首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Architecturalproperties of the triceps surae muscles were determined in vivo for sixmen. The ankle was positioned at 15° dorsiflexion (15°)and 0, 15, and 30° plantar flexion, with the knee set at 0, 45, and90°. At each position, longitudinal ultrasonic images of the medial(MG) and lateral (LG) gastrocnemius and soleus (Sol) muscles wereobtained while the subject was relaxed (passive) and performed maximalisometric plantar flexion (active), from which fascicle lengths andangles with respect to the aponeuroses were determined. In the passivecondition, fascicle lengths changed from 59, 65, and 43 mm (knee,0°; ankle, 15°) to 32, 41, and 30 mm (knee, 90°ankle, 30°) for MG, LG, and Sol, respectively. Fascicle shorteningby contraction was more pronounced at longer fascicle lengths. MG hadgreatest fascicle angles, ranging from 22 to 67°, and was in a verydisadvantageous condition when the knee was flexed at 90°,irrespective of ankle positions. Different lengths and angles offascicles, and their changes by contraction, might be related todifferences in force-producing capabilities of the muscles and elasticcharacteristics of tendons and aponeuroses.

  相似文献   

2.
The architectural properties of the triceps surae muscle were studied in vivo in groups of healthy subjects (eight men) and patients with locomotor function disorders (four men and four women) with the ankle joint positioned at a plantar flexion 0° and the knee set at 90° (neutral position). In this position, using ultrasonic scanning, longitudinal ultrasonic images of the medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus (Sol) muscles were obtained when the subject was relaxed (the passive state) or performed isometric plantar flexion (50% of the maximum voluntary contraction (MVC), the active state). The fascicle lengths, fascicle angles, and muscle thickness were determined. In the passive state, the fascicle lengths of the MG, LG, and Sol muscles in the group of healthy subjects were 33, 35, and 30 mm and the pennation angle, 25°, 19°, and 25°; in the group of patients with motor disorders, 38, 39, and 29 mm and 21°, 19°, and 24°, respectively. The MG, LG, and Sol thicknesses in the group of healthy subjects were 15, 13, and 12 mm, and in the group of patients with motor disorders, 14, 12, and 14 mm, respectively. In the active state (50% of the MVC), the MG, LG, and Sol fiber lengths in the group of healthy subjects shortened by 31, 24, and 18%; the fiber pennation angle increased by 60, 41, and 41%, respectively. In the group of patients with motor disorders, the fiber lengths shortened by 28, 14, and 18% and the fiber pennation angle decreased by 28, 26, and 36%, respectively. The MG, LG, and Sol thicknesses in the group of healthy subjects increased by 9, 22, and 18%, while in the group of patients with motor disorders the thickness decreased by 4% in the MG and increased by 11 and 4% in the LG and Sol muscles, respectively. Different fiber lengths and pennation angles and their changes upon contraction might be related to differences in the force-producing capabilities of the muscles and the viscoelastic properties of muscle tendons and aponeuroses.  相似文献   

3.
The muscles of the triceps surae group are important for performance in most sports and in the performance of activities of daily life. In addition, hypertrophy and balance among these muscles are integral to success in bodybuilding. The purpose of this study was to compare the muscle utilization patterns of the 2 major muscles of the triceps surae group, the soleus (SOL) and gastrocnemius (lateral head = LG and medial head = MG), and the tibialis anterior (TA) as an antagonist muscle to the group. Their electromyographic (EMG) signals were compared during 50 constant external resistance contractions at a level established before the testing session. Eleven experienced subjects contributed data during plantar flexion at 3 different knee angles (90, 135, and 180 degrees ). Both root mean square amplitude and integrated signal analyses of the EMGs revealed that the MG produced significantly greater activity than either the SOL or TA at 180 degrees, whereas the LG was not different from the SOL at any knee angle measured. Data also revealed that the SOL produced less electrical activity at 180 degrees than at the other knee angles, whereas the MG produced greater electrical activity. As would be expected, the TA produced lower EMG values than any of the triceps surae muscles at all angles tested. These data indicate that selective targeting of the SOL and MG is possible through the manipulation of knee angle. This targeting appears to be controlled by the biarticular and monoarticular structures of the MG and SOL, respectively. The LG appears less affected by knee position than the MG. Results suggest that the SOL can be targeted most effectively with the knee flexed at 90 degrees and the MG with the leg fully extended. The LG appears to also be more active at 180 degrees; however, it is not as affected as the MG or SOL by knee angle.  相似文献   

4.
In humans, an inhibitory via Ia afferent pathway from the medial gastrocnemius (MG) to the soleus (SOL) motoneuron pool has been suggested. Herein, we examined the relation between MG fascicle length changes and the SOL H-reflex modulation during passive knee movement. Twelve subjects performed static and passive (5° s?1) knee movement tasks with the ankle immobilized using an isokinetic dynamometer in sitting posture. The maximal H- and M-waves were measured at four target angles (20°, 40°, 60°, and 80° flexion from full knee extension). The MG fascicles length and velocity were measured using a B-mode ultrasonic apparatus. Results demonstrated that the SOL Hmax/Mmax; i.e., ratio of the maximal H- to M-waves, was attenuated with increasing MG fascicle length in static tasks. The SOL Hmax/Mmax at 20° was significantly attenuated compared with 60° and 80° with increasing MG fascicle length and lengthening velocity in passive knee extension. However, no significant differences in the SOL Hmax/Mmax were found across the target angles in the passive knee flexion task. In conclusion, as muscle spindles increase their discharge with lengthening fascicle velocity, but keep silent when fascicles shorten, our data suggest that lengthening the MG facilitates an inhibitory Ia pathway from MG to SOL, and modulates SOL motoneuron activity during movements.  相似文献   

5.
Synergistic behaviour of triceps surae muscles (medial gastrocnemius-MG, lateral gastrocnemius-LG, soleus-SOL) during sustained submaximal plantarflexions was investigated in this study. Six male subjects were asked to sustain an isometric plantar flexor effort to exhaustion at two different knee angles. Exhaustion was defined as the point when they could no longer maintain the required tension. The loads sustained at 0 and 120 degrees of knee flexion represented 50% and 36% of their maximum voluntary contraction (MVC) respectively. MVC was measured at 0 degree knee flexion. During the contractions, electromyograms (EMG) from the surface of the triceps surae muscles were recorded. Changes in the synergistic behaviour of the triceps surae were assessed via partial correlations of the average EMG (AEMG) between three muscle combinations; MG/LG, MG/SOL, LG/SOL, and correlation between SOL/MG + LG and MG/SOL + LG. The latter combinations were based on either common fibre type or innervation properties. Two types of synergisms were identified: trade-off and coactivation. Trade-off and coactivation synergies were defined by significant (p less than 0.05) positive and negative correlations respectively. Coactivation synergism was found to occur predominantly under conditions of high load or reduced length of the triceps surae, and increased with the duration of the contraction. Trade-off synergism was evident when the muscles were at their optimum length and the loads sustained were submaximum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The ankle flexor and extensor muscles are essential for pedal movements associated with car driving. Neuromuscular activation of lower leg muscles is influenced by the posture during a given task, such as the flexed knee joint angle during car driving. This study aimed to investigate the influence of flexion of the knee joint on recruitment threshold-dependent motor unit activity in lower leg muscles during isometric contraction. Twenty healthy participants performed plantar flexor and dorsiflexor isometric ramp contractions at 30 % of the maximal voluntary contraction (MVC) with extended (0°) and flexed (130°) knee joint angles. High-density surface electromyograms were recorded from medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) muscles and decomposed to extract individual motor units. The torque-dependent change (Δpps /Δ%MVC) of the motor unit activity of MG (recruited at 15 %MVC) and SOL (recruited at 5 %MVC) muscles was higher with a flexed compared with an extended knee joint (p < 0.05). The torque-dependent change of TA MU did not different between the knee joint angles. The motor units within certain limited recruitment thresholds recruited to exert plantar flexion torque can be excited to compensate for the loss of MG muscle torque output with a flexed knee joint.  相似文献   

7.
The ankle plantar flexor muscles act synergistically to control quiet and dynamic body balance. Previous research has shown that the medial (MG) and lateral (LG) gastrocnemii, and soleus (SOL) are differentially activated as a function of motor task requirements. In the present investigation, we evaluated modulation of the plantar flexors' activation from feet orientation on the ground in an upright stance and the ensuing reactive response to a perturbation. A single group of young participants (n = 24) was evaluated in a task requiring initial stabilization of body balance against a backward pulling load (5% or 10% of body weight) attached to their trunk, and then the balance was suddenly perturbed, releasing the load. Four feet orientations were compared: parallel (0°), outward orientation at 15° and 30°, and the preferred orientation (M = 10.5°). Results revealed a higher activation magnitude of SOL compared to MG-LG when sustaining quiet balance against the 10% load. In the generation of reactive responses, MG was characterized by earlier, steeper, and proportionally higher activation than LG-SOL. Feet orientation at 30° led to higher muscular activation than the other orientations, while the activation relationship across muscles was unaffected by feet orientation. Our results support the conclusion of task-specific differential modulation of the plantar flexor muscles for balance control.  相似文献   

8.
This study aimed to investigate whether fatigue-induced changes in synergistic muscle forces match their tendon elongation. The medial gastrocnemius muscle (MG) was fatigued by repeated electrical stimulation (1 min×5 times: interval 30 s, intensity: 20–30% of maximal voluntary plantar flexion torque) applied at the muscle belly under a partial occlusion of blood vessels. Before and after the MG fatigue task, ramp isometric contractions were performed voluntarily, during which tendon elongations were determined by ultrasonography, along with recordings of the surface EMG activities of MG, the soleus (SOL) and the lateral gastrocnemius (LG) muscles. The tendon elongation of MG and SOL in post-fatigue ramp was similar, although evoked MG forces dropped nearly to zero. In addition, for a given torque output, the tendon elongation of SOL significantly decreased while that of LG did not, although the activation levels of both muscles had increased. Results suggest that the fatigue-induced changes in force of the triceps surae muscles do not match their tendon elongation. These results imply that the tendons of the triceps surae muscles are mechanically coupled even after selective fatigue of a single muscle.  相似文献   

9.
To examine the muscle synergies of multi-directional postural control, we calculated the target-directed variance fraction (η) and net action direction of each muscle using the electromyogram-weighted averaging (EWA) method. Subjects stood barefoot on a force platform and maintained their posture by producing a center of pressure (COP) in twelve target directions. Surface electromyograms were recorded from 6 right-sided muscles: tibialis anterior (TA), soleus (SOL), lateral gastrocnemius (LG), medial gastrocnemius (MG), fibularis longus (FL), and gluteus medius (GM). η was calculated from COP with duration of 20-s, during which the COP was relatively constant. The EWA method was applied to the EMG and the two COP components to estimate the net action direction of each muscle. The results showed that η values in all directions did not cross the 0.8 threshold. This suggests that human postural control is achieved by synergistic co-activation. The EWA revealed that the net action directions of TA, SOL, LG, MG, and GM were 277.6°, 71.1°, 87.7°, 94.0°, and 2.2°, respectively. This suggests that postural maintenance by muscle synergy can be attributed to the relevant muscles having various action directions. These results demonstrate that muscle synergies can be investigated using COP fluctuations.  相似文献   

10.
The objective of this study was to examine the effect of joint angle on the electromyogram (EMG) and mechanomyogram (MMG) during maximal voluntary contraction (MVC). Eight subjects performed maximal isometric plantar flexor torque productions at varying knee and/or ankle angles. Maximal voluntary torque, EMG, and MMG from the soleus (Sol), medial (MG) and lateral gastrocnemius (LG) muscles were measured at different joint angles. At varying knee angles, the root mean squared (rms) MMG amplitude of the MG and LG increased with knee joint extension from 60 degrees to 180 degrees (full extension) in steps of 30 degrees, whereas that of the Sol was constant. At varying ankle angles, the rms-MMG of all muscles (Sol, MG, and LG) decreased with torque as ankle joint extending from 80 degrees (10 degrees dorsiflexion position) to 120 degrees (30 degrees plantar flexion position) in steps of 10 degrees. In each case, changes in the rms-MMG of the three muscles were almost parallel to those in torque. In contrast, there were no significant differences in the rms-EMG of all muscles among all joint angles. Our data suggest that the MMG amplitudes recorded from individual muscles during MVCs can represent relative torque-angle relationships that cannot be represented by the EMG signals.  相似文献   

11.
Prior to implementing a normalisation method, the standardisation and reliability of the method needs to be examined. This investigation aimed to assess the reliability of EMG amplitudes and test outputs from proposed normalisation methods for the triceps surae. Sixteen participants completed isometric (maximum and sub-maximum); isokinetic (1.05 rad/s, 1.31 rad/s and 1.83 rad/s) squat jump and 20 m sprint conditions, on 3 separate occasions over 1 week. The EMG data was collected from the medial and lateral gastrocnemius (MG and LG) and soleus (SOL). Log transformed typical error measurements (TEMCV%) assessed EMG signal and test output reliability across the three sessions. Only the squat jump provided acceptable EMG reliability for all muscles both between days (SOL: 13%; MG: 14.5%; LG: 11.8%) and between weeks (SOL: 14.5%; MG: 12.9%; LG: 8.9%), with the sprint only showing poor reliability in the LG between days (16.3%). Acceptable reliability for the isometric and isokinetic conditions were muscle and re-test period dependant. Reliable output was found for the squat jump (4.1% and 3.6%), sprint (0.8% and 0.6%) and 1RM plantar flexion test (2.8% and 3.5%) between days and weeks, respectively. Isokinetic plantar flexion displayed poor reliability at all velocities between days and weeks. It was concluded that the squat jump provides a standardised and reproducible reference EMG value for the triceps surae for use as a normalisation method.  相似文献   

12.
Despite differences in the anatomical and physiological characteristics of the medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus (Sol) muscles, it is common practice to investigate them as single triceps surae H-reflex recordings. The aim of this study was to compare the latencies of H-reflex recordings from the Sol, MG, and LG in patients with explicit magnetic resonance imaging (MRI) evidence of unilateral S1 radiculopathy and also compare their diagnostic yield in varied clinical characteristics (i.e., symptom duration and severity of involvement). We found a significant difference between H-reflex latencies of Sol and the two others (p?相似文献   

13.
Changes in fascicle length and tension of the soleus (SOL) muscle have been observed in humans using B-mode ultrasound to examine the knee from different angles. An alternative technique of assessing muscle and tendon stiffness is myometry, which is non-invasive, accessible, and easy to use. This study aimed to estimate the compressive stiffness of the distal SOL and Achilles tendon (AT) using myometry in various knee and ankle joint positions. Twenty-six healthy young males were recruited. The Myoton-PRO device was used to measure the compressive stiffness of the distal SOL and AT in the dominant leg. The knee was measured in two positions (90° of flexion and 0° of flexion) and the ankle joint in three positions (10° of dorsiflexion, neutral position, and 30° of plantar flexion) in random order. A three-way repeated-measures ANOVA test was performed. Significant interactions were found for structure × ankle position, structure × knee position, and structure × ankle position × knee position (p < 0.05). The AT and SOL showed significant increases in compressive stiffness with knee extension over knee flexion for all tested ankle positions (p < 0.05). Changes in stiffness relating to knee positioning were larger in the SOL than in the AT (p < 0.05). These results indicate that knee extension increases the compressive stiffness of the distal SOL and AT under various ankle joint positions, with a greater degree of change observed for the SOL. This study highlights the relevance of knee position in passive stiffness of the SOL and AT.  相似文献   

14.
The present study investigated the differences between the human medial gastrocnemius (MG) and soleus (SOL) muscles in length changes of muscle fascicles and tendinous tissues during twitch contraction induced by an electrical nerve stimulus. Also, the time-course characteristics of twitch torque were related with changes in the length of muscle fascicles and tendinous tissues. No significant difference was observed between MG and SOL in contraction and half relaxation times of the changes in lengths and velocities of both muscle fascicles and tendinous tissues. The time-course of changes in twitch torque was nearly identical to that of the length of muscle fascicles and tendinous tissues. It was suggested that the behavior of MG and SOL during twitch contraction is practically similar in spite of their known physiological and architectural differences, and that the time-course of twitch torque is greatly influenced by the changes in the length of muscle fascicles and tendinous tissues.  相似文献   

15.
The exact mechanical function of synergist muscles within a human limb in vivo is not well described. Recent studies indicate the existence of a mechanical interaction between muscle actuators that may have functional significance and further play a role for injury mechanisms. The purpose of the present study was to investigate if intermuscular force transmission occurs within and between human plantarflexor muscles in vivo. Seven subjects performed four types of either active contractile tasks or passive joint manipulations: passive knee extension, voluntary isometric plantarflexion, voluntary isometric hallux flexion, passive hallux extension, and selective percutaneous stimulation of the gastrocnemius medialis (MG). In each experiment plantar- and hallux flexion force and corresponding EMG activity were sampled. During all tasks ultrasonography was applied at proximal and distal sites to assess task-induced tissue displacement (which is assumed to represent loading) for the plantarflexor muscles [MG, soleus (SOL), and flexor hallucis longus (FHL)]. Selective MG stimulation and passive knee extension resulted in displacement of both the MG and SOL muscles. Minimal displacement of the triceps surae muscles was seen during passive hallux extension. Large interindividual differences with respect to deep plantarflexor activation during voluntary contractions were observed. The present results suggest that force may be transmitted between the triceps surae muscles in vivo, while only limited evidence was provided for the occurrence of force transfer between the triceps surae and the deeper-lying FHL.  相似文献   

16.

Background  

Although the soleus (Sol), medial gastrocnemius (MG), and lateral gastrocnemius (LG) muscles differ in function, composition, and innervations, it is a common practice is to investigate them as single H-reflex recording. The purpose of this study was to compare H-reflex recordings between these three sections of the triceps surae muscle group of healthy participants while lying and standing during three different ankle positions.  相似文献   

17.
Fiber architecture of the extensor musculature of the knee and ankle is examined in two African guenon species—the semiterrestrial Cercopithecus aethiops, and the arboreal C. ascanius. Using histologic and microscopic techniques to measure lengths of sarcomeres, the original lengths of muscle fasciculi and angles of pinnation in quadriceps femoris and triceps surae are reconstructed from direct measurements on cadavers. Calculations of reduced physiological cross-sectional area, mass/predicted effective tetanic tension, maximum excursion, and tendon length/fasciculus + tendon lengths are correlated to preferred locomotor modalities in the wild. For both species, greater morphological differences occur among the bellies of quadriceps femoris—rectus femoris, vastus intermedius, v. lateralis, and v. medialis—than among the bellies of triceps surae—gastrocnemius lateralis, g. medialis, plantaris, and soleus. With regard to quadriceps femoris, few differences occur between species. Interspecific differences in the triceps surae indicate (1) redirection of muscle force to accommodate arboreality in which the substrate is less than body width; (2) muscles more suited for velocity in the semiterrestrial vervets; and (3) muscles used more isotonically in vervets and more isometrically in red-tailed monkeys. The inherent flexibility of muscle may be preadaptive to a primary species shift in locomotor modality until the bony morphology is able to adapt through natural selection. © 1996 Wiley-Liss, Inc.  相似文献   

18.
The interaction between fascicle and tendinous tissues (TT) in short-contact drop jumps (DJ) with three different drop heights [low (Low), optimal (OP), and high (High)] was examined with 11 subjects. The ground reaction force (F(z)) and ankle and knee joint angles were measured together with real-time ultrasonography (fascicle length) and electromyographic activities of the medial gastrocnemius (MG) and vastus lateralis (VL) muscles during the movement. With increasing drop height, the braking force and flight time increased from Low to OP (P < 0.05). In High, the braking force increased but the flight time decreased compared with OP (P < 0.05). During contact of Low and OP conditions, the length of muscle-tendon unit and TT underwent lengthening before shortening in both MG and VL muscles. However, the two muscles differed in the fascicle behaviors. The MG fascicles behaved isometrically or shortened, and the VL fascicles underwent lengthening before shortening during contact. In High, the TT lengthening in both muscles decreased compared with OP (P < 0.05). The rapid stretch occurred in the MG fascicles but not in VL fascicles during the braking phase. The elastic recoil ratio decreased in both muscles with increasing the intensity during DJ. These findings demonstrated that TT underwent lengthening before shortening during DJ. However, the efficacy of elastic recoil decreased with increasing the drop intensity. The effective catapult action in TT can be limited by the drop intensity. In addition, the measured muscles behaved differently during DJ, providing evidence that each muscle may have a specific means of fascicle-TT interaction.  相似文献   

19.
Ultrasonography was used to measure the pennation angle of the human tibialis anterior (TA), lateral gastrocnemius (LG), medial gastrocnemius (MG), and soleus (Sol). The right and left legs of 8 male and 8 female subjects were tested at rest and during maximum voluntary contraction (MVC). Joint angles were chosen to control muscle tendon lengths so that the muscles were near their optimal length within the length-tension relationship. No differences in pennation angle were detected between the right and left legs. Another consistent finding was that the pennation angle at MVC was significantly greater than at rest for all muscles tested. Optimal pennation angles for the TA, MG, and Sol were significantly greater for the men than for the women. Optimal pennation angles for the TA, LG, MG, and Sol for the male subjects were 14.3 degrees, 23.7 degrees, 34.6 degrees, and 40.1 degrees respectively, whereas values of 12.1 degrees, 16.3 degrees, 27.3 degrees, and 26.3 degrees were recorded for the female subjects. The results of this study suggest the following: (1) similar values for pennation angle can be used for the right and left TA, LG, MG, and Sol; (2) pennation angle is significantly greater at MVC than at rest for all muscles tested; and (3) sex-specific values for optimal pennation angle should be used when modeling the force-generating potential of the primary muscles responsible for ankle plantar and dorsiflexion.  相似文献   

20.
Six male subjects made maximal isometric plantar flexions unilaterally (UL) and bilaterally (BL), with the knee joint angle positioned at 90° and 0° (full extension) and the ankle joint kept at 90°. Plantar flexion torque and electromyogram (EMG) of the lateral gastrocnemius (LG) and the soleus (Sol) muscles were recorded. There was a deficit in torque in BL compared to UL (P<0.05), and the deficit was greater when the knee was extended than when bent to 90° (13.9% vs 6.6%). The integrated EMG (iEMG) of UL and BL did not differ when the knee was at 90°. On the other hand, when the knee was extended iEMG of LG was smaller for BL than for UL, suggesting that the larger bilateral deficit when the knee was extended was due to a reduced activity of the LG motor units. In addition, the H-reflex recorded from Sol when the contralateral leg was performing a maximal unilateral plantarflexion was reduced. This would indicate that the force deficit was associated with a reduction of motoneuron excitability. Accepted: 18 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号