首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we report the synthesis of new PNA monomers for pseudocomplementary PNA (pcPNA) that are fully compatible with standard Fmoc chemistry. The thiocarbonyl group of the 2-thiouracil (sU) monomer was protected with the 4-methoxy-2-methybenzyl group (MMPM), while the exocyclic amino groups of diaminopurine (D) were protected with Boc groups. The newly synthesized monomers were incorporated into a 10-mer PNA oligomer using standard Fmoc chemistry for solid-phase synthesis. Oligomerization proceeded smoothly and the HPLC and MALDI-TOF MS analyses indicated that there was no remaining MMPM on the sU nucleobase. The new PNA monomers reported here would facilitate a wide range of applications, such as antigene PNAs and DNA nanotechnologies.  相似文献   

2.
Abstract

The synthesis of a DNA-PHONA-PNA chimeric molecule using the Mmt protection strategy is described. The chimeric oligomer shows duplex binding properties that are comparable to PNA. Obviously, PHONA building blocks can be incorporated into PNAs without distortion of the PNA structure

  相似文献   

3.
There are many examples of bioactive, disulfide‐rich peptides and proteins whose biological activity relies on proper disulfide connectivity. Regioselective disulfide bond formation is a strategy for the synthesis of these bioactive peptides, but many of these methods suffer from a lack of orthogonality between pairs of protected cysteine (Cys) residues, efficiency, and high yields. Here, we show the utilization of 2,2′‐dipyridyl diselenide (PySeSePy) as a chemical tool for the removal of Cys‐protecting groups and regioselective formation of disulfide bonds in peptides. We found that peptides containing either Cys(Mob) or Cys(Acm) groups treated with PySeSePy in trifluoroacetic acid (TFA) (with or without triisopropylsilane (TIS) were converted to Cys‐S–SePy adducts at 37 °C and various incubation times. This novel Cys‐S–SePy adduct is able to be chemoselectively reduced by five‐fold excess ascorbate at pH 4.5, a condition that should spare already installed peptide disulfide bonds from reduction. This chemoselective reduction by ascorbate will undoubtedly find utility in numerous biotechnological applications. We applied our new chemistry to the iodine‐free synthesis of the human intestinal hormone guanylin, which contains two disulfide bonds. While we originally envisioned using ascorbate to chemoselectively reduce one of the formed Cys‐S–SePy adducts to catalyze disulfide bond formation, we found that when pairs of Cys(Acm) residues were treated with PySeSePy in TFA, the second disulfide bond formed spontaneously. Spontaneous formation of the second disulfide is most likely driven by the formation of the thermodynamically favored diselenide (PySeSePy) from the two Cys‐S–SePy adducts. Thus, we have developed a one‐pot method for concomitant deprotection and disulfide bond formation of Cys(Acm) pairs in the presence of an existing disulfide bond.  相似文献   

4.
In continuing our research efforts for developing new oligodeoxynucleotide (ODN)-like drugs and diagnostics, we designed diaminobutyric peptide nucleic acids (dabPNAs), nucleopeptides characterized by a diaminobutyric-based building block that is an isomer of the aminoethylglycyl PNA (aegPNA) unit and the acyclic modification of the aminoprolyl PNA (ampPNA) monomer. In this work we present the solid phase synthesis of a dabPNA oligomer and of two aegPNAs containing a single dabPNA unit. A study relative to their binding ability towards DNA is also reported even in comparison with the well known aegPNAs.  相似文献   

5.
Abstract

The synthesis of N-((2-amino-6-benzylthiopurine-9-yl)acetyl)-N-(2-tBoc-aminoethyl)glycine 4 and its incorporation into a peptide nucleic acid (PNA) oligomer are described. Introduction of a single 6-thioguanine residue (6sG) in the PNA of a 10-mer PNA:DNA heteroduplex resulted in a decrease in Tm of 8.5°C. Furthermore, we observed a hypochromic and a bathochromic shift of 6 nm above 346 nm when the 6sG containing PNA was hybridized to its complementary DNA strand.  相似文献   

6.
The preparation of a novel phosphoramidite monomer based on thyminyl acetic acid coupled to the secondary nitrogen of 2-(2-amino-ethylamino)ethanol is described. This monomer can be used to attach a deoxynucleotide to the carboxy terminus of a PNA oligomer by solid-phase synthesis. The resulting PNA primer is recognized as a substrate by various DNA polymerases.  相似文献   

7.
The membrane fusion function of murine leukemia virus (MLV) is carried by the Env protein. This protein is composed of three SU-TM subunit complexes. The fusion activity is loaded into the transmembrane TM subunit and controlled by the peripheral, receptor-binding SU subunit. It is assumed that TM adopts a metastable conformation in the native Env and that fusion activation involves the folding of TM into a stable form. Activation is suppressed by the associated SU and triggered by its dissociation, which follows receptor binding. Recently we showed that the two subunits are disulfide linked and that SU dissociation and triggering of the fusion function are caused by a switch of the intersubunit disulfide into an intrasubunit disulfide isomer using an isomerization-active CWLC motif in SU (M. Wallin, M. Ekstrom, and H. Garoff, EMBO J. 23:54-65, 2004). In the present work we address how the SU disulfide isomerase is activated. Using Moloney MLV, we show that isomerization of the SU-TM disulfide bond can be triggered by heat, urea, or guanidinium hydrochloride. Such protein perturbation treatments also significantly increase the kinetics and efficiency of viral fusion. The threshold conditions for the effects on isomerization and fusion are virtually the same. This finding indicates that destabilization of interactions in the SU oligomer induces the disulfide bond isomerase and the subsequent activation of the fusion function in TM.  相似文献   

8.
The synthesis of a diaminopurine PNA monomer, N-[N6-(benzyloxycarbonyl)-2,6-diaminopurine-9-yl] acetyl-N-(2-t-butyloxycarbonylaminoethyl)glycine, and the incorporation of this monomer into PNA oligomers are described. Substitution of adenine by diaminopurine in PNA oligomers increased the T m of duplexes formed with complementary DNA, RNA or PNA by 2.5-6.5 degrees C per diaminopurine. Furthermore, discrimination against mismatches facing the diaminopurine in the hybridizing oligomer is improved. Finally, a homopurine decamer PNA containing six diaminopurines is shown to form a (gel shift) stable strand displacement complex with a target in a 246 bp double-stranded DNA fragment.  相似文献   

9.
Peptide nucleic acids (PNAs) are uncharged analogs of DNA and RNA in which the ribose-phosphate backbone is substituted by a backbone held together by amide bonds. PNAs are interesting as models of alternative genetic systems because they form potentially informational base paired helical structures. A PNA C10 oligomer has been shown to act as template for efficient formation of oligoguanylates from activated guanosine ribonucleotides. In a previous paper we used heterosequences of DNA as templates in sequence-dependent polymerization of PNA dimers. In this paper we show that information can be transferred from PNA to RNA. We describe the reactions of activated mononucleotides on heterosequences of PNA. Adenylic, cytidylic and guanylic acids were incorporated into the products opposite their complement on PNA, although less efficiently than on DNA templates.  相似文献   

10.
Disulfide cross-linking is being used increasingly more to study the structure and dynamics of nucleic acids. We have previously developed a procedure for the formation of disulfide cross-links through the sugar-phosphate backbone of nucleic acids. Here we report the preparation and characterization of an RNA duplex containing a disulfide interstrand cross-link. A self-complementary oligoribonucleotide duplex containing an interstrand cross-link was prepared from the corresponding 2'-amino modified oligomer. Selective modification of the 2'-amino group with an aliphatic isocyanate, containing a protected disulfide, gave the corresponding 2'-urea derivative in excellent yield. An RNA duplex containing an intrahelical, interstrand disulfide cross-link was subsequently prepared by a thiol disulfide exchange reaction in nearly quantitative yield as judged by denaturing polyacrylamide gel electrophoresis (DPAGE). The cross-linked RNA was further characterized by enzymatic digestion and the Structure of the cross-link lesion was verified by comparison to an authentic sample, prepared by chemical synthesis. The effect of the chemical modifications on duplex stability was determined by UV thermal denaturation experiments. The intrahelical cross-link stabilized the duplex considerably: the disulfide cross-linked oligomer had a melting temperature that was ca. 40 degrees C higher than that of the noncross-linked oligomer.  相似文献   

11.
With the aim of developing a general and straightforward procedure for the intracellular delivery of naked peptide nucleic acids (PNAs), we designed an intracellularly biodegradable triphenylphosphonium (TPP) cation based transporter system. In this system, TPP is linked, via a biolabile disulfide bridge, to an activated mercaptoethoxycarbonyl moiety, allowing its direct coupling to the N-terminal extremity of a free PNA through a carbamate bond. We found that such TPP-PNA-carbamate conjugates were highly stable in a cell culture medium containing fetal calf serum. In a glutathione-containing medium mimicking the cytosol, the conjugates were rapidly degraded into an unstable intermediate, which spontaneously decomposed, releasing the free PNA. Using a fluorescence-labeled PNA-TPP conjugate, we demonstrated that conjugates were taken up by cells. Efficient cellular uptake and release of the PNA into the cytosol was further confirmed by the anti-HIV activity measured for the TPP-conjugate of a 16-mer PNA targeting the TAR region of the HIV-1 genome. This conjugate exhibited an IC(50) value of 1 microM, while the free 16-mer PNA did not inhibit replication of HIV in the same cellular test.  相似文献   

12.
Bispeptide nucleic acids (bis-PNAs; PNA clamps), PNA oligomers, and DNA oligonucleotides were evaluated as affinity purification reagents for subfemtomolar 16S ribosomal DNA (rDNA) and rRNA targets in soil, sediment, and industrial air filter nucleic acid extracts. Under low-salt hybridization conditions (10 mM NaPO(4), 5 mM disodium EDTA, and 0.025% sodium dodecyl sulfate [SDS]) a PNA clamp recovered significantly more target DNA than either PNA or DNA oligomers. The efficacy of PNA clamps and oligomers was generally enhanced in the presence of excess nontarget DNA and in a low-salt extraction-hybridization buffer. Under high-salt conditions (200 mM NaPO(4), 100 mM disodium EDTA, and 0.5% SDS), however, capture efficiencies with the DNA oligomer were significantly greater than with the PNA clamp and PNA oligomer. Recovery and detection efficiencies for target DNA concentrations of > or =100 pg were generally >20% but depended upon the specific probe, solution background, and salt condition. The DNA probe had a lower absolute detection limit of 100 fg of target (830 zM [1 zM = 10(-21) M]) in high-salt buffer. In the absence of exogenous DNA (e.g., soil background), neither the bis-PNA nor the PNA oligomer achieved the same absolute detection limit even under a more favorable low-salt hybridization condition. In the presence of a soil background, however, both PNA probes provided more sensitive absolute purification and detection (830 zM) than the DNA oligomer. In varied environmental samples, the rank order for capture probe performance in high-salt buffer was DNA > PNA > clamp. Recovery of 16S rRNA from environmental samples mirrored quantitative results for DNA target recovery, with the DNA oligomer generating more positive results than either the bis-PNA or PNA oligomer, but PNA probes provided a greater incidence of detection from environmental samples that also contained a higher concentration of nontarget DNA and RNA. Significant interactions between probe type and environmental sample indicate that the most efficacious capture system depends upon the particular sample type (and background nucleic acid concentration), target (DNA or RNA), and detection objective.  相似文献   

13.
We have compared the efficacy of different transfection protocols reported for peptide nucleic acid (PNA) oligomers. A precise evaluation of uptake efficacy was achieved by using a positive readout assay based on the ability of a PNA oligomer to correct aberrant splicing of a recombinant luciferase gene. The study comprised transfection of PNA conjugated to acridine, adamantyl, decanoic acid, and porphyrine (acr-PNA, ada-PNA, deca-PNA, and por-RNA, respectively) and unmodified PNA partially hybridized to a DNA oligomer (PNA/DNA cotransfection). Furthermore, the effect of conjugation to a nuclear localization signal (NLS) was evaluated as part of the PNA/DNA cotransfection protocol. Transfection of the tested PNAs was systematically optimized. PNA/DNA cotransfection was found to produce the highest luciferase activity, but only after careful selection of the DNA oligonucleotide. Both a cationic lipid, Lipofectamine, and a nonliposomal cationic polymer, polyethylenimine (PEI, ExGen 500), were efficient transfection reagents for the PNA/DNA complex. However, Lipofectamine, in contrast to PEI, showed severe side effects, such as cytotoxicity. acr-PNA, ada-PNA, and por-PNA were transfectable with efficacies between 5 and 10 times lower than that seen with PNA/DNA cotransfection. Conjugation of PNA to NLS had no effect on PNA/DNA cotransfection efficacy. An important lesson from the study was the finding that because of uncontrollable biologic variations, even optimal transfection conditions differed to a certain extend from experiment to experiment in an unpredictable way.  相似文献   

14.
The preparation of t-butoxycarbonyl (Boc)-protected O(4)-(o-nitrophenyl) thymine peptide nucleic acid (PNA) monomer is described. This PNA monomer was incorporated into PNA oligomer sequences. The post-synthetic modification of the oligomers to yield fluorescently-labelled PNA oligomers was studied before and after the removal of the protecting groups. In both cases, the desired fluorescently-labelled PNA oligomer was obtained in good yields.  相似文献   

15.
Peptide nucleic acids (PNA) were synthesized by a modified Merrifield method using several improvements. Activation by O-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate in combination with in situ neutralization of the resin allowed efficient coupling of all four Boc-protected PNA monomers within 30 min. HPLC analysis of the crude product obtained from a fully automated synthesis of the model PNA oligomer H-CGGACTAAGTCCATTGC-Gly-NH2, indicated an average yield per synthetic cycle of 97.1%. N1-benzyloxycarbonyl-N63-methylimidazole triflate substantially outperformed acetic anhydride as a capping reagent. The resin-bound PNAs were successfully cleaved by the ‘low–high’ trifluoromethanesulphonic acid procedure.  相似文献   

16.
La1 is a 73‐residue cysteine‐rich peptide isolated from the scorpion Liocheles australasiae venom. Although La1 is the most abundant peptide in the venom, its biological function remains unknown. Here, we describe a method for efficient chemical synthesis of La1 using the native chemical ligation (NCL) strategy, in which three peptide components of less than 40 residues were sequentially ligated. The peptide thioester necessary for NCL was synthesized using an aromatic N‐acylurea approach with Fmoc‐SPPS. After completion of sequential NCL, disulfide bond formation was carried out using a dialysis method, in which the linear peptide dissolved in an acidic solution was dialyzed against a slightly alkaline buffer to obtain correctly folded La1. Next, we determined the disulfide bonding pattern of La1. Enzymatic and chemical digests of La1 without reduction of disulfide bonds were analyzed by liquid chromatography/mass spectrometry (LC/MS), which revealed two of four disulfide bond linkages. The remaining two linkages were assigned based on MS/MS analysis of a peptide fragment containing two disulfide bonds. Consequently, the disulfide bonding pattern of La1 was found to be similar to that of a von Willebrand factor type C (VWC) domain. To our knowledge, this is the first report of the experimental determination of the disulfide bonding pattern of peptides having a single VWC domain as well as their chemical synthesis. La1 synthesized in this study will be useful for investigation of its biological role in the venom. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Peptide nucleic acids (PNAs) are analogs of nucleic acids in which the ribose-phosphate backbone is replaced by a backbone held together by amide bonds. PNAs are interesting as models of alternative genetic systems because they form potentially informational base paired helical structures. Oligocytidylates have been shown to act as templates for formation of longer oligomers of G from PNA G2 dimers. In this paper we show that information can be transferred from DNA to PNA. DNA C4T2C4 is an efficient template for synthesis of PNA G4A2G4 using G2 and A2 units as substrates. The corresponding synthesis of PNA G4C2G4 on DNA C4G2C4 is less efficient. Incorporation of PNA T2 into PNA products on DNA C4A2C4 is the least efficient of the three reactions. These results, obtained using PNA dimers as substrates, parallel those obtained using monomeric activated nucleotides.  相似文献   

18.
Bispeptide nucleic acids (bis-PNAs; PNA clamps), PNA oligomers, and DNA oligonucleotides were evaluated as affinity purification reagents for subfemtomolar 16S ribosomal DNA (rDNA) and rRNA targets in soil, sediment, and industrial air filter nucleic acid extracts. Under low-salt hybridization conditions (10 mM NaPO4, 5 mM disodium EDTA, and 0.025% sodium dodecyl sulfate [SDS]) a PNA clamp recovered significantly more target DNA than either PNA or DNA oligomers. The efficacy of PNA clamps and oligomers was generally enhanced in the presence of excess nontarget DNA and in a low-salt extraction-hybridization buffer. Under high-salt conditions (200 mM NaPO4, 100 mM disodium EDTA, and 0.5% SDS), however, capture efficiencies with the DNA oligomer were significantly greater than with the PNA clamp and PNA oligomer. Recovery and detection efficiencies for target DNA concentrations of ≥100 pg were generally >20% but depended upon the specific probe, solution background, and salt condition. The DNA probe had a lower absolute detection limit of 100 fg of target (830 zM [1 zM = 10−21 M]) in high-salt buffer. In the absence of exogenous DNA (e.g., soil background), neither the bis-PNA nor the PNA oligomer achieved the same absolute detection limit even under a more favorable low-salt hybridization condition. In the presence of a soil background, however, both PNA probes provided more sensitive absolute purification and detection (830 zM) than the DNA oligomer. In varied environmental samples, the rank order for capture probe performance in high-salt buffer was DNA > PNA > clamp. Recovery of 16S rRNA from environmental samples mirrored quantitative results for DNA target recovery, with the DNA oligomer generating more positive results than either the bis-PNA or PNA oligomer, but PNA probes provided a greater incidence of detection from environmental samples that also contained a higher concentration of nontarget DNA and RNA. Significant interactions between probe type and environmental sample indicate that the most efficacious capture system depends upon the particular sample type (and background nucleic acid concentration), target (DNA or RNA), and detection objective.  相似文献   

19.
S Matysiak  F Reuthner  J D Hoheisel 《BioTechniques》2001,31(4):896, 898, 900-896, 892, 904
A system was establishedfor the parallel synthesis of peptide library arrays in afully automated manner Synthesis takes place in blocks made of polyoxymethylene that hold during all synthesis steps a polypropylene membrane of 8 x 12 cm. Yields are in the nanomole range, obtained at a low consumption of reagents. The current setup is based on a commercially available pipetting robot and supports the generation of 1536 different oligomers/run. Much higher array densities are possible because the membranes are amicable to spot diameters of down to 200 microm, naturally at a cost of the absolute amount produced of each oligomer The method was put to use for the creation of arrayed libraries of peptide nucleic acids (PNAs). These can be employed both as a source of PNA molecules applied individually in experimentation subsequent to their release or as intact oligomer arrays in hybridization analyses.  相似文献   

20.
The disulfide bonds of the Na(+)/glucose cotransporter (SGLT1) are believed to participate in the binding of the transport inhibitor phlorizin. Here, we investigated the role of the [560-608] disulfide bond on the phlorizin-binding function of the C-terminal loop 13 of SGLT1 using 3-iodoacetamidophlorizin (3-IAP) as a probe. The reactivity of 3-IAP to the fully reduced loop 13 was competitively inhibited by phlorizin, as evident from the MALDI mass spectra. It indicates that the disulfide bond is not mandatory for phlorizin binding. CD and equilibrium unfolding studies showed that the secondary structure and conformation stability of loop 13 were not affected by removing the disulfide bond. Furthermore, we generated a series of loop 13 mutants to assess the contribution of the disulfide bond to phlorizin binding. A positive correlation between the stability and phlorizin affinity of the mutant proteins was observed, implying that the protein stability, rather than the disulfide bond, is relevant to the phlorizin-binding function of loop 13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号