首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are constitutively overexpressed in many types of cancer cells and exert important immunosuppressive functions. In this article, a series of 4,6-substituted-1H-indazole derivatives were synthesized and evaluated the inhibitory activities against IDO1 and TDO, as well as their structure-activity relationships (SARs). Among these, compound 35 displayed the most IDO1 inhibitory potency with an IC50 value of 0.74?μM in an enzymatic assay and 1.37?μM in HeLa cells. Quantitative analysis of the Western blot results indicated that 35 significantly decreased the INFγ-induced IDO1 expression in a concentration-dependent manner. In addition, 35 showed promising TDO inhibition with an IC50 value of 2.93?μM in the enzymatic assay and 7.54?μM in A172 cells. Moreover, compound 35 exhibited in vivo antitumor activity in the CT26 xenograft model. These findings suggest that 1H-indazole derivative 35 is a potent IDO1/TDO dual inhibitor, and has the potential to be developed for IDO1/TDO-related cancer treatment.  相似文献   

2.
DNMT and HDAC are closely related to each other and involved in various human diseases especially cancer. These two enzymes have been widely recognized as antitumor targets for drug discovery. Besides, research has indicated that combination therapy consisting of DNMT and HDAC inhibitors exhibited therapeutic advantages. We have reported a DNMT and HDAC dual inhibitor 15a of which the DNMT enzymatic inhibitory potency needs to be improved. Herein we reported the development of a novel dual DNMT and HDAC inhibitor C02S which showed potent enzymatic inhibitory activities against DNMT1, DNMT3A, DNMT3B and HDAC1 with IC50 values of 2.05, 0.93, 1.32, and 4.16 µM, respectively. Further evaluations indicated that C02S could inhibit DNMT and HDAC at cellular levels, thereby inversing mutated methylation and acetylation and increasing expression of tumor suppressor proteins. Moreover, C02S regulated multiple biological processes including inducing apoptosis and G0/G1 cell cycle arrest, inhibiting angiogenesis, blocking migration and invasion, and finally suppressing tumor cells proliferation in vitro and tumor growth in vivo.  相似文献   

3.
Tumor immune escape mechanisms are being regarded as suitable targets for tumor therapy. Among these, tryptophan catabolism plays a central role in creating an immunosuppressive environment, leading to tolerance to potentially immunogenic tumor antigens. Tryptophan catabolism is initiated by either indoleamine 2,3-dioxygenase (IDO-1/-2) or tryptophan 2,3-dioxygenase 2 (TDO2), resulting in biostatic tryptophan starvation and l-kynurenine production, which participates in shaping the dynamic relationship of the host’s immune system with tumor cells. Current immunotherapy strategies include blockade of IDO-1/-2 or TDO2, to restore efficient antitumor responses. Patients who might benefit from this approach are currently identified based on expression analyses of IDO-1/-2 or TDO2 in tumor tissue and/or enzymatic activity assessed by kynurenine/tryptophan ratios in the serum. We developed a monoclonal antibody targeting l-kynurenine as an in situ biomarker of IDO-1/-2 or TDO2 activity. Using Tissue Micro Array technology and immunostaining, colorectal and breast cancer patients were phenotyped based on l-kynurenine production. In colorectal cancer l-kynurenine was not unequivocally associated with IDO-1 expression, suggesting that the mere expression of tryptophan catabolic enzymes is not sufficiently informative for optimal immunotherapy.  相似文献   

4.
A series of isosteric surrogates of the 4-phenyl group in luminespib were investigated as new scaffolds of the Hsp90 inhibitor for the discovery of novel antitumor agents. Among the synthesized surrogates of isoxazole and pyrazole, compounds 4a, 5e and 12b exhibited potent Hsp90 inhibition in ATPase activity and Her2 degradation assays and significant antitumor activity in A2780 and HCT116 cell lines. Animal studies indicated that compared to luminespib, their activities were superior in A2780 or NCI-H1975 tumor xenograft models. A molecular modeling study demonstrated that compound 4a could fit nicely into the N-terminal ATP binding pocket.  相似文献   

5.
Gemcitabine (GEM) is widely used in clinical practice in the treatment of cancer and several other solid tumors. Nevertheless, the antitumor effect of GEM is partially prevented by some limitations including short half life, and lack of tumor localizing. Carboxymethyl glucan (CMG), a carboxymethylated derivative of β-(1-3)-glucan, shows biocompatibility and biodegradability as well as a potential anticarcinogenic effect. To enhance the antiproliferative activity of GEM, four water soluble conjugates of GEM bound to CMG via diverse amino acid linkers were designed and synthesized. 1H NMR, FT IR, elementary analysis and RP-HPLC chromatography were employed to verify the correct achievement of the conjugates. In vitro release study indicated that conjugates presented slower release in physiological buffer (pH 7.4) than acidic buffer (pH 5.5) mimicking the acidic tumor microenvironment. Moreover, A549, HeLa and Caco-2 cancer cell lines were used to evaluate the in vitro cytotoxicity of conjugates and the results showed that binding GEM to CMG significantly enhanced antiproliferative activity of GEM on A549 cells. Therefore, these conjugates may be potentially useful as a delivery vehicle in cancer therapy and worthy of further study on structure-activity relationship and antiproliferative activity in vitro and in vivo, especially for lung tumor.  相似文献   

6.
Aurora kinases are known to be overexpressed in various solid tumors and implicated in oncogenesis and tumor progression. A series of nicotinamide derivatives were synthesized and their biological activities were evaluated, including kinase inhibitory activity against Aur A and Aur B and in vitro antitumor activity against SW620, HT-29, NCI-H1975 and Hela cancer cell lines. In addition, the study of antiproliferation, cytotoxicity and apoptosis was performed meanwhile. As the most potent inhibitor of Aur A, 4-((3-bromo-4-fluorophenyl)amino)-6-chloro-N-(4-((6,7-dimethoxyquinolin-4-yl)oxy)-3-fluorophenyl)nicotinamide (10l) showed excellent antitumor activity against SW620 and NCI-H1975 with IC50 values were 0.61 and 1.06 μM, while the IC50 values of reference compound were 3.37 and 6.67 μM, respectively. Furthermore, binding mode studies indicated that compound 10l forms better interaction with Aur A.  相似文献   

7.
Two-deoxy-D-glucose (2-DG), an inhibitor of glycolysis differentially enhances the radiation and chemotherapeutic drug induced cell death in cancer cells in vitro, while the local tumor control (tumor regression) following systemic administration of 2-DG and focal irradiation of the tumor results in both complete (cure) and partial response in a fraction of the tumor bearing mice. In the present studies, we investigated the effects of systemically administered 2-DG and focal irradiation of the tumor on the immune system in Ehrlich ascites tumor (EAT) bearing Strain “A” mice. Markers of different immune cells were analyzed by immune-flow cytometry and secretary cytokines by ELISA, besides monitoring tumor growth. Increase in the expression of innate (NK and monocytes) and adaptive CD4+cells, and a decrease in B cells (CD19) have been observed after the combined treatment, suggestive of activation of anti-tumor immune response. Interestingly, immature dendritic cells were found to be down regulated, while their functional markers CD86 and MHC II were up regulated in the remaining dendritic cells following the combination treatment. Similarly, decrease in the CD4+ naïve cells with concomitant increase in activated CD4+ cells corroborated the immune activation. Further, a shift from Th2 and Th17 to Th1 besides a decrease in inflammatory cytokines was also observed in the animals showing complete response (cure; tumor free survival). This shift was also complimented by respective antibody class switching followed by the combined treatment. The immune activation or alteration in the homeostasis favoring antitumor immune response may be due to depletion in T regulatory cells (CD4+CD25+FoxP3+). Altogether, these results suggest that early differential immune activation is responsible for the heterogenous response to the combined treatment. Taken together, these studies for the first time provided insight into the additional mechanisms underlying radio-sensitization by 2-DG in vivo by unraveling its potential as an immune-modulator besides direct effects on the tumor.  相似文献   

8.
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are promising drug development targets due to their implications in pathologies such as cancer and neurodegenerative diseases. The search for IDO1 inhibitor has been intensely pursued but there is a paucity of potent TDO and IDO1/TDO dual inhibitors. Natural product tryptanthrin has been confirmed to bear IDO1 and/or TDO inhibitory activities. Herein, twelve novel tryptanthrin derivatives were synthesized and evaluated for the IDO1 and TDO inhibitory potency. All of the compounds were found to be IDO1/TDO dual inhibitors, in particular, compound 9a and 9b bore IDO1 inhibitory activity similar to that of INCB024360, and compound 5a and 9b had remarkable TDO inhibitory activity superior to that of the well-known TDO inhibitor LM10. This work enriches the collection of IDO1/TDO dual inhibitors and provides chemical molecules for potential development into drugs.  相似文献   

9.
A series of new conjugates of quinazolino linked 4β-amidopodophyllotoxins 10aaaf and 10babf were synthesized and evaluated for their anticancer activity against human pancreatic carcinoma (Panc-1) as well as breast cancer cell lines such as MCF-7 and MDA-MB-231 by employing MTT assay. Among these conjugates, some of them like 10bc, 10bd, 10be and 10bf exhibited high potency of cytotoxicity. Flow cytometric analysis showed that these conjugates arrested the cell cycle in the G2/M phase and caused the increase in expression of p53 and cyclin B1 protein with concomitant decrease in Cdk1 thereby suggesting the inhibitory action of these conjugates on mitosis. Interestingly, we observed a decrease in expression of proteins that control the tumor micro environment such as VEGF-A, STAT-3, ERK1/2, ERK-p, AKT-1 ser 473 phosphorylation in compounds treated breast cancer cells. Further, these effective conjugates have exhibited inhibitory action on integrin (αVβIII). Furthermore, the MCF-7 cells that were arrested and lost the proliferative capacity undergo mitochondrial mediated apoptosis by activation of caspases-9. Thus these conjugates have the potential to control breast cancer cell growth by effecting tumor angiogenesis and invasion.  相似文献   

10.
INTRODUCTION: The tumor cells could escape from the immune elimination through the immunoediting mechanisms including the generation of immunosuppressive or immunoregulative cells. By contrast, allograft transplantation could activate the immune system and induce a strong allogenic response. The aim of this study was to investigate the efficacy of allogenic skin transplantation in the inhibition of tumor growth through the activation of allogenic immune response. METHODS: Full-thickness skin transplantation was performed from C57BL/6 (H-2b) donors to BALB/c (H-2d) recipients that were receiving subcutaneous injection of isogenic CT26 colon cancer cells (2?×?106 cells) at the same time. The tumor size and pathological changes, cell populations and cytokine profiles were evaluated at day 14 post-transplantation. RESULTS: The results showed that as compared to non-transplant group, the allogenic immune response in the skin-grafting group inhibited the growth of tumors, which was significantly associated with increased numbers of intra-tumor infiltrating lymphocytes, increased populations of CD11c+MHC-classII+CD86+ DCs, CD3+CD4+ T cells, CD3+CD8+ T cells, and CD19+ B cells, as well as decreased percentage of CD4+CD25+Foxp3+ T cells in the spleens. In addition, the levels of serum IgM and IgG, tumor necrosis factor (TNF)-α and interferon (IFN)-γ were significantly higher within the tumor in skin transplant groups than that in non-transplant group. CONCLUSIONS: Allogenic skin transplantation suppresses the tumor growth through activating the allogenic immune response, and it may provide a new immunotherapy option for the clinical refractory tumor treatment.  相似文献   

11.
Enhancer of zeste homolog 2 (EZH2) serves as the catalytic subunit of the polycomb repression complex 2 (PRC2), which is implicated in cancer progression metastasis and poor prognosis. Based on our EZH2 inhibitor SKLB1049 with low nanomolar activity, we extended the “tail” region to get a series of (E)-1,2-diphenylethene derivatives as novel EZH2 inhibitors. SAR exploration and preliminary assessment led to the discovery of the potent novel EZH2 inhibitor 9b (EZH2WT IC50 = 22.0 nM). Compound 9b inhibited the proliferation of WSU-DLCL2 and SU-DHL-4 cell lines (IC50 = 1.61 µM and 2.34 µM, respectively). The biological evaluation showed that 9b was a potent inhibitor for wild-type EZH2 and greatly reduced the overall levels of H3K27me3 in a concentration-dependent manner. Further study indicated that 9b could significantly induce apoptosis of SU-DHL-4 cells. These findings indicated that 9b would be an attractive lead compound for further optimization and evaluation.  相似文献   

12.
New series of furan–thiazole hybrids (3a-f), thiazolo[2,3-c]-1,2,4-triazines (4a-f), their bioisosteres 1,3,4-thiadiazolo[2,3-c]-1,2,4-triazines (8a-d) and 1,2,4-triazino[4,3-b]-1,2,4-triazines (13a-e) were designed, synthesized and evaluated for their in vitro antitumor activities at the National Cancer Institute (NCI, USA). Among the synthesized compounds, 3d was found to exhibit promising broad spectrum antitumor activity (GI50 MG-MID = 14.22 µM) in a five-dose assay against the full panel NCI-cancer cell lines. 3d displayed higher antitumor activity against most tested cancer cell lines than 5-FU as reference. COMPARE analysis and molecular electrostatic potential computational study revealed that 3d probably exerts its antitumor properties through DNA binding similar to Clomesone. Further DNA binding studies using fluorescent terbium (Tb+3) probe revealed increased fluroresence of DNA-3d-Tb+3 mixture due to damage of the double-stranded DNA. Also, UV–vis absorption study was conducted which showed hyperchromic shift in DNA absorption confirming 3d-induced DNA damage. The assessed potency of 3d-induced DNA damage of calf thymus DNA showed a concentration as low as 2.04 ng/mL for a detectable DNA damage. Moreover, in silico calculation of physicochemical properties and druglikeness were in compliance to Lipinski’s rule.  相似文献   

13.
The our previous study synthesized the chrysin-chromene-spirooxindole hybrids 3, and further found compound 3e had good antitumor activity against A549 cells in vitro through multi-target co-regulation of the p53 signalling pathway to inhibit the proliferation of A549 cells. This study was designed to evaluate the antitumor effects of compound 3e on Lewis lung carcinoma of C57BL/6 mice in vivo. Compound 3e significantly inhibited the growth of transplanted tumors in C57BL/6 mice and induced the apoptosis of tumor cells. Further studies showed that compound 3e activates and expands the anti-cancer activity of p53 by inhibiting the expression of MDM2, Akt and 5-Lox proteins, accordingly promotes the expressions Bax and inhibit the Bcl-2 protein, the release of Cyt c as well, which resulted in the activation of apoptotic pathway in tumor cells eventually. Moreover, Compound 3e inhibited tumor metastasis by down-regulating VEGF, ICAM-1 and MMP-2 protein expression and angiogenesis. These results suggested that compound 3e exerts an effective antitumor activity in vivo through activating the p53 signaling pathway, which could be exploited as a promising candidate for the development of new anti-tumour drugs.  相似文献   

14.
A series of novel regioisomeric hybrids of quinazoline/benzimidazole viz. (3-allyl-2-methyl-3H-benzimidazol-5-yl)-(2-substituted-quinazolin-4-yl)-amine and (1-allyl-2-methyl-1H-benzimidazol-5-yl)-(2-substituted-quinazolin-4-yl)-amine of biological interest were synthesized. All the synthesized compounds were well characterized by 1H and 13C NMR as well as mass spectroscopy. The newly synthesized compounds were screened for in vitro antitumor activities against 60 tumor cell lines panel assay. A significant inhibition for cancer cells were observed with compound 9 and also more active against known drug 5-fluorouracil (5-FU) in some tumor cell lines. Compound 9 displayed appreciable anticancer activity against leukemia, colon, melanoma, renal and breast cancer cell lines.  相似文献   

15.
A series of DLC (delocalized lipophilic cation) modified spinosyn derivatives were synthesized and evaluated for antitumor efficacies both in vitro and in vivo. Cancer cell based antiproliferative assays indicated that the more lipophilic derivatives had stronger inhibitory effects on the tested cancer cell lines. Compound 7b and 8b exhibited strong anti-OXPHOS and apoptosis inducing ability. Notable antitumor efficacies of 7b (5 mg/kg) and 8b (2.5 mg/kg) were observed in the in vivo tumor xenograft experiments, however, lethal toxicities were observed on higher dosages. Our findings indicated that DLC modification is a viable strategy to enhance the anti-OXPHOS and antitumor efficacies of spinosyn derivatives.  相似文献   

16.
The Notch signaling pathway has been identified as a therapeutic target for cancers. γ-Secretase inhibitors (GSIs) have been progressively recognized as potential anticancer drugs. The present study aimed to investigate the effects of anti-delta like legend 4 (anti-DLL4) treatment on the anticancer efficacy of GSIs in gastric cancer. SGC-7901-GFP human gastric cancer cells were tested for DLL4 expression by rosette formation test and immunofluorescence, and then were treated with anti-DLL4 antibody N-[N-(3,5-difluorophenacetyl)-L-ananyl]-S-phenylglycine t-butyl ester (DAPT, a type of GSI), or a combination of anti-DLL4 antibody and DAPT. The effects of in vitro treatments on cell apoptosis, cell cycle, and cell invasion were analyzed. For in vivo study, an orthotopic mouse model of gastric cancer was established with green fluorescence expressing SGC-7901. Ultrasound targeted microbubble destruction was used to treat tumor-bearing mice with anti-DLL4 antibody conjugated microbubbles, DAPT, and a combination of the two. Real-time fluorescence imaging was performed to assess tumor cell inhibition in each group. Following in vivo treatments, apoptosis of tumor cells and the expression of apoptosis-related genes BAX, Bcl-2, and P53 were detected by TUNEL and immunohistochemical staining. In vivo combined treatment of anti-DLL4 and DAPT led to a higher rate of cell apoptosis and greater inhibition of cell invasion than that observed with DAPT treatment alone. DAPT and anti-DLL4 combination therapy resulted in decreased cell distribution at G1 phase and increased cell distribution at S phase, compared to the untreated control group (P < .01). In vivo combined therapy with anti-DLL4 and DAPT significantly increased tumor growth inhibition and tumor cell apoptosis when compared to DAPT therapy alone (P < .05). In addition, combined treatment significantly increased expression of BAX and P53 and reduced Bcl-2 expression (P < .05). Conversely, treatment with DAPT alone only increased expression of BAX and P53 (P < .05), suggesting that the reduction of Bcl-2 expression may play an important role in the synergetic antitumor and proapoptosis effects of the combined treatment. Concurrent treatment with anti-DLL4 enhances the antitumor and proapoptotic efficacy of the γ-secretase inhibitor in gastric cancer both in vitro and in vivo.  相似文献   

17.
Parthenolide is an important sesquiterpene lactone with potent anticancer activities. In order to further improve its biological activity, a series of parthenolide semicarbazone or thiosemicarbazone derivatives was synthesized and evaluated for their anticancer activity. Derivatives were tested in vitro against 5 human tumor cell lines, and many of these showed higher cytotoxicity than parthenolide. Five compounds were further studied for their antitumor activity in mice. The in vivo result indicated that compound 4d showed both promising antitumor activity against mice colon tumor and small side effects on immune systems. The cell apoptosis and cell cycle distribution of compound 4d were also studied. Molecular docking studies revealed multiple interactions between 4d and NF-κB. Our findings demonstrate the potential of semicarbazones as a promising type of compounds with anticancer activity.  相似文献   

18.
A series of aminochalcone derivatives have been synthesized, characterized by HRMS, 1H NMR and 13C NMR and evaluated for their antiproliferative activity against HepG2 and HCT116 human cancer cell lines. The most of new synthesized compounds displayed moderate to potent antiproliferative activity against test cancer cell lines. Among the derivatives, compound 4 displayed potent inhibitory activity with IC50 values ranged from 0.018 to 5.33 μM against all tested cancer cell lines including drug resistant HCT-8/T. Furthermore, this compound showed low cytotoxicity on normal human cell lines (LO2). The in vitro tubulin polymerization assay showed that compound 4 inhibited tubulin assembly in a concentration-dependent manner with IC50 value of 7.1 μM, when compared to standard colchicine (IC50 = 9.0 μM). Further biological evaluations revealed that compound 4 was able to arrest the cell cycle in G2/M phase. Molecular docking study demonstrated the interaction of compound 4 at the colchicine binding site of tubulin. All the results indicated that compound 4 is a promising inhibitor of tubulin polymerization for the treatment of cancer.  相似文献   

19.
Despite the enormous successes of anti-PD-1/PD-L1 immunotherapy in multiple other cancer types, the overall response rates of breast cancer remain suboptimal. Therefore, exploring additional immune checkpoint molecules for potential cancer treatment is crucial. B7H3, a T-cell coinhibitory molecule, is specifically overexpressed in breast cancer compared with normal breast tissue and benign lesions, making it an attractive therapeutic target. However, the mechanism by which B7H3 contributes to the cancer phenotype is unclear. Here we show that the expression of B7H3 is negatively related to the number of CD8+ T cells in breast tumor sites. In addition, analysis of the differentially expressed B7H3 reveals that it is inversely correlated to autophagic flux both in breast cancer cell lines and clinical tumor tissues. Furthermore, block of autophagy by bafilomycin A1 (Baf A1) increases B7H3 levels and attenuates CD8+ T cell activation, while promotion of autophagy by V9302, a small-molecule inhibitor of glutamine metabolism, decreases B7H3 expression and enhances granzyme B (GzB) production of CD8+ T cells via regulation of reactive oxygen species (ROS) accumulation. We demonstrate that combined treatment with V9302 and anti-PD-1 monoclonal antibody (mAb) enhances antitumor immunity in syngeneic mouse models. Collectively, our findings unveil the beneficial effect of V9302 in boosting antitumor immune response in breast cancer and illustrate that anti-PD-1 together with V9302 treatment may provide synergistic effects in the treatment of patients insensitive to anti-PD-1 therapy.  相似文献   

20.
A straightforward method for synthesizing ortho-naphthoquinones was identified using an easily available cobalt–Schiff base complex. Efficient oxidation of phenols to ortho-naphthoquinones was useful in obtaining compounds with potent biological activity for the treatment of acute myeloid leukemia (AML). Among these compounds, the compound 4h effectively inhibited the proliferation of different AML cell lines in vitro. Further in vivo antitumor studies indicated that 4h at 40 mg/kg/d led to tumor regression in led to tumor regression in an MV4-11 xenograft model without evident toxicity. The cobalt-Schiff base complex was found to be an efficient catalyst in the transformation of phenols to ortho-quinones, and the compound 4h represents a potential scaffold to optimize the production of a treatment for AML.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号