首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of metallo-β-lactamases (MBL) can prevent the hydrolysis of β-lactam antibiotics and hence is a promising strategy for the treatment of antibiotic resistant infections. In this study, we present a novel reversible covalent inhibitor of the clinically relevant MBL New Delhi metallo-β-lactamase 1 (NDM-1). Electrospray ionization-mass spectrometry (ESI-MS) and single site directed mutagenesis were used to show that the inhibitor forms a covalent bond with Lys224 in the active site of NDM-1. The inhibitor was further characterized using an enzyme inhibition assay, a surface plasmon resonance (SPR) based biosensor assay and covalent docking. The determined inhibition constant (KI1) was 580 nM and the inhibition constant for the initial complex (KI) was 76 μM. To our knowledge, this inhibitor is the first example for a reversible covalent non-β-lactam inhibitor targeting NDM-1 and a promising starting point for the design of potent covalent inhibitors.  相似文献   

2.
New Delhi metallo-β-lactamase (NDM-1) is a new metallo-β-lactamase (MBL) that has recently emerged as a global threat because it confers bacteria with resistance to almost all clinically used β-lactam antibiotics. To determine the molecular basis of this threat, NDM-1 was purified from Escherichia coli TransB (DE3) carrying cloned blaNDM-1 gene by an anion-exchange chromatography step followed by a gel permeation chromatography step. The purified enzyme was stable even in extremely alkaline buffer (pH 11) and reached its highest activity at a low temperature (15°C), which was different from other MBLs. The 50% inhibition concentration of EDTA against NDM-1 was 412 nM, which showed that NDM-1 was more susceptible to EDTA than other MBLs. The effects of zinc on NDM-1 differed between cephem and carbapenem complexes, but inhibition at high Zn2+ concentration was observed for all of tested β-lactam compounds.  相似文献   

3.
NDM-1 can hydrolyze nearly all available β-lactam antibiotics, including carbapenems. NDM-1 producing bacterial strains are worldwide threats. It is still very challenging to find a potent NDM-1 inhibitor for clinical use. In our study, we used a metal-binding pharmacophore (MBP) enriched virtual fragment library to screen NDM-1 hits. SPR screening helped to verify the MBP virtual hits and identified a new NDM-1 binder and weak inhibitor A1. A solution NMR study of 15N-labeled NDM-1 showed that A1 disturbed all three residues coordinating the second zinc ion (Zn2) in the active pocket of NDM-1. The perturbation only happened in the presence of zinc ion, indicating that A1 bound to Zn2. Based on the scaffold of A1, we designed and synthesized a series of NDM-1 inhibitors. Several compounds showed synergistic antibacterial activity with meropenem against NDM-1 producing K. pneumoniae.  相似文献   

4.
The three-dimensional interaction of the enzyme-activated (suicide) inhibitor AA 231-1 [N(2-chloromethyl)-3,3-difluoro-azetidin-2-one] with human leukocyte elastase has been studied using computer graphics and molecular mechanics. Systematic conformational analyses and energy minimizations have been performed for the inhibitor AA 231-1 and its presumed complexes formed during the enzymatic process of inactivation, i.e., the Michaelis complex, the acyl-enzyme, and the inactivated enzyme with the covalently bound inhibitor. The β-lactam ring characteristics of modeled AA 231-1 were in agreement with crystallo-graphic data of related structures. Lowest energy conformatinos were found when the angle between the planes of the β-lactam ring and that of its phenyl substituent was about −60 or 60°. To study the interaction with the enzyne, the enzyme-inhibitor complexes were constructed by docking the inhibitor in the active site using enzyme coordinates from an X-ray crystallographic structure. The whole enzyme structure was used for conformational analyses and energy mechanics. Favorable conformations for the Michaelis complex have been obtained in which the carbonyl oxygen of the inhibitor was located in the oxyanion hole and the hydroxyl of Ser195 was in position to interact with the β-lactam carbonyl carbon on the α face of AA 231-1. Simulations of the approach of the benzylic carbon by the nucleophilic amino acid His40 or His57 through an SN2 displacement on the halomethyl group of AA 231-1 were performed. The results agreed with the alkylation of the imidazole nitroge Nϵ2 of His57 leading to the inactivated enzyme (bis-adduct form).  相似文献   

5.
The discovery of NDM-1 and its variants has caused the emergence of antibiotic resistance in the community and hospital setting, causing major concern for health care across the globe. New Delhi Metallo-β-lactamase is known to hydrolyse almost all β-lactam antibiotics. Studies have shown the hydrolytic activates of NDM-1 and some of its variants, however a comparative study of these NDM variants has not been explored in detail. Hence, we proposed to check their catalytic activity by performing a comparative study between NDM-1 and its variants. The study was initiated to clone NDM variants (NDM-1, NDM-4, NDM-5, NDM-6 and NDM-7) followed by overexpression of the recombinant proteins to check their hydrolytic properties against β-lactam antibiotics. The minimum inhibitory concentration of carbapenems antibiotics for blaNDM-5 clone was found four fold increased, whereas no change was observed in the clones having other variants. The hydrolytic activity of carbapenem with NDM-5 variant was found to be augmented as per the kinetics parameter where Km was decreased and kcat, kcat/Km values increased as compared to the NDM-1. Molecular docking studies were employed to identify the variations in the binding ability among all NDM variants with imipenem or meropenem. Simulation studies at 100?ns showed a good stability of NDM-5 with imipenem and meropenem as compared to NDM-1. CD spectroscopy data revealed significant changes in the secondary structure of NDM variants. We conclude that NDM-5 showed higher hydrolytic activity as compared to other variants. This study provides a comparative analysis of the severity of NDM producing strains.  相似文献   

6.
New Delhi metallo-β-lactamase-1 gene (blaNDM-1) codes for New Delhi metallo-beta-lactamase-1 (NDM-1) enzyme that cleaves the amide bond of β-lactam ring, and provides resistance against major classes of β-lactam antibiotics. Dissemination of the plasmid borne blaNDM-1 through horizontal gene transfer is a potential threat to the society. In this study, a rapid non-culture method for detecting NDM-1 positive bacteria was developed by Loop Mediated Isothermal Amplification (LAMP) of blaNDM-1. Sensitivity of this method was found to be one femtogram of plasmid DNA, which translates into 2.6–25.8 copies depending on the size of the plasmid DNA. This method was applied to detect NDM-1 positive bacteria in 81 water samples that were collected from environmental and drinking water sources. NDM-1 positive bacteria were detected in three drinking water samples by LAMP but not by PCR. These three samples were collected from the water sources that were treated with chlorine for decontamination before public distribution. NDM-1 positive bacteria were not detected in lake water samples or in the samples that were collected from the water sources that were purified by reverse osmosis before public distribution. Detection of NDM-1 positive bacteria using LAMP was found to be safe, sensitive and rapid for screening large number of samples from diverse sources. This method could be developed as on-field detection kit by using fluorescent dyes to visualize the amplified blaNDM-1 gene.  相似文献   

7.
β-Lactamases inactivate β-lactam antibiotics by hydrolysis of their endocyclic β-lactam bond and are a major cause of antibiotic resistance in pathogenic bacteria. The zinc dependent metallo-β-lactamase enzymes are of particular concern since they are located on highly transmissible plasmids and have a broad spectrum of activity against almost all β-lactam antibiotics. We present here essentially complete (>96 %) backbone and sidechain sequence-specific NMR resonance assignments for the Bacillus cereus subclass B1 metallo-β-lactamase, BcII, and for its complex with R-thiomandelic acid, a broad spectrum inhibitor of metallo-β-lactamases. These assignments have been used as the basis for determination of the solution structures of the enzyme and its inhibitor complex and can also be used in a rapid screen for other metallo-β-lactamase inhibitors.  相似文献   

8.
Metallo-β-lactamases (MBLs) are an emerging cause of bacterial antibiotic resistance by hydrolysing all classes of β-lactams except monobactams, and the MBLs are not inhibited by clinically available serine-β-lactamase inhibitors. Two of the most commonly encountered MBLs in clinical isolates worldwide – the New Delhi metallo-β-lactamase (NDM-1) and the Verona integron-encoded metallo-β-lactamase (VIM-2) – are included in this study.A series of several NH-1,2,3-triazoles was prepared by a three-step protocol utilizing Banert cascade reaction as the key step. The inhibitor properties were evaluated in biochemical assays against the MBLs VIM-2, NDM-1 and GIM-1, and VIM-2 showed IC50 values down to nanomolar range. High-resolution crystal structures of four inhibitors in complex with VIM-2 revealed hydrogen bonds from the triazole inhibitors to Arg228 and to the backbone of Ala231 or Asn233, along with hydrophobic interactions to Trp87, Phe61 and Tyr67. The inhibitors show reduced MIC in synergy assays with Pseudomonas aeruginosa and Escherichia coli strains harbouring VIM enzymes. The obtained results will be useful for further structural guided design of MBL inhibitors.  相似文献   

9.
Class B metallo-β-lactamases (MBLs) are Zn2+-dependent enzymes that catalyze the hydrolysis of β-lactam antibiotics to confer resistance in bacteria. Several problematic groups of MBLs belong to subclass B1, including the binuclear New Delhi MBL (NDM), Verona integrin-encoded MBL, and imipenemase-type enzymes, which are responsible for widespread antibiotic resistance. Aspergillomarasmine A (AMA) is a natural aminopolycarboxylic acid that functions as an effective inhibitor of class B1 MBLs. The precise mechanism of action of AMA is not thoroughly understood, but it is known to inactivate MBLs by removing one catalytic Zn2+ cofactor. We investigated the kinetics of MBL inactivation in detail and report that AMA is a selective Zn2+ scavenger that indirectly inactivates NDM-1 by encouraging the dissociation of a metal cofactor. To further investigate the mechanism in living bacteria, we used an active site probe and showed that AMA causes the loss of a Zn2+ ion from a low-affinity binding site of NDM-1. Zn2+-depleted NDM-1 is rapidly degraded, contributing to the efficacy of AMA as a β-lactam potentiator. However, MBLs with higher metal affinity and stability such as NDM-6 and imipenemase-7 exhibit greater tolerance to AMA. These results indicate that the mechanism of AMA is broadly applicable to diverse Zn2+ chelators and highlight that leveraging Zn2+ availability can influence the survival of MBL-producing bacteria when they are exposed to β-lactam antibiotics.  相似文献   

10.
The emergence of antibiotic drug (like carbapenem) resistance is being a global crisis. Among those resistance factors of the β-lactam antibiotics, the metallo-β-lactamases (MBLs) is one of the most important reasons. In this paper, a series of cyclic dithiocarbamate compounds were synthesized and their inhibition activities against MBLs were initially tested combined with meropenem (MEM) by in vitro antibacterial efficacy tests. Sodium 1,4,7-triazonane-1,4,7-tris(carboxylodithioate) (compound 5) was identified as the most active molecule to restore the activity of MEM. Further anti-bacterial effectiveness assessment, compound 5 restored the activity of MEM against Escherichia coli, Citrobacter freundii, Proteus mirabilis and Klebsiella pneumonia, which carried resistance genes of blaNDM-1. The compound 5 was non-hemolytic, even at a concentration of 1000?µg/mL. This compound was low toxic toward mammalian cells, which was confirmed by fluorescence microscopy image and the inhibition rate of HeLa cells. The Ki value of compounds 5 against NDM-1 MBL was 5.63?±?1.27?μM. Zinc ion sensitivity experiments showed that the inhibitory effect of compound 5 as a MBLs inhibitor was influenced by zinc ion. The results of the bactericidal kinetics displayed that compound 5 as an adjuvant assisted MEM to kill all bacteria. These data validated that this NOTA dithiocarbamate analogue is a good inhibitor of MBLs.  相似文献   

11.
The worldwide dissemination of CTX-M type β-lactamases is a threat to human health. Previously, we have reported the spread of bla CTX-M-15 gene in different clinical strains of Enterobacteriaceae from the hospital settings of Aligarh in north India. In view of the varying resistance pattern against cephalosporins and other β-lactam antibiotics, we intended to understand the correlation between MICs and catalytic activity of CTX-M-15. In this study, steady-state kinetic parameters and MICs were determined on E. coli DH5α transformed with bla CTX-M-15 gene that was cloned from Enterobacter cloacae (EC-15) strain of clinical background. The effect of conventional β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) on CTX-M-15 was also studied. We have found that tazobactam is the best among these inhibitors against CTX-M-15. The inhibition characteristic of tazobactam is defined by its very low IC50 value (6 nM), high affinity (K i = 0.017 µM) and better acylation efficiency (k +2/K′ = 0.44 µM−1s−1). It forms an acyl-enzyme covalent complex, which is quite stable (k +3 = 0.0057 s−1). Since increasing resistance has been reported against conventional β-lactam antibiotic-inhibitor combinations, we aspire to design a non-β-lactam core containing β-lactamase inhibitor. For this, we screened ZINC database and performed molecular docking to identify a potential non-β-lactam based inhibitor (ZINC03787097). The MICs of cephalosporin antibiotics in combination with this inhibitor gave promising results. Steady-state kinetics and molecular docking studies showed that ZINC03787097 is a reversible inhibitor which binds non-covalently to the active site of the enzyme through hydrogen bonds and hydrophobic interactions. Though, it’s IC50 (180 nM) is much higher than tazobactam, it has good affinity for CTX-M-15 (K i = 0.388 µM). This study concludes that ZINC03787097 compound can be used as seed molecule to design more efficient non-β-lactam containing β-lactamase inhibitor that could evade pre-existing bacterial resistance mechanisms.  相似文献   

12.
Avibactam is a non-β-lactam β-lactamase inhibitor with a spectrum of activity that includes β-lactamase enzymes of classes A, C, and selected D examples. In this work acylation and deacylation rates were measured against the clinically important enzymes CTX-M-15, KPC-2, Enterobacter cloacae AmpC, Pseudomonas aeruginosa AmpC, OXA-10, and OXA-48. The efficiency of acylation (k2/Ki) varied across the enzyme spectrum, from 1.1 × 101 m−1s−1 for OXA-10 to 1.0 × 105 for CTX-M-15. Inhibition of OXA-10 was shown to follow the covalent reversible mechanism, and the acylated OXA-10 displayed the longest residence time for deacylation, with a half-life of greater than 5 days. Across multiple enzymes, acyl enzyme stability was assessed by mass spectrometry. These inhibited enzyme forms were stable to rearrangement or hydrolysis, with the exception of KPC-2. KPC-2 displayed a slow hydrolytic route that involved fragmentation of the acyl-avibactam complex. The identity of released degradation products was investigated, and a possible mechanism for the slow deacylation from KPC-2 is proposed.  相似文献   

13.
The equilibrium constants and the respective standard Gibbs energy changes for hydrolysis of some β-lactam antibiotics have been determined. Native and immobilized penicillin amidase (EC 3.5.1.11) from Escherichia coli has been used as a catalyst. The values of standard Gibbs energy changes corresponding to the pH-independent product of equilibrium concentrations (ΔG0c = ? RT ln Kc) have been calculated. The differences in the structure of the antibiotics nucleus hardly ever affect the value of the pH-independent component of the standard Gibbs energy change (ΔG0c) and value of apparent standard Gibbs energy change at a fixed pH (ΔG0′c). At the same time, the value of ΔG0c is more sensitive to the structure of the acyl moiety of the antibiotic; when ampicillin is used instead of benzylpenicillin, ΔG0c increases by ~6.3 kJ mol?1 (1.5 kcal mol?1). pH-dependences of the apparent standard Gibbs energy changes for hydrolysis of β-lactam antibiotics have been calculated. The pH-dependences of ΔG0′c for hydrolysis of all β-lactam antibiotics have a similar pattern. The thermodynamic pH optimum of the synthesis of these compounds is in the acid pH range (pH < 5.0). The breakage of the β-lactam ring leads to a sharp decrease in the ΔG0′c value and a change in the pattern of the pH-dependence. For example, at pH 5.0 ΔG0′c decreases from 14.4 kJ mol?1 for benzylpenicillin to ?1.45 kJ mol?1 for benzylpenicilloic acid. The reason for these changes is mainly a considerable increase in the pK of the amino group of the nucleus of the antibiotic and, as a consequence, a decrease in the component of standard Gibbs energy change, corresponding to the ionization of the system. The thermodynamic potentials of the enzymatic synthesis of semisynthetic penicillins and cephalosporins on the basis of both free acids and their derivatives (N-acylated amino acids, esters) are discussed. It is shown that with esters of the acids, a high yield of the antibiotic can, in principle, be achieved at higher pH values.  相似文献   

14.
New Delhi metallo-β-lactmase-1 (NDM-1) has attracted extensive attention for its high catalytic activities of hydrolyzing almost all β-lactam antibiotics. NDM-1 shows relatively higher similarity to subclass B1 metallo-β-lactmases (MβLs), but its residue at position 229 is identical to that of B2/B3 MβLs, which is a Tyr instead of a B1-MβL-conserved Trp. To elucidate the possible role of Y229 in the bioactivity of NDM-1, we performed mutagenesis study and molecular dynamics (MD) simulations. Although residue Y229 is spatially distant from the active site and not contacting directly with the substrate or zinc ions, the Y229W mutant was found to have higher kcat and Km values than those of wild-type NDM-1, resulting in 1∼7 fold increases in kcat/Km values against tested antibiotics. In addition, our MD simulations illustrated the enhanced flexibility of Loop 2 upon Y229W mutation, which could increase the kinetics of both substrate entrance (kon) and product egress (koff). The enhanced flexibility of Loop 2 might allow the enzyme to adjust the geometry of its active site to accommodate substrates with different structures, broadening its substrate spectrum. This study indicated the possible role of the residue at position 229 in the evolution of NDM-1.  相似文献   

15.
Ammonium heptamolybdate was an inhibitor of plant invertases. The inhibition was a linear mixed type and the constants Ki and aKi were determined. α- and β-glycerophosphate, 2,3-diphosphoglycerate, glucose-1-phosphate, phosphoenolpyruvate, pyruvate and malate suppressed the inhibition. The curves of enzyme recovery against the concentrations of these activators were sigmoid. UV spectrophotometry showed complex formation between inhibitor and each activator, and indicated that sucrose did not form a complex with the inhibitor. Consequently, heptamolybdate is postulated to act by a reversible binding to the enzyme.  相似文献   

16.
New Delhi metallo-β-lactamase-1 (NDM-1) is a recently identified metallo-β-lactamase that confers resistance to carbapenems and all other β-lactam antibiotics, with the exception of aztreonam. NDM-1 is also associated with resistance to many other classes of antibiotics. The enzyme was first identified in organisms isolated from a patient in Sweden who had previously received medical treatment in India, but it is now recognized as endemic throughout India and Pakistan and has spread worldwide. The gene encoding NDM-1 has been found predominantly in Escherichia coli and Klebsiella pneumoniae. We describe the isolation NDM-1–producing organisms from two patients in Toronto, Ontario. To the best of our knowledge, this is the first report of an organism producing NDM-1 that was locally acquired in Canada. We also discuss the evidence that NDM-1 can affect bacterial species other than E. coli and K. pneumoniae, the limited options for treatment and the difficulty laboratories face in detecting organisms that produce NDM-1.New Delhi metallo-β-lactamase-1 (NDM-1) is a metallo-β-lactamase that confers resistance to carbapenems and all other β-lactam antibiotics, with the exception of aztreonam. It is predominantly found in the Enterobacteriaeceae. It was first identified in Escherichia coli and Klebsiella pneumoniae isolated from a patient in Sweden who had previously received medical treatment in India. It is now recognized as endemic throughout India and Pakistan and has spread worldwide due to travel, “medical tourism” and the ability of the genetic element encoding the enzyme to transfer between bacteria.13 Three reports of organisms producing NDM-1 in Canada have been published to date. In each instance, the organisms were isolated from the urinary tracts of patients who had recently been admitted to hospitals in India. Two of the isolates were strains of K. pneumoniae and one was a strain of E. coli.46 Additional reports of isolation of organisms producing NDM-1 from patients in Canada have been presented in the lay press.Organisms that produce NDM-1 have been associated with resistance to classes of antibiotics other than the β-lactams, thus severely limiting options for treatment.2 Infection control guidance regarding the management of colonization by or infection with organisms that produce carbapenemases, such as NDM-1, have recently been published by Canadian and European authorities.79 An essential component of these recommendations is the rapid and accurate identification of the organisms in a clinical microbiology laboratory. The Clinical Laboratory Standards Institute (CLSI) and the United States Centers for Disease Control and Prevention (CDC) recommend screening for the production of carbapenemase using the Modified Hodge Test.10,11 If the result of that test is positive, then the presence and type of carbapenemase can be confirmed by polymerase chain reaction.4Herein, we summarize two additional instances in which organisms producing NDM-1 were isolated from patients in Canada and the first where the organism appears to have been acquired in Canada.  相似文献   

17.
The superbug infection caused by New Delhi metallo-β-lactamase (NDM-1) has grown into an emerging threat, labelling and inhibition of NDM-1 has proven challenging due to its shuttling between pathogenic bacteria. Here, we report a potent covalent scaffold, ebsulfur, for targeting the protein in vitro and in vivo. Enzymatic kinetic study indicated that eighteen ebsulfurs gained except 1ab and 1f inhibited NDM-1, exhibiting an IC50 value ranging of 0.16–9 μM, and 1g was found to be the best, dose- and time-dependent inhibitor with an IC50 of 0.16 μM. Also, these ebsulfurs effectively restored the antibacterial activity of cefazolin against E. coli expressing NDM-1, and the best effect was observed to be from 1g, 1i and 1n, resulting in an 256-fold reduction in MIC of the antibiotic at a dose of 16 μg/mL. The equilibrium dialysis study implied that the ebsulfur disrupted the coordination of one Zn(II) ion at active site of NDM-1. Labelling of NDM-1 using a constructed fluorescent ebsulfur Ebs-R suggested that the inhibitor covalently bound to the target through SDS-PAGE analysis in vitro. Also, labelling NDM-1 in living E. coli cells with Ebs-R by confocal microscopic imaging showed the real-time distribution change process of intracellular recombinant protein NDM-1. Moreover, the cytotoxicity of these ebsulfurs against L929 mouse fibroblastic cells was tested, and their capability to restore antibacterial activity of antibiotic against clinical strains E. coli EC08 producing NDM-1 was determined. The ebsulfur scaffold proposed here is valuable for development of the covalent irreversible inhibitors of NDM-1, and also for labelling the target in vitro and in vivo.  相似文献   

18.
The class A β-lactamase BlaC is a cell surface expressed serine hydrolase of Mycobacterium tuberculosis (Mtb), one of the causative agents for Tuberculosis in humans. Mtb has demonstrated increased susceptibility to β-lactam antibiotics upon inactivation of BlaC; thus, making BlaC a rational enzyme target for therapeutic agents. Herein, we present the synthesis and structure-activity-relationship data for the 1st-generation library of bis(benzoyl) phosphates (110). Substituent effects ranged from σp = −0.27 to 0.78 for electronic and π = −0.41 to 1.98 for hydrophobic parameters. Compounds 1, 4 and 5 demonstrated the greatest inhibitory potency against BlaC in a time-dependent manner (kobs = 0.212, 0.324, and 0.450 mn−1 respectively). Combined crystal structure data and mass spectrometric analysis of a tryptic digest for BlaC inactivated with 4 provided evidence that the mechanism of inactivation by this bis(benzoyl) phosphate scaffold occurs via phosphorylation of the active-site Ser-70, ultimately leading to an aged form of the enzyme.  相似文献   

19.
Ho PL  Lo WU  Yeung MK  Lin CH  Chow KH  Ang I  Tong AH  Bao JY  Lok S  Lo JY 《PloS one》2011,6(3):e17989

Background

The emergence of plasmid-mediated carbapenemases, such as NDM-1 in Enterobacteriaceae is a major public health issue. Since they mediate resistance to virtually all β-lactam antibiotics and there is often co-resistance to other antibiotic classes, the therapeutic options for infections caused by these organisms are very limited.

Methodology

We characterized the first NDM-1 producing E. coli isolate recovered in Hong Kong. The plasmid encoding the metallo-β-lactamase gene was sequenced.

Principal Findings

The plasmid, pNDM-HK readily transferred to E. coli J53 at high frequencies. It belongs to the broad host range IncL/M incompatibility group and is 88803 bp in size. Sequence alignment showed that pNDM-HK has a 55 kb backbone which shared 97% homology with pEL60 originating from the plant pathogen, Erwina amylovora in Lebanon and a 28.9 kb variable region. The plasmid backbone includes the mucAB genes mediating ultraviolet light resistance. The 28.9 kb region has a composite transposon-like structure which includes intact or truncated genes associated with resistance to β-lactams (bla TEM-1, bla NDM-1, Δbla DHA-1), aminoglycosides (aacC2, armA), sulphonamides (sul1) and macrolides (mel, mph2). It also harbors the following mobile elements: IS26, ISCR1, tnpU, tnpAcp2, tnpD, ΔtnpATn1 and insL. Certain blocks within the 28.9 kb variable region had homology with the corresponding sequences in the widely disseminated plasmids, pCTX-M3, pMUR050 and pKP048 originating from bacteria in Poland in 1996, in Spain in 2002 and in China in 2006, respectively.

Significance

The genetic support of NDM-1 gene suggests that it has evolved through complex pathways. The association with broad host range plasmid and multiple mobile genetic elements explain its observed horizontal mobility in multiple bacterial taxa.  相似文献   

20.
New Delhi metallo-β-lactamase-1 (NDM-1) as a target for the development of anti-superbug agents, plays an important role in the resistance of β-lactam antibiotics and has received worldwide attention. Sulfhydryl propionic acid derivatives can effectively inhibit the catalytic activity of NDM-1, but the quantitative structure–activity relationship (QSAR) and inhibitor-target recognition mechanism both remain unclear. In this work, CoMFA and CoMSIA models of sulfhydryl propionic acid inhibitors with high predictive ability were obtained, from which the effect of different substituents on the inhibitory activity against NDM-1 were revealed at the molecular level. Then, two 120-nanosecond comparative molecular dynamics (MD) simulations for NDM-1 enzyme and NDM-1-inhibitor complex systems were performed to study the recognition and inhibition mechanism of sulfhydryl propionic acid derivatives. The binding of inhibitors alters the entire H-bond network of the NDM-1 system accompanied by the formation of strong interactions with I35, W93, H120, H122, D124, H189 and H250, further weakens the recognition of NDM-1 by its endogenic substrates. Finally, the results of free energy landscape and conformation cluster analyses show that NDM-1 underwent a significant conformational change after the association with sulfhydryl propionic acid inhibitors. Our findings can provide theoretical support and help for anti-superbug agents design based on the structures of NDM-1 and sulfhydryl propionic acid derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号