首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIM: To estimate the distribution and prevalence of both Escherichia coli O157 and O157:H7-infecting bacteriophages within a 50,000 head commercial beef feedlot. METHODS AND RESULTS: Escherichia coli O157 was detected in approximately 27% of the individual samples, distributed across seven of the 10 pens screened. In a simple initial screen to detect O157:H7-infecting phages, none were detected in any pen or individual sample. In contrast, after a series of enrichment procedures O157:H7-infecting phages were detected in every pen and in the majority of the samples from most pens; virulent bacteriophages active against E. coli O157:H7 were detected post-enrichment from 39/60 (65%) of the feedlot samples, and 58/60 (approximately 97%) contained phage that infected E. coli B or O157:H7. CONCLUSIONS: The data we present here indicates that we may be grossly underestimating the prevalence of O157:H7-infecting phages in livestock if we simply screen samples and that enrichment screening is required to truly determine the presence of phages in these ecosystems. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data suggest that O157:H7-infecting phages may play a role in the ecology and transient colonization of cattle by E. coli O157:H7. Further, this and previous data suggest that before starting in vivo pathogen eradication studies using phage or any other regime, test animals should be enrichment screened for phage to avoid erroneous results.  相似文献   

2.
A previously characterized O157-specific lytic bacteriophage KH1 and a newly isolated phage designated SH1 were tested, alone or in combination, for reducing intestinal Escherichia coli O157:H7 in animals. Oral treatment with phage KH1 did not reduce the intestinal E. coli O157:H7 in sheep. Phage SH1 formed clear and relatively larger plaques on lawns of all 12 E. coli O157:H7 isolates tested and had a broader host range than phage KH1, lysing O55:H6 and 18 of 120 non-O157 E. coli isolates tested. In vitro, mucin or bovine mucus did not inhibit bacterial lysis by phage SH1 or KH1. A phage treatment protocol was optimized using a mouse model of E. coli O157:H7 intestinal carriage. Oral treatment with SH1 or a mixture of SH1 and KH1 at phage/bacterium ratios > or = 10(2) terminated the presence of fecal E. coli O157:H7 within 2 to 6 days after phage treatment. Untreated control mice remained culture positive for >10 days. To optimize bacterial carriage and phage delivery in cattle, E. coli O157:H7 was applied rectally to Holstein steers 7 days before the administration of 10(10) PFU SH1 and KH1. Phages were applied directly to the rectoanal junction mucosa at phage/bacterium ratios calculated to be > or = 10(2). In addition, phages were maintained at 10(6) PFU/ml in the drinking water of the phage treatment group. This phage therapy reduced the average number of E. coli O157:H7 CFU among phage-treated steers compared to control steers (P < 0.05); however, it did not eliminate the bacteria from the majority of steers.  相似文献   

3.
Albermann C  Beuttler H 《FEBS letters》2008,582(4):479-484
GDP-N-acetyl-d-perosamine is a precursor of the LPS-O-antigen biosynthesis in Escherichia coli O157:H7. Like other GDP-6-deoxyhexoses, GDP-N-acetyl-d-perosamine is supposed to be synthesized via GDP-4-keto-6-deoxy-d-mannose, followed by a transamination- and an acetylation-reaction catalyzed by PerA and PerB. In this study, we have overproduced and purified PerA and PerB from E. coli O157:H7 in E. coli BL21. The recombinant proteins were partly characterized and the final product of the reaction catalyzed by PerB was shown to be GDP-N-acetyl-d-perosamine by chromatography, mass spectrometry, and 1H-NMR. The functional expression of PerB provides another enzymatically defined pathway for the synthesis of GDP-deoxyhexoses, which is needed to further study the corresponding glycosyltransferases in vitro.  相似文献   

4.
5.
Escherichia coli O157:H7 is an endemic pathogen causing a variety of human diseases including mild diarrhea, hemorrhagic colitis, hemolytic-uremic syndrome, and thrombotic thrombocytopenic purpura. This study concerns the exploitation of bacteriophages as biocontrol agents to eliminate the pathogen E. coli O157:H7. Two distinct lytic phages (e11/2 and e4/1c) isolated against a human strain of E. coli O157:H7, a previously isolated lytic phage (pp01), and a cocktail of all three phages were evaluated for their ability to lyse the bacterium in vivo and in vitro. Phage e11/2, pp01, and the cocktail of all three virulent phages resulted in a 5-log-unit reduction of pathogen numbers in 1 h at 37 degrees C. However, bacteriophage-insensitive mutants (BIMs) emerged following the challenge. All tested BIMs had a growth rate which approximated that of the parental O157 strain, although many of these BIMs had a smaller, more coccoid cellular morphology. The frequency of BIM formation (10(-6) CFU) was similar for e11/2, pp01, and the phage cocktail, while BIMs insensitive to e4/1c occurred at the higher frequency (10(-4) CFU). In addition, BIMs commonly reverted to phage sensitivity within 50 generations. In an initial meat trial experiment, the phage cocktail completely eliminated E. coli O157:H7 from the beef meat surface in seven of nine cases. Given that the frequency of BIM formation is low (10(-6) CFU) for two of the phages, allied to the propensity of these mutants to revert to phage sensitivity, we expect that BIM formation should not hinder the use of these phages as biocontrol agents, particularly since low levels of the pathogen are typically encountered in the environment.  相似文献   

6.
7.
Escherichia coli O157:H7 is an emerging food and waterborne pathogen in the U.S. and internationally. The objective of this work was to develop a dose-response model for illness by this organism that bounds the uncertainty in the dose-response relationship. No human clinical trial data are available for E. coli O157:H7, but such data are available for two surrogate pathogens: enteropathogenic E. coli (EPEC) and Shigella dysenteriae. E. coli O157:H7 outbreak data provide an initial estimate of the most likely value of the dose-response relationship within the bounds of an envelope defined by beta-Poisson dose-response models fit to the EPEC and S. dysenteriae data. The most likely value of the median effective dose for E. coli O157:H7 is estimated to be approximately 190[emsp4 ]000 colony forming units (cfu). At a dose level of 100[emsp4 ]cfu, the median response predicted by the model is six percent.  相似文献   

8.
Biocontrol of Escherichia coli O157 with O157-specific bacteriophages.   总被引:2,自引:0,他引:2  
Escherichia coli O157 antigen-specific bacteriophages were isolated and tested to determine their ability to lyse laboratory cultures of Escherichia coli O157:H7. A total of 53 bovine or ovine fecal samples were enriched for phage, and 5 of these samples were found to contain lytic phages that grow on E. coli O157:H7. Three bacteriophages, designated KH1, KH4, and KH5, were evaluated. At 37 or 4 degrees C, a mixture of these three O157-specific phages lysed all of the E. coli O157 cultures tested and none of the non-O157 E. coli or non-E. coli cultures tested. These results required culture aeration and a high multiplicity of infection. Without aeration, complete lysis of the bacterial cells occurred only after 5 days of incubation and only at 4 degrees C. Phage infection and plaque formation were influenced by the nature of the host cell O157 lipopolysaccharide (LPS). Strains that did not express the O157 antigen or expressed a truncated LPS were not susceptible to plaque formation or lysis by phage. In addition, strains that expressed abundant mid-range-molecular-weight LPS did not support plaque formation but were lysed in liquid culture. Virulent O157 antigen-specific phages could play a role in biocontrol of E. coli O157:H7 in animals and fresh foods without compromising the viability of other normal flora or food quality.  相似文献   

9.
The electrophoretic mobilities (EPMs) of a number of Escherichia coli O157:H7 and wild-type E. coli strains were measured. The effects of pH and ionic strength on the EPMs were investigated. The EPMs of E. coli O157:H7 strains differed from those of wild-type strains. As the suspension pH decreased, the EPMs of both types of strains increased.  相似文献   

10.
Bacteriophages are associated with reduced fecal shedding of Shiga-toxin-producing Escherichia coli O157:H7 (STEC O157:H7) in cattle. Four phages exhibiting activity against 12 of 14 STEC O157:H7 strains, representing 11 common phage types, were isolated. Phages did not lyse non-O157 E. coli, with 11 of the 12 STEC strains exhibiting extreme susceptibility (average multiplicity of infection (MOI) = 0.0003-0.0007). All phages had icosahedral heads with tapered, noncontractile tails, a morphology indicative of T1-like Siphoviridae. Genome size of all phages was ~44 kb, but EcoR? or HindIII digestion profiles differed among phages. Based on restriction enzyme digestion profiles, phages AHP24, AHS24, and AHP42 were more related (66.7%-82.4%) to each other than to AKS96, while AHP24 and AHS24, isolated from the same feedlot pen, exhibited the highest identity (88.9%-92.3%). Phages AHP24 and AHS24 exhibited the broadest host range and strongest lytic activity against STEC O157:H7, making them strong candidates for biocontrol of this bacterium in cattle.  相似文献   

11.
Four phages isolated from cattle and poultry feces were analyzed for their ability to lyse Salmonella serotypes and Escherichia coli O157:H7. The phage one-step growth curves, morphology, and genetic characteristics were determined. All phages showed a lytic effect on various Salmonella serotypes and E. coli O157:H7, which lysed at least 70% of the 234 strains tested. The phages had latent periods ranging from 10 to 15 min and generation times of 30 to 45 min, while burst size fluctuated between 154 and 426 PFU/cell. Phages morphology showed isometric and elongated heads and rigid contractile tails, consistent with morphology of the Myoviridae family. Phages' DNA dendrograms showed a distinctive RFLP when digested by HindIII and EcoRV, and SDS-PAGE profile showed distinctive proteins expression as well. In vitro phage challenge showed a total reduction of E. coli O157:H7, Salmonella Typhimurium and Saintpaul counts at 2 h, whereas for Salmonella Montevideo a reduction and retardation growth, at a multiplicity of infection (MOI) of 100, was observed; however, under a MOI of 10 000, no viable cells were detected after 4 h. The wide host ranges of these phages suggested they could be used for simultaneous biocontrol of some Salmonella serotypes and E. coli O157:H7.  相似文献   

12.
Direct PCR detection of Escherichia coli O157:H7   总被引:2,自引:0,他引:2  
AIMS: This paper reports a simple, rapid approach for the detection of Shiga toxin (Stx)-producing Escherichia coli (STEC). METHODS AND RESULTS: Direct PCR (DPCR) obviates the need for the recovery of cells from the sample or DNA extraction prior to PCR. Primers specific for Stx-encoding genes stx1 and stx2 were used in DPCR for the detection of E. coli O157:H7 added to environmental water samples and milk. CONCLUSIONS: PCR reactions containing one cell yielded a DPCR product. SIGNIFICANCE AND IMPACT OF THE STUDY: This should provide an improved method to assess contamination of environmental and other samples by STEC and other pathogens.  相似文献   

13.
There are 29 E. coli genome sequences available, mostly related to studies of species diversity or mode of pathogenicity, including two genomes of the well-known O157:H7 clone. However, there have been no genome studies of closely related clones aimed at exposing the details of evolutionary change. Here we sequenced the genome of an O55:H7 strain, closely related to the major pathogenic O157:H7 clone, with published genome sequences, and undertook comparative genomic and proteomic analysis. We were able to allocate most differences between the genomes to individual mutations, recombination events, or lateral gene transfer events, in specific lineages. Major differences include a type II secretion system present only in the O55:H7 chromosome, fewer type III secretion system effectors in O55:H7, and 19 phage genomes or phagelike elements in O55:H7 compared to 23 in O157:H7, with only three common to both. Many other changes were found in both O55:H7 and O157:H7 lineages, but in general there has been more change in the O157:H7 lineages. For example, we found 50% more synonymous mutational substitutions in O157:H7 compared to O55:H7. The two strains also diverged at the proteomic level. Mutational synonymous SNPs were used to estimate a divergence time of 400 years using a new clock rate, in contrast to 14,000 to 70,000 years using the traditional clock rates. The same approaches were applied to three closely related extraintestinal pathogenic E. coli genomes, and similar levels of mutation and recombination were found. This study revealed for the first time the full range of events involved in the evolution of the O157:H7 clone from its O55:H7 ancestor, and suggested that O157:H7 arose quite recently. Our findings also suggest that E. coli has a much lower frequency of recombination relative to mutation than was observed in a comparable study of a Vibrio cholerae lineage.  相似文献   

14.
Fate of Escherichia coli O157:H7 in Manure-Amended Soil   总被引:5,自引:0,他引:5       下载免费PDF全文
Escherichia coli O157:H7 cells survived for up to 77, >226, and 231 days in manure-amended autoclaved soil held at 5, 15, and 21°C, respectively. Pathogen populations declined more rapidly in manure-amended unautoclaved soil under the same conditions, likely due to antagonistic interactions with indigenous soil microorganisms. E. coli O157:H7 cells were inactivated more rapidly in both autoclaved and unautoclaved soils amended with manure at a ratio of 1 part manure to 10 parts soil at 15 and 21°C than in soil samples containing dilute amounts of manure. The manure-to-soil ratio, soil temperature, and indigenous microorganisms of the soil appear to be contributory factors to the pathogen's survival in manure-amended soil.  相似文献   

15.
Outbreaks of Escherichia coli O157:H7 disease associated with animal exhibits have been reported with increasing frequency. Transmission can occur through contact with contaminated haircoats, bedding, farm structures, or water. We investigated the distribution and survival of E. coli O157:H7 in the immediate environments of individually housed, experimentally inoculated cattle by systematically culturing feed, bedding, water, haircoat, and feed bunk walls for E. coli O157:H7 for 3 months. Cedar chip bedding was the most frequently culture-positive environmental sample tested (27/96 or 28.15%). Among these, 12 (44.0%) of positive bedding samples were collected when the penned animal was fecal culture negative. Survival of E. coli O157:H7 in experimentally inoculated cedar chip bedding and in grass hay feed was determined at different temperatures. Survival was longest in feed at room temperature (60 days), but bacterial counts decreased over time. The possibility that urine plays a role in the environmental survival of E. coli O157:H7 was investigated. Cedar chip bedding moistened with sterile water or bovine urine was inoculated with E. coli O157:H7. Bedding moistened with urine supported growth of E. coli O157:H7, whereas inoculated bedding moistened with only water yielded decreasing numbers of bacteria over time. The findings that environmental samples were frequently positive for E. coli O157:H7 at times when animals were culture negative and that urine provided a substrate for E. coli O157:H7 growth have implications for understanding the on-farm ecology of this pathogen and for the safety of ruminant animal exhibits, particularly petting zoos and farms where children may enter animal pens.  相似文献   

16.
Outbreaks of Escherichia coli O157:H7 disease associated with animal exhibits have been reported with increasing frequency. Transmission can occur through contact with contaminated haircoats, bedding, farm structures, or water. We investigated the distribution and survival of E. coli O157:H7 in the immediate environments of individually housed, experimentally inoculated cattle by systematically culturing feed, bedding, water, haircoat, and feed bunk walls for E. coli O157:H7 for 3 months. Cedar chip bedding was the most frequently culture-positive environmental sample tested (27/96 or 28.15%). Among these, 12 (44.0%) of positive bedding samples were collected when the penned animal was fecal culture negative. Survival of E. coli O157:H7 in experimentally inoculated cedar chip bedding and in grass hay feed was determined at different temperatures. Survival was longest in feed at room temperature (60 days), but bacterial counts decreased over time. The possibility that urine plays a role in the environmental survival of E. coli O157:H7 was investigated. Cedar chip bedding moistened with sterile water or bovine urine was inoculated with E. coli O157:H7. Bedding moistened with urine supported growth of E. coli O157:H7, whereas inoculated bedding moistened with only water yielded decreasing numbers of bacteria over time. The findings that environmental samples were frequently positive for E. coli O157:H7 at times when animals were culture negative and that urine provided a substrate for E. coli O157:H7 growth have implications for understanding the on-farm ecology of this pathogen and for the safety of ruminant animal exhibits, particularly petting zoos and farms where children may enter animal pens.  相似文献   

17.
Escherichia coli O157:H7 cells survived for up to 77, >226, and 231 days in manure-amended autoclaved soil held at 5, 15, and 21 degrees C, respectively. Pathogen populations declined more rapidly in manure-amended unautoclaved soil under the same conditions, likely due to antagonistic interactions with indigenous soil microorganisms. E. coli O157:H7 cells were inactivated more rapidly in both autoclaved and unautoclaved soils amended with manure at a ratio of 1 part manure to 10 parts soil at 15 and 21 degrees C than in soil samples containing dilute amounts of manure. The manure-to-soil ratio, soil temperature, and indigenous microorganisms of the soil appear to be contributory factors to the pathogen's survival in manure-amended soil.  相似文献   

18.

Background:

Escherichia coli O157:H7 is one cause of acute bacterial gastroenteritis, which can be devastating in outbreak situations. We studied the risk of cardiovascular disease following such an outbreak in Walkerton, Ontario, in May 2000.

Methods:

In this community-based cohort study, we linked data from the Walkerton Health Study (2002–2008) to Ontario’s large healthcare databases. We included 4 groups of adults: 3 groups of Walkerton participants (153 with severe gastroenteritis, 414 with mild gastroenteritis, 331 with no gastroenteritis) and a group of 11 263 residents from the surrounding communities that were unaffected by the outbreak. The primary outcome was a composite of death or first major cardiovascular event (admission to hospital for acute myocardial infarction, stroke or congestive heart failure, or evidence of associated procedures). The secondary outcome was first major cardiovascular event censored for death. Adults were followed for an average of 7.4 years.

Results:

During the study period, 1174 adults (9.7%) died or experienced a major cardiovascular event. Compared with residents of the surrounding communities, the risk of death or cardiovascular event was not elevated among Walkerton participants with severe or mild gastroenteritis (hazard ratio [HR] for severe gastroenteritis 0.74, 95% confidence interval [CI] 0.38–1.43, mild gastroenteritis HR 0.64, 95% CI 0.42–0.98). Compared with Walkerton participants who had no gastroenteritis, risk of death or cardiovascular event was not elevated among participants with severe or mild gastroenteritis.

Interpretation:

There was no increase in the risk of cardiovascular disease in the decade following acute infection during a major E. coli O157:H7 outbreak.Escherichia coli O157:H7 is one cause of acute bacterial gastroenteritis, causing 63 000 infections each year and 12 major outbreaks since 2006 in the United States alone.1,2 This strain was most recently implicated in the outbreak involving beef from XL Foods (September 2012), with 17 confirmed cases across Canada.3 A similar enterohemorrhagic strain E. coli O104:H4 was responsible for an outbreak in Germany in May 2011, causing 3792 cases of gastroenteritis and 43 deaths.4,5Most patients fully recover from acute gastroenteritis caused by E. coli. However, such an illness may predispose patients to long-term disease. Shiga toxin is produced by E. coli O157:H7; this toxin damages the microvasculature of the kidneys leading to hypertension613 and directly damages the systemic vasculature.1416 Infected people may progress from a state of acute inflammation of the vasculature to subclinical chronic inflammation, which could promote atherosclerosis.1720In Walkerton, Ontario, in May 2000, heavy rains transported bovine fecal matter into the town’s well, contaminating the inadequately chlorinated municipal water supply with E. coli O157:H7.21 Over 2300 people developed acute gastroenteritis, and 7 people died.22 The unique circumstances of this outbreak provided a rare opportunity to study the natural history following exposure to this pathogen in a single cohort.23 Other outbreaks have been geographically dispersed, making it difficult to track cases.24,25In Walkerton, affected individuals were followed annually in a clinic to assess their long-term outcomes (Walkerton Health Study, 2002–2008). We previously reported that adults who experienced acute gastroenteritis during the outbreak had a higher than expected incidence of hypertension, chronic kidney disease and self-reported cardiovascular disease in follow-up.23 However, 46% of participants were lost to follow-up by the end of the study, and there were limitations associated with the assessment of cardiovascular disease by participant recall. Thus, we conducted an expanded and extended follow-up study, linking the Walkerton study data to Ontario’s health care databases. Our objective was to more accurately determine the 10-year risk of major cardiovascular events after exposure to E. coli O157:H7.  相似文献   

19.
The electrophoretic mobilities (EPMs) of a number of Escherichia coli O157:H7 and wild-type E. coli strains were measured. The effects of pH and ionic strength on the EPMs were investigated. The EPMs of E. coli O157:H7 strains differed from those of wild-type strains. As the suspension pH decreased, the EPMs of both types of strains increased.  相似文献   

20.
As it descended from Escherichia coli O55:H7, Shiga toxin (Stx)-producing E. coli (STEC) O157:H7 is believed to have acquired, in sequence, a bacteriophage encoding Stx2 and another encoding Stx1. Between these events, sorbitol-fermenting E. coli O157:H(-) presumably diverged from this clade. We employed PCR and sequence analyses to investigate sites of bacteriophage integration into the chromosome, using evolutionarily informative STEC to trace the sequence of acquisition of elements encoding Stx. Contrary to expectations from the two currently sequenced strains, truncated bacteriophages occupy yehV in almost all E. coli O157:H7 strains that lack stx(1) (stx(1)-negative strains). Two truncated variants were determined to contain either GTT or TGACTGTT sequence, in lieu of 20,214 or 18,895 bp, respectively, of the bacteriophage central region. A single-nucleotide polymorphism in the latter variant suggests that recombination in that element extended beyond the inserted octamer. An stx(2) bacteriophage usually occupies wrbA in stx(1)(+)/stx(2)(+) E. coli O157:H7, but wrbA is unexpectedly unoccupied in most stx(1)-negative/stx(2)(+) E. coli O157:H7 strains, the presumed progenitors of stx(1)(+)/stx(2)(+) E. coli O157:H7. Trimethoprim-sulfamethoxazole promotes the excision of all, and ciprofloxacin and fosfomycin significantly promote the excision of a subset of complete and truncated stx bacteriophages from the E. coli O157:H7 strains tested; bile salts usually attenuate excision. These data demonstrate the unexpected diversity of the chromosomal architecture of E. coli O157:H7 (with novel truncated bacteriophages and multiple stx(2) bacteriophage insertion sites), suggest that stx(1) acquisition might be a multistep process, and compel the consideration of multiple exogenous factors, including antibiotics and bile, when chromosome stability is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号