycloalkylcarboxylic acids were protected against microbial degradation by chemical transformation into 2-cycloalkyl-1,3-benzoxazoles. The transformations of protected cyclopentyl-, cyclohexyl-, cycloheptyl-, and cyclooctylcarboxylic acids by C. blakesleeana were investigated. The biotransformations were performed in medium E by using an aerated, stirred-tank bioreactor. The transformation of 2-cyclopentyl-1,3-benzoxazole yielded (1S,3S)-3-(benz-1,3-oxazol-2-yl)cyclopentan-1-ol as the main product. The main by-product was (1R)-3-(benz-1,3-oxazol-2-yl)cyclopentan-1-one, and 2-(benz-1,3-oxazol-2-yl)cyclopentan-1-ol was also obtained in small amounts. During the experiment, the enantiomeric excess of the main product increased up to 64%. 2-Cyclohexyl-1,3-benzoxazole was hydroxylated to 4-(benz-1,3-oxazol-2-yl)cyclohexan-1-ol. 2-Cycloheptyl-1,3-benzoxazole and 2-cyclooctyl-1,3-benzoxazole were transformed into several alcohols and ketones, all in low yields (2 to 19%).  相似文献   

18.
Growing cells of the phytopathogen fungus Lasiodiplodia theobromae in potato dextrose broth have shown their potential for the stereoselective bioreduction of different prochiral aromatic and aliphatic ketones. Optically active alcohols were obtained under mild reaction conditions in high conversions (up to 90%) and moderate to excellent enantioselectivity (35–≥99% ee) depending on the ketone structure. Prelog alcohols were isolated, except in the bioreduction of cyclohexylmethylketone and octan-2-one where anti-Prelog alcohols were obtained.  相似文献   

19.
The biological control activity of Pythium oligandrum against black scurf of potato caused by Rhizoctonia solani AG-3 was evaluated in field experiments after treatment of potato seed tubers with P. oligandrum. Seed tubers infected with black scurf sclerotia were dipped for a few seconds in a suspension of 103, 104 or 105 mL?1 P. oligandrum oospores and were then air-dried. Each level of P. oligandrum-treatment significantly reduced the disease rates of stolon at a level similar to that achieved by chemical control. When P. oligandrum populations adherent to the surface of seed tubers were determined, oospore counts on tubers treated with 104 or 105 oospores mL?1 were about 540/cm2 or about 22,000/cm2 just after dipping and decreased to about 170/cm2 or 2900/cm2 after a 3-week incubation, respectively. Confocal laser scanning microscopic observation with an immuno-enzymatic staining procedure showed that P. oligandrum hyphae had colonized the sclerotia and established close contact by coiling around the R. solani hyphae present on the surface of seed tubers, in a manner similar to that observed in the dual-culture test. Quantification of R. solani DNA by PCR indicated that the R. solani population was reduced on the seed tubers treated with P. oligandrum compared to untreated tubers. Furthermore, the ability of P. oligandrum to induce resistance against black scurf was determined using a potato tuber disk assay. Treatment of tuber disks with the cell wall protein fraction of P. oligandrum enhanced the expression of defense-related genes such as 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, lipoxygenase and basic PR-6 genes, and reduced disease severity upon challenge with R. solani compared with untreated controls. These results suggest that biocontrol mechanisms employed by P. oligandrum against black scurf involve both mycoparasitism and induced resistance.  相似文献   

20.
A new bacterial strain, E105, has been introduced as a biocatalyst for the enantioselective hydrolysis of ethyl (R,S)-2-(2-oxopyrrolidin-1-yl) butyrate, (R,S)-1, to (S)-2-(2-oxopyrrolidin-1-yl) butyric acid, (S)-2. This strain was isolated from 60 soil samples using (R,S)-1 as the sole carbon source. The isolate was identified as Tsukamurella tyrosinosolvens E105, based on its morphological characteristics, physiological tests, and 16S rDNA sequence analysis. The process of cell growth and hydrolase production for this strain was then investigated. The hydrolase activity reached its maximum after cultivation at 200?rpm and 30?°C for 36?h. Furthermore, the performance of the enantioselective hydrolysis of (R,S)-1 was studied. The optimal reaction temperature, initial pH, substrate concentration, and concentration of suspended cells were 30?°C, 6.8, 10 and 30?g/l (DCW), respectively. Under these conditions, a high conversion (>45?%) of the product (S)-2 with an excellent enantiomeric excess (ee) (>99?%), and a satisfied enantiomeric ratio (E) (>600) as well were obtained. This study showed that the bacterial isolate T. tyrosinosolvens E105 displayed a high enantioselectivity towards the hydrolysis of racemic ethyl 2-(2-oxopyrrolidin-1-yl) butyrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号