首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
While differences in joint kinematics and kinetics between control subjects and patients before and after total hip arthroplasty (THA) has often been studied, inter-joint coordination has not been fully characterized. We hypothesized that in patients undergoing THA, inter-joint coordination (i) is different from control subjects before surgery, (ii) changes from pre-operative to post-operative, and (iii) remains different from control subjects after surgery. Seventy-eight subjects underwent gait analysis before and ∼1 year after primary unilateral THA. 109 control subjects were age, sex, and BMI matched to the THA group. We selected a representative trial at each subjects’ self-selected walking speed from a motion analysis data repository. To assess kinematic coordination, we constructed sagittal plane hip-knee angle cyclograms, and calculated total, stance, and swing phase plot area (deg2). To assess kinetic coordination, we calculated the support moment (MS, %wt 1 ht), the time-integral of support moment (MS impulse, %wt 1 ht 1 t), and the relative contribution of each joint to MS impulse (%Hip, %Knee, %Ankle). We used t-tests to compare groups. Total and swing-phase cyclogram area was smaller preoperatively, but improved to control values after THA. Swing-phase area was smaller than control values after THA. MS impulse was larger in THA subjects than controls both before and after surgery. While, the relative contribution of the hip to MS impulse was not different from control values, the contributions of the knee and ankle were smaller. Inter-joint coordination, as measured by hip-knee angle cyclograms and MS impulse, may be used to distinguish differences in gait mechanics between osteoarthritis and THA. Future work focusing on coordination among joints may be needed to fully restore gait function.  相似文献   

2.
Total ankle replacement (TAR) is an alternative to fusion, replacing the degenerated joint with a mechanical motion-preserving alternative. Minimal pre-clinical testing has been reported to date and existing wear testing standards lack definition. Ankle gait is complex, therefore the aim of this study was to investigate the effect on wear of a range of different ankle gait kinematic inputs. Five Zenith (Corin Group) TARs were tested in a modified knee simulator for twelve million cycles (Mc). Different combinations of IR rotation and AP displacement were applied every 2Mc to understand the effects of the individual kinematics. Wear was assessed gravimetrically every Mc and surface profilometry undertaken after each condition. With the initial unidirectional input with no AP displacement the wear rate measured 1.2±0.6 mm3/Mc. The addition of 11° rotation and 9 mm of AP displacement caused a statistically significant increase in the wear rate to 25.8±3.1 mm3/Mc. These inputs seen a significant decrease in the surface roughness at the tibial articulation. Following polishing three displacement values were tested; 0, 4 and 9 mm with no significant difference in wear rate ranging 11.8–15.2 mm3/Mc. TAR wear rates were shown to be highly dependent on the addition of internal/external rotation within the gait profile with multidirectional kinematics proving vital in the accurate wear testing of TARs. Prior to surface polishing wear rates were significantly higher but once in a steady state the AP displacement had no significant effect on the wear.  相似文献   

3.
Variation in hip joint contact forces directly influences the performance of total hip replacements (THRs). Measurement and calculation of contact forces in THR patients has been limited by small sample sizes, wide variation in patient and surgical factors, and short-term follow-up. This study hypothesised that, at long-term follow-up, unilateral THR patients have similar calculated hip contact forces compared to controls walking at similar (self-selected) speeds and, in contrast, THR patients walking at slower (self-selected) speeds have reduced hip contact forces. It was further hypothesised that there is no difference in calculated hip contact forces between operated and non-operated limbs at long-term follow-up for both faster and slower patients. Gait analysis data for THR patients walking at faster (walking speed: 1.29 ± 0.12 m/s; n = 11) and slower (walking speed: 0.72 ± 0.09 m/s; n = 11) speeds were used. Healthy subjects constituted the control group (walking speed: 1.36 ± 0.12 m/s; n = 10). Hip contact forces were calculated using static optimisation. There was no significant difference (p > 0.31) in hip contact forces between faster and control groups. Conversely, force was reduced at heel strike by 19% (p = 0.002), toe-off by 31% (p < 0.001) and increased at mid-stance by 15% (p = 0.02) for the slower group compared to controls. There were no differences between operated and non-operated limbs for the slower group or the faster group, suggesting good biomechanical recovery at long-term follow-up. Loading, at different walking speeds, presented here can improve the relevance of preclinical testing methods.  相似文献   

4.
Knowledge of accurate in-vivo 6 degree-of-freedom (6-DOF) kinematics of total hip arthroplasty (THA) during daily activities is critical for improvement of longevity of the components. Previous studies assessed in-vivo THA kinematics using skin marker-based motion analysis. However, skin markers are prone to move with respect to the underlying bones. A non-invasive dual fluoroscopic imaging system (DFIS) based tracking technique has been used to avoid skin artifacts and provide accurate 6-DOF kinematic measurement. This study aimed to quantify in-vivo 6-DOF THA kinematics during gait using DFIS. Twenty eight well-functioning THAs were evaluated during treadmill gait under DFIS surveillance. The maximum translations of the femoral head were 0.46±0.10 mm and 0.45±0.10 mm during the stance and swing phases (p=0.57), respectively. The range of hip flexion was from 8.7° to 47.6°, adduction from 3.0° to 12.5° and external rotation from 19.2° to 29.7°. The THA was flexed, externally rotated and adducted throughout the gait. The magnitudes of the femoral head translations were found to be within the manufacture tolerance of the components, suggesting that in-vivo hip “pistoning” during gait cycle may be minimal in well-functioning THAs. The 6-DOF kinematics could be used as the baseline knowledge for further improvement of wear-testing of hip implant, implants manufacturing and implant positioning during surgery.  相似文献   

5.
Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR.  相似文献   

6.
For clinically predictive testing and design-phase evaluation of prospective total knee replacement (TKR) implants, devices should ideally be evaluated under physiological loading conditions which incorporate population-level variability. A challenge exists for experimental and computational researchers in determining appropriate loading conditions for wear and kinematic knee simulators which reflect in vivo joint loading conditions. There is a great deal of kinematic data available from fluoroscopy studies. The purpose of this work was to develop computational methods to derive anterior–posterior (A–P) and internal–external (I–E) tibiofemoral (TF) joint loading conditions from in vivo kinematic data. Two computational models were developed, a simple TF model, and a more complex lower limb model. These models were driven through external loads applied to the tibia and femur in the TF model, and applied to the hip, ankle and muscles in the lower limb model. A custom feedback controller was integrated with the finite element environment and used to determine the external loads required to reproduce target kinematics at the TF joint. The computational platform was evaluated using in vivo kinematic data from four fluoroscopy patients, and reproduced in vivo A–P and I–E motions and compressive force with a root-mean-square (RMS) accuracy of less than 1 mm, 0.1°, and 40 N in the TF model and in vivo A–P and I–E motions, TF flexion, and compressive loads with a RMS accuracy of less than 1 mm, 0.1°, 1.4°, and 48 N in the lower limb model. The external loading conditions derived from these models can ultimately be used to establish population variability in loading conditions, for eventual use in computational as well as experimental activity simulations.  相似文献   

7.
Osteolysis around joint replacements may develop due to migration of wear particles from the joint space into gaps between the interface bone and the implant where they can accumulate in high concentrations to cause tissue damage. Osteolysis may appear in various postoperative times and morphological shapes which can be generalized into linear and focal. However, there are no clear explanations on the causes of such variations. Patients’ degree of sensitivity to polyethylene particles (osteolysis thresholds), the local particle concentration and the access route provided by the interface gaps have been described as determining factors. To study their effects, a 2D computational fluid dynamics model of the hip joint capsule in communication with an interfacial gap and the surrounding bone was employed. Particles were presented using a discrete phase model (DPM). High capsular fluid pressure was considered as the driving force for particle migration. Simulations were run for different osteolysis thresholds ranging from 5×108 to 1×1012 particle number per gram of tissue and fibrous tissue generation in osteolytic lesion due to particles was simulated for the equivalent of ten postoperative years. In patients less sensitive to polyethylene particles (higher threshold), osteolysis may be linear and occur along an interfacial gap in less than 5% of the interfacial tissue. Focal osteolysis is more likely to develop in patients with higher sensitivity to polyethylene particles at distal regions to an interfacial gaps where up to 80% of the interfacial tissue may be replaced by fibrous tissue. In these patients, signs of osteolysis may also develop earlier (third postoperative year) than those with less sensitivity who may show very minor signs even after ten years. This study shows the importance of patient sensitivity to wear particles, the role of interfacial gaps in relation to morphology and the onset of osteolysis. Consequently, it may explain the clinically observed variation in osteolysis development.  相似文献   

8.
Differences between wear-scar features of simulator-tested and retrieved tibial total knee replacement (TKR) liners have been reported. This disagreement may result from differences between in vivo kinematic profiles and those defined by the International Organization for Standardization (ISO). The purpose of this study was to determine the knee kinematics of a TKR subject group during level walking and compare them with the motion profiles defined by the ISO standard for a displacement-controlled knee wear testing simulator. Twenty-nine patients with a posterior cruciate ligament-retaining TKR design were gait tested using the point cluster technique to obtain flexion–extension (FE) rotation, anterior–posterior (AP) translation and internal–external (IE) rotation knee motions during a complete cycle of level walking. Relative ranges of motion and timing of key points within the in vivo motion data were compared against the same ranges and same key points from the input profiles of the displacement-controlled wear testing standard ISO14243-3. The subjects exhibited a FE pattern similar to ISO, with an insignificant difference in range of FE rotation from midstance to terminal stance. However, the subjects had a significantly higher range of knee flexion from terminal stance into swing. The subjects also exhibited a phase delay for the entire gait cycle. For AP translation, the standard profile had statistically significant lower magnitudes than seen in vivo. Opposite pattern of AP motion was also apparent from midstance and swing. Similarly, ISO specified a smaller IE total range of rotation with a motion pattern in complete opposition to that seen in vivo. In conclusion, significant differences were found in both the magnitudes and pattern of in vivo motion compared with ISO.  相似文献   

9.
In order to increase the lifetime of the total hip endoprosthesis, it is necessary to understand mechanisms leading to its failure. In this work, we address volumetric wear of the artificial cup, in particular the effect of its inclination with respect to the vertical. Volumetric wear was calculated by using mathematical models for resultant hip force, contact stress and penetration of the prosthesis head into the cup. Relevance of the dependence of volumetric wear on inclination of the cup (its abduction angle ?A) was assessed by the results of 95 hips with implanted endoprosthesis. Geometrical parameters obtained from standard antero-posterior radiographs were taken as input data. Volumetric wear decreases with increasing cup abduction angle ?A. The correlation within the population of 95 hips was statistically significant (P = 0.006). Large cup abduction angle minimises predicted volumetric wear but may increase the risk for dislocation of the artificial head from the cup in the one-legged stance. Cup abduction angle and direction of the resultant hip force may compensate each other to achieve optimal position of the cup with respect to wear and dislocation in the one-legged stance for a particular patient.  相似文献   

10.
Accurate prediction of loads acting at the joint in total knee replacement (TKR) patients is key to developing experimental or computational simulations which evaluate implant designs under physiological loading conditions. In vivo joint loads have been measured for a small number of telemetric TKR patients, but in order to assess device performance across the entire patient population, a larger patient cohort is necessary. This study investigates the accuracy of predicting joint loads from joint kinematics. Specifically, the objective of the study was to assess the accuracy of internal–external (I–E) and anterior–posterior (A–P) joint load predictions from I–E and A–P motions under a given compressive load, and to evaluate the repeatability of joint load ratios (I–E torque to compressive force (I–E:C), and A–P force to compressive force (A–P:C)) for a range of compressive loading profiles. A tibiofemoral finite element model was developed and used to simulate deep knee bend, chair-rise and step-up activities for five patients. Root-mean-square (RMS) differences in I–E:C and A–P:C load ratios between telemetric measurements and model predictions were less than 1.10e–3 Nm/N and 0.035 N/N for all activities. I–E:C and A–P:C load ratios were consistently reproduced regardless of the compressive force profile applied (RMS differences less than 0.53e–3 Nm/N and 0.010 N/N, respectively). When error in kinematic measurement was introduced to the model, joint load predictions were forgiving to kinematic measurement error when conformity between femoral and tibial components was low. The prevalence of kinematic data, in conjunction with the analysis presented here, facilitates determining the scope of A–P and I–E joint loading ratios experienced by the TKR population.  相似文献   

11.
Total hip arthroplasty represents a major surgical achievement for pain relief and restoration of lifestyle quality due to the joint disease of osteoarthritis. Total hip replacement has evolved over the past 30 years utilising a variety of biocompatible materials, geometric shapes and fixation techniques. The main objective of this study is to investigate the long-term effects of strain adaptive bone remodelling due to the influence of a novel titanium cementless femoral hip replacement. The period of on-growth has been taken into account and the simulation has been run to predict the remodelling behaviour for a 36-month period. The main conclusion from this analysis is that the implant does shield the calcar to a similar degree as other cementless femoral hip designs. It does, however, tend to cause bone to be laid down along its length. This may, in part, be due to the novel geometry of the implant interlocking with and loading the bone.  相似文献   

12.
Introduction, objectiveGait analysis has provided important information about the variability of gait for patients prior to and after total hip arthroplasty (THA). The objective of this research was to clarify how the method of exposure in total hip arthroplasty affects the variability of gait.Materials and methodGait analysis was performed at 0.8 m/s, 1.0 m/s, and 1.2 m/s on 25 patients with direct-lateral exposure (DL), 22 with antero-lateral exposure (AL) and 25 with posterior exposure (P) during total hip arthroplasty. The control group was represented by 45 healthy subjects of identical age. Gait analysis was performed pre-operatively and 3 and 6 months after the surgery. Gait parameter variability was characterized by the coefficient of variance (CV) of spatial–temporal parameters and by the mean coefficient of variance (MeanCV) of angular parameters.ResultsThe variability of gait tends to reach control values during the first 6 months of the postoperative period in all three patient groups. Six months after THA, in patients operated with DL and AL exposure the variability of gait differs significantly from control values; however, in patients operated with P exposure, the variability of spatial–temporal and angular parameters – except the rotation of pelvis – was similar to that of controls.Discussion, conclusionThe type of surgical technique significantly influences the variability of gait. Difference in the variability of angular parameters predicts gait instability and increased risk of falling after THA without the joint capsule preserved. Joint capsule preservation ensures a recovery of gait variability. It should be taken into account when compiling rehabilitation protocols. Differences related to the method of exposure should be considered when abandoning therapeutic aids.  相似文献   

13.
Ligament balancing during total knee replacement (TKR) is receiving increased attention due to its influence on resulting joint kinematics and laxity. We employed a novel in vitro technique to measure the kinematics and laxity of TKR implants during gait, and measured how these characteristics are influenced by implant shape and soft tissue balancing, simulated using virtual ligaments. Compared with virtual ligaments that were equally balanced in flexion and extension, the largest changes in stance-phase tibiofemoral AP and IE kinematics occurred when the virtual ligaments were simulated to be tighter in extension (tibia offset 1.0 ± 0.1 mm posterior and 3.6 ± 0.1° externally rotated). Virtual ligaments which were tight in flexion caused the largest swing-phase changes in AP kinematics (tibia offset 2.3 ± 0.2 mm), whereas ligaments which were tight in extension caused the largest swing-phase changes in IE kinematics (4.2 ± 0.1° externally rotated). When AP and IE loads were superimposed upon normal gait loads, incremental changes in AP and IE kinematics occurred (similar to laxity testing); and these incremental changes were smallest for joints with virtual ligaments that were tight in extension (in both the stance and swing phases). Two different implant designs (symmetric versus medially congruent) exhibited different kinematics and sensitivities to superimposed loads, but demonstrated similar responses to changes in ligament balancing. Our results demonstrate the potential for pre-clinical testing of implants using joint motion simulators with virtual soft tissues to better understand how ligament balancing affects implant motion.  相似文献   

14.
Although three-dimensional (3D) asymmetry has been reported in unilateral THA patients during gait, it is not well understood whether asymmetric hip kinematics during gait persist in bilaterally operated THA patients. The purpose of this study was to compare the in vivo 3D kinematics and component placement between bilateral and unilateral THA patients during gait. Eight bilateral and thirty-three unilateral THA patients were evaluated for both hips during treadmill gait using a validated combination of 3D computer tomography-based modeling and dual fluoroscopic imaging system (DFIS). The in vivo 3D kinematics of the unilateral THA group was first assessed. The magnitudes of kinematics and component placement difference between implanted hips in the bilateral THA group and between the implanted and non-implanted hips in the unilateral THA group were compared. The study results showed asymmetric gait kinematics in the unilateral THA group. Although the magnitude of kinematics differences between sides for both the bilateral and unilateral THA groups did not change significantly for hip rotations (p > 0.05), the bilaterally operated THA group has significantly lower magnitude of hip gait translation difference. Significant reduction in the magnitude of the acetabular cup adduction, stem adduction, and combine hip anteversion and adduction difference was observed in the bilateral THA group (p < 0.05). Our findings demonstrated that despite significant improvements of component placement and reduced magnitude of hip gait translation difference between implanted hips in the bilateral THA group, asymmetric hip kinematic rotations persisted in patients with bilateral THA during gait.  相似文献   

15.
Hip replacement constructs are paradigms of uncertain systems, and as such are suited to the application of probabilistic methods to assess their structural integrity. In order to gain confidence in a probabilistic model, it would be useful to verify the findings with experimental data; however, this is difficult to achieve in practice because of the exhaustive number of parameter combinations that need to be tested. As an alternative to experimental testing, benchmarking can be carried out provided a known analytical solution is available. To this end, a simplified 2D two-beam model of the femoral part of a total hip replacement construct was utilised to analyse uncertainties and variability in the construct as it is subjected to load. The use of a simplified model enabled geometric parameters to be investigated; these are commonly not considered in probabilistic models due to the increased complexity involved. Analytical and finite element representations of the model were developed and compared. The probabilistic study used the Monte Carlo simulation technique and the first-order reliability method to look at the inducible displacement of a hip implant, a phenomenon that has been linked to the most common cause of hip implant failure, aseptic loosening. Excellent correlation was observed between the analytical and probabilistic solutions, and it was shown that probabilistic approaches could efficiently predict the response of the simplified beam model while readily identifying the parameters most likely to compromise the structural integrity of the construct.  相似文献   

16.
髋关节置换后感染的微生物学分析和生物被膜研究   总被引:6,自引:0,他引:6  
对髋关节置换后感染病例的微生物学结果进行研究,分析细菌培养结果、药敏结果、术前和术中培养结果符合率和生物被膜形成情况。发现术前和术中培养阳性率较低,分别为77.1%和78.5%,术前和术中培养结果符合率也不高,仅为59.1%;表皮葡萄球菌和金黄色葡萄球菌占术前和术中培养比例分别为56.2%和46%,细菌对青霉素、氨苄西林、苯唑西林的耐药比例很高,表皮葡萄球菌形成大量生物被膜。上述结果表明目前的细菌学诊断手段准确性不高,应改进取材和培养方法,提高诊断准确性;髋关节置换后感染细菌中高毒力菌株和耐药菌株比例高,细菌可形成大量生物被膜,是引起感染难治的主要因素。  相似文献   

17.
目的:探讨全髋和半髋关节置换术治疗老年股骨颈骨折的临床疗效。方法:选择本院收治的70例老年股骨颈骨折患者,采用随机数字表法将其分为观察组和对照组各35例,观察组给予全髋关节置换术,对照组予以半髋关节置换术,对比两组所用手术时间、术中出血量、术后Harris评分及髋关节功能、术后并发症、疼痛率及翻修率。结果:观察组手术时间为(113.6±19.3)min,术中出血量为(432.1±32.7)ml,均显著高于对照组的(73.1±10.2)min、(201.3±30.1)m L,两组比较差异均有统计学意义(均P0.05);观察组髋关节功能总优良率、Harris评分分别为91.43%,(91.13±5.09)分,显著优于对照组的77.14%、(80.15±4.71)分,两组比较差异均有统计学意义(均P0.05);观察组不良反应发生率及翻修率分别为20.00%、0.00%,低于对照组的22.85%、5.71%,但差异均无统计学意义(均P0.05);观察组疼痛率为5.71%,显著低于对照组的25.71%,两组比较差异有统计学意义(P0.05)。结论:两种术式对股骨颈骨折的老年患者均能起到有效的治疗,均有各自的优缺点,对疼痛较为敏感和活动较多的老年患者而言,宜采用全髋关节置换术。  相似文献   

18.
In the prediction of bone remodelling processes after total hip replacement (THR), modelling of the subject-specific geometry is now state-of-the-art. In this study, we demonstrate that inclusion of subject-specific loading conditions drastically influences the calculated stress distribution, and hence influences the correlation between calculated stress distributions and changes in bone mineral density (BMD) after THR.For two patients who received cementless THR, personalized finite element (FE) models of the proximal femur were generated representing the pre- and post-operative geometry. FE analyses were performed by imposing subject-specific three-dimensional hip joint contact forces as well as muscle forces calculated based on gait analysis data. Average values of the von Mises stress were calculated for relevant zones of the proximal femur. Subsequently, the load cases were interchanged and the effect on the stress distribution was evaluated. Finally, the subject-specific stress distribution was correlated to the changes in BMD at 3 and 6 months after THR.We found subject-specific differences in the stress distribution induced by specific loading conditions, as interchanging of the loading also interchanged the patterns of the stress distribution. The correlation between the calculated stress distribution and the changes in BMD were affected by the two-dimensional nature of the BMD measurement.Our results confirm the hypothesis that inclusion of subject-specific hip contact forces and muscle forces drastically influences the stress distribution in the proximal femur. In addition to patient-specific geometry, inclusion of patient-specific loading is, therefore, essential to obtain accurate input for the analysis of stress distribution after THR.  相似文献   

19.
The purpose of this study was to identify the gait strategies in women with mild and moderate knee osteoarthritis (OA). Forty women diagnosed with OA of the knee and 40 healthy women participated in the study. Toe-out progression angle, trunk lateral lean, hip internal abduction moment and gait speed were measured using Qualisys ProReflex System and two force plates. Principal component analysis was applied to extract features from the gait waveforms data that characterized the waveforms main modes of temporal variation. Discriminant analysis with a stepwise model was conducted to determine which strategies could best discriminate groups. According to the discriminant model, the PC2 of the internal abduction moment of the hip and the gait speed were the most discriminatory variables between the groups. The OA group showed decreased gait speed, decreased hip internal abduction moment during the loading response phase, and increased hip internal abduction moment during the mid and terminal stance phases. Interventions that may increase hip internal abduction moment, such as the strengthening of the hip abductors muscles, may benefit women with knee OA. Training slower than normal gait speeds must be considered in light of potential adverse implications on overall physical function, daily tasks, and safety.  相似文献   

20.
The Conventional Gait Model (CGM) needs to benefit from large investigations on localization of the hip joint centre (HJC). Incorrect positions from the native equations were demonstrated (Sangeux et al., 2014; Harrington et al., 2007). More accurate equations were proposed but their impact on kinematics and kinetic CGM outputs was never evaluated. This short communication aims at examining if adoption of new HJC equations would alter standard CGM outputs. Sixteen able bodied participants underwent a full 3-D optoelectronic gait analysis followed by a 3-D ultrasound localization of their hips. Data were processed through the open source python package pyCGM2 replicating kinematic and kinetic processing of the native CGM. Compared with 3D ultrasound location, Hara equations improved the accuracy of sagittal plane kinematics (0.6°) and kinetics (0.02 N m kg−1) for the hip. The worst case participant exhibited Harrington’s equations reached a deviation of 3° for the sagittal kinematics. In the coronal plane, Hara and Harrington equations presented similar differences (1°) for the hip whilst Davis equations had the largest deviation for hip abduction (2.7°) and hip abductor moment (0.10 N m kg−1).Both Harrington and Hara equations improved the CGM location of the HJC. Hara equations improved results in the sagittal plane, plus utilise a single anthropometrics measurement, leg length, that may be more robust. However, neither set of equations had significant effect on kinematics. We reported some effects on kinetics, particularly in the coronal plane, which warrant caution in interpreting outputs using different sets of equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号