共查询到20条相似文献,搜索用时 0 毫秒
1.
With mechanical loading as the main risk factor for LBP in mind, exoskeletons are designed to reduce the load on the back by taking over a part of the required moment. The present study assessed the effect of a passive exoskeleton on back and abdominal muscle activation, hip and lumbar flexion and on the contribution of both the human and the exoskeleton to the L5/S1 net moment, during static bending at five different hand heights. Two configurations of the exoskeleton (LOW & HIGH) differing in angle-torque characteristics were tested. L5/S1 moments generated by the subjects were significantly reduced (15–20% for the most effective type) at all hand heights. LOW generated 4–11 Nm more support than HIGH at 50%, 25% and 0% upright stance hand height and HIGH generated 4–5 Nm more support than LOW at 100% and 75%. Significant reductions (11–57%) in back muscle activity were found compared to WITHOUT for both exoskeletons for some conditions. However, EMG reductions compared to WITHOUT were highly variable across subjects and not always significant. The device allowed for substantial lumbar bending (up to 70°) so that a number of participants showed the flexion-relaxation phenomenon, which prevented further reduction of back EMG by the device and even an increase from 2% to 6% MVC in abdominal activity at 25% hand height. These results indicate that flexion relaxation and its interindividual variation should be considered in future exoskeleton developments. 相似文献
2.
Mechanical loading of the spine has been shown to be an important risk factor for the development of low-back pain. Inertial motion capture (IMC) systems might allow measuring lumbar moments in realistic working conditions, and thus support evaluation of measures to reduce mechanical loading. As the number of sensors limits applicability, the objective of this study was to investigate the effect of the number of sensors on estimates of L5S1 moments.Hand forces, ground reaction forces (GRF) and full-body kinematics were measured using a gold standard (GS) laboratory setup. In the ambulatory setup, hand forces were estimated based on the force plates measured GRF and body kinematics that were measured using (subsets of) an IMC system. Using top-down inverse dynamics, L5S1 flexion/extension moments were calculated.RMSerrors (Nm) were lowest (16.6) with the full set of 17 sensors and increased to 20.5, 22 and 30.6, for 8, 6 and 4 sensors. Absolute errors in peak moments (Nm) ranged from 17.7 to 16.4, 16.9 and 49.3 Nm, for IMC setup’s with 17, 8, 6 and 4 sensors, respectively. When horizontal GRF were neglected for 6 sensors, RMSerrors and peak moment errors decreased from 22 to 17.3 and from 16.9 to 13 Nm, respectively.In conclusion, while reasonable moment estimates can be obtained with 6 sensors, omitting the forearm sensors led to unacceptable errors. Furthermore, vertical GRF information is sufficient to estimate L5S1 moments in lifting. 相似文献
3.
Lumbar spine stability has been extensively researched due to its necessity to facilitate load-bearing human movements and prevent structural injury. The nature of certain human movement tasks are such that they are not equivalent in levels of task-stability (i.e. the stability of the external environment). The goal of the current study was to compare the effects of dynamic lift instability, administered through both the load and base of support, on the dynamic stability (maximal Lyapunov exponents) and stiffness (EMG-driven model) of the lumbar spine during repeated sagittal lifts. Fifteen healthy males performed 23 repetitive lifts with varying conditions of instability at the loading and support interfaces. An increase in spine rotational stiffness occurred during unstable support scenarios resulting in an observed increase in mean and maximum Euclidean norm spine rotational stiffness (p=0.0011). Significant stiffening effects were observed in unstable support conditions about all lumbar spine axes with the exception of lateral bend. Relative to a stable control lifting trial, the addition of both an unstable load as well as an unstable support did not result in a significant change in the local dynamic stability of the lumbar spine (p=0.5592). The results suggest that local dynamic stability of the lumbar spine represents a conserved measure actively controlled, at least in part, by trunk muscle stiffening effects. It is evident therefore that local dynamic stability of the lumbar spine can be modulated effectively within a young-healthy population; however this may not be the case in a patient population. 相似文献
4.
William S Marras Kevin P GranataAuthor vitae 《Journal of electromyography and kinesiology》1997,7(4):259-268
Low back disorders (LBDs) are the most common and costly occupationally-related compensable conditions facing employers today. Over the years several biomechanical assessment models have been developed that intended to assess the load profile imposed upon the spine during lifting and, thus, intended to facilitate the control of LBD risk in the workplace. Many of these biomechanical models have evolved based upon assumptions about how the trunk musculature respond to loads imposed upon the body during lifting. However, few of these models have been able to accurately predict the co-contraction of the trunk musculature which has been shown to have a major influence on the development of spinal loads. Thus, our understanding of how the spine is loaded under realistic dynamic lifting conditions has been deficient. A biologically-assisted or EMG-assisted model has been developed in our laboratory over the past 15 years which endeavours to overcome these traditional problems. The model has been assessed in the sagittal, coronal, and torsional planes of the body. The model development and performance will be reviewed as well as the benefits for controlling occupationally-related LBDs. 相似文献
5.
E. Nelson-Wong K. Poupore S. Ingvalson K. Dehmer A. Piatte S. Alexander P. Gallant B. McClenahan A.M. Davis 《Journal of electromyography and kinesiology》2013,23(6):1317-1324
Observation-based assessments of movement are a standard component in clinical assessment of patients with non-specific low back pain. While aberrant motion patterns can be detected visually, clinicians are unable to assess underlying neuromuscular strategies during these tests. The purpose of this study was to compare coordination of the trunk and hip muscles during 2 commonly used assessments for lumbopelvic control in people with low back pain (LBP) and matched control subjects. Electromyography was recorded from hip and trunk muscles of 34 participants (17 with LBP) during performance of the Active Hip Abduction (AHAbd) and Active Straight Leg Raise (ASLR) tests. Relative muscle timing was calculated using cross-correlation. Participants with LBP demonstrated a variable strategy, while control subjects used a consistent proximal to distal activation strategy during both frontal and sagittal plane movements. Findings from this study provide insight into underlying neuromuscular control during commonly used assessment tests for patients with LBP that may help to guide targeted intervention approaches. 相似文献
6.
Erica Beaucage-Gauvreau William S. P. Robertson Scott C. E. Brandon Robert Fraser Brian J. C. Freeman Ryan B. Graham 《Computer methods in biomechanics and biomedical engineering》2019,22(5):451-464
There is currently no validated full-body lifting model publicly available on the OpenSim modelling platform to estimate spinal loads during lifting. In this study, the existing full-body-lumbar-spine model was adapted and validated for lifting motions to produce the lifting full-body model. Back muscle activations predicted by the model closely matched the measured erector spinae activation patterns. Model estimates of intradiscal pressures and in vivo measurements were strongly correlated. The same spine loading trends were observed for model estimates and reported vertebral body implant measurements. These results demonstrate the suitability of this model to evaluate changes in lumbar loading during lifting. 相似文献
7.
《Animal : an international journal of animal bioscience》2013,7(11):1849-1857
Transport of animals is a stressful procedure often resulting in significant losses for the slaughter plant. This study aimed to determine whether or not pigs would benefit from a loading density (low density (LD)) (179 kg/m2) below the normal EU standard loading density (normal density (ND)) (235 kg/m2). Eight similar, 550-km-long road journeys, were followed in which fattening pigs were transported across Germany from farm to slaughter plant. During each journey all pigs were transported at LD (n=4) or ND (n=4). Twelve female pigs per journey (total n=96) were randomly selected for measurement and monitoring of body temperature, behaviour, heart rate and blood parameters. Throughout the journeys, LD pigs displayed more resting behaviour than ND pigs. Average body temperature was lower (P<0.05) for pigs transported at LD (38.0±0.07°C) than those transported at ND (38.3±0.06°C). During loading heart rate increased in both ND and LD pigs and declined after the vehicle had been closed before departure but remained slightly elevated in ND pigs. Pigs transported at ND displayed signs of stress (elevated HR and body temperatures) during the drivers’ break. Blood parameters were only slightly (not significant) effected by loading density. Results indicate that pigs are more capable of adapting to long (550 km) transport conditions when loaded at a density below the present EU requirement. 相似文献
8.
Current neck injury criteria do not include limits for lateral bending combined with axial compression and this has been observed as a clinically relevant mechanism, particularly for rollover motor vehicle crashes. The primary objectives of this study were to evaluate the effects of lateral eccentricity (the perpendicular distance from the axial force to the centre of the spine) on peak loads, kinematics, and spinal canal occlusions of subaxial cervical spine specimens tested in dynamic axial compression (0.5 m/s). Twelve 3-vertebra human cadaver cervical spine specimens were tested in two groups: low and high eccentricity with initial eccentricities of 1 and 150% of the lateral diameter of the vertebral body. Six-axis loads inferior to the specimen, kinematics of the superior-most vertebra, and spinal canal occlusions were measured. High speed video was collected and acoustic emission (AE) sensors were used to define the time of injury. The effects of eccentricity on peak loads, kinematics, and canal occlusions were evaluated using unpaired Student t-tests. The high eccentricity group had lower peak axial forces (1544±629 vs. 4296±1693 N), inferior displacements (0.2±1.0 vs. 6.6±2.0 mm), and canal occlusions (27±5 vs. 53±15%) and higher peak ipsilateral bending moments (53±17 vs. 3±18 Nm), ipsilateral bending rotations (22±3 vs. 1±2°), and ipsilateral displacements (4.5±1.4 vs. −1.0±1.3 mm, p<0.05 for all comparisons). These results provide new insights to develop prevention, recognition, and treatment strategies for compressive cervical spine injuries with lateral eccentricities. 相似文献
9.
The effect of organic loading rate on foam initiation during mesophilic anaerobic digestion of municipal wastewater sludge 总被引:3,自引:0,他引:3
The impact of increasing organic load on anaerobic digestion foaming was studied at both full and bench scale. Organic loadings of 1.25, 2.5 and 5 kg VS m−3 were applied to bench-scale digesters. Foaming was monitored at a full scale digester operated in a comparable organic loading range over 15 months. The bench scale batch studies identified 2.5 kg VS m−3 as a critical threshold for foam initiation while 5 kg VS m−3 resulted in persistent foaming. Investigation of a full scale foaming event corroborated the laboratory observation that foaming may be initiated at a loading rate of ?2.5 kg VS m−3. Experimental findings on foam composition and differences in the quality characteristics between foaming and non-foaming sludges indicated that foam initiation derived from the combined effect of the liquid and gas phases inside a digester and that the solids/biomass ultimately stabilized foaming. 相似文献
10.
11.
The role of hydrogel structure and dynamic loading on chondrocyte gene expression and matrix formation 总被引:3,自引:0,他引:3
Crosslinked poly(ethylene glycol) (PEG) hydrogels are attractive scaffolds for cartilage tissue engineering because of their ability to mimic the aqueous environment and mechanical properties of native cartilage. In this study, hydrogel crosslinking density was varied to study the influence of gel structure and the application of dynamic loading (continuous, 1 Hz, 15% amplitude strain) on chondrocyte gene expression over 1 week culture. Gene expression was quantified using real-time RT-PCR for collagen II and aggrecan, the major cartilage extracellular matrix (ECM) components, and collagen I, an indicator of chondrocyte de-differentiation. When chondrocytes were encapsulated in PEG gels with low or high crosslinking, a high collagen II expression compared to collagen I expression (1000 or 100,000:1, respectively) indicated the native chondrocyte phenotype was retained. In the absence of loading, relative gene expression for collagen II and aggrecan was significantly higher (e.g., 2-fold and 4-fold, respectively, day 7) in the low crosslinked gels compared to gels with higher crosslinking. Dynamic loading, however, showed little effect on ECM gene expression in both crosslinked systems. To better understand the cellular environment, ECM production was qualitatively assessed using an in situ immunofluorescent technique and standard histology. A pericellular matrix (PCM) was observed as early as day 3 post-encapsulation and the degree of formation was dependent on gel crosslinking. These results suggest the PCM may protect the cells from sensing the applied loads. This study demonstrates that gel structure has a profound effect on chondrocyte gene expression, while dynamic loading has much less of an effect at early culture times. 相似文献
12.
This study investigated the effects of age on upper erector spinae (UES), lower erector spinae (LES) and lower body (gluteus maximus; biceps femoris; and vastus lateralis) muscle activity during a repetitive lifting task. Twenty-four participants were assigned to two age groups: ‘younger’ (n = 12; mean age ± SD = 24.6 ± 3.6 yrs) and ‘older’ (n = 12; mean age = 46.5 ± 3.0 yrs). Participants lifted and lowered a box (13 kg) repetitively at a frequency of 10 lifts per minute for a maximum of 20 min. EMG signals were collected every minute and normalised to a maximum voluntary isometric contraction. A submaximal endurance test of UES and LES was used to assess fatigue. Older participants showed higher levels of UES and LES muscle activity (approximately 12–13%) throughout the task, but less fatigue compared to the younger group post-task completion. When lifting, lower-limb muscle activity was generally higher in older adults, although temporal changes were similar. While increased paraspinal muscle activity may increase the risk of back injury in older workers when repetitive lifting, younger workers may be more susceptible to fatigue-related effects. Education and training in manual materials handling should consider age-related differences when developing training programmes. 相似文献
13.
The association between low back pain and spine movement control suggests that it is important to reliably quantify movement behavior. One method to characterize spine movement behavior is to measure the local dynamic stability (LDS) of spine movement during a repetitive flexion task in which a participant is asked to touch multiple targets repetitively. Within the literature, it has been well established that an individual’s focus of attention (FOA) can modulate their neuromuscular control and affect task performance. The goal of this project was to examine the unknown effect of FOA on LDS measurements and timing error during a repetitive spine flexion task that is commonly used to assess movement control. Fourteen healthy adults (7 male) were instructed to touch two targets (shoulder height and knee height) to the beat of a metronome (4 s/cycle) for 35 consecutive cycles. They completed this task under internal (focus on trunk movement) and external (focus on targets) FOA conditions. Motion capture data of the trunk and sacrum were collected at 120 Hz. The lumbar spine angle was defined as the orientation of the trunk relative to the pelvis. The local divergence exponent (λmax) was calculated from the sum of squares of the 3-dimensional spine angle. Timing error was calculated as the time difference between target touches and metronome beats. Changing an individual’s FOA had no effect on λmax calculations or timing error. Although clear task instructions are important, it is not essential to control for FOA during this movement assessment protocol. 相似文献
14.
Mohamad NI Cronin JB Nosaka KK 《Journal of strength and conditioning research / National Strength & Conditioning Association》2012,26(1):73-79
It may be possible to enhance set and session kinematics and kinetics by engaging in low-intensity aerobic exercise during the interset rest period. The purpose of this study therefore was to quantify the change in session kinematics and kinetics of 35% 1RM and 70% 1RM loading schemes equated by volume, when aerobic exercise or passive rest was undertaken between sets. Twelve male student athletes were recruited for this study. Squat average force, peak force, average power, peak power, total work, and total impulse were quantified using a force plate and linear transducer. Blood lactate samples were taken before set 1, after set 1, after set 2, and after the last set performed. No significant (p < 0.05) differences (0.37-9.24%) were found in any of the kinematic and kinetic variables of interset after active or passive interset rest periods. Significant increases (64-76%) in blood lactate occurred from the inception of exercise to completion, for both the heavy and light loading schemes. However, no significant differences in lactate accumulation were noted, whether active or passive recovery was undertaken in the interest rest period. It was concluded that active recovery in the form of low-intensity cycling offered no additional benefits in terms of lactate clearance and enhancement of set and session kinematics and kinetics. 相似文献
15.
Occupations that involve sustained or repetitive neck flexion are associated with a higher incidence of neck pain. Little in vivo information is available on the impact of static neck flexion on cervical spinal tissue. The aim of this study was to assess changes in mechanical and neuromuscular behaviors to sustained neck flexion in healthy adults. Sixty healthy subjects aged 20–35 years participated in this study. The participants were exposed to static neck flexion at a fixed angle of full flexion for 10 min. Mechanical and neuromuscular responses of the cervical spine to sudden perturbations were measured pre- and post-exposure. Magnitude of load-relaxation during flexion exposure, stiffness, peak head angular velocity, and reflexive activities of cervical muscles were recorded. Effective neck stiffness decreased significantly, especially in female participants (P = 0.0001). The reflexive response of the cervical erector spinae muscles to head perturbation delayed significantly (P = 0.0001). Peak head angular velocity was significantly increased after exposure to neck flexion for 10 min, especially in female participants (P = 0.001). In the present study, static flexion resulted in changes in mechanical and neuromuscular behavior of the cervical spine, potentially leading to decreased stiffness of the cervical spine. The results confirm the importance of maintaining a correct head and neck position during work and improving the work environment to reduce the cervical spinal load and work-related neck pain. 相似文献
16.
《Somatosensory & motor research》2013,30(2):62-69
Background.?The use of relatively lower stimulus presentation numbers in quantitative sensory testing may influence the computation accuracy of participants’ discriminability. The minimum trial number for obtaining a stabilized participant discrimination ability was determined.Materials and methods.?Twelve participants’ ability to discriminate between noxious heat stimuli pairs (45°C/46°C, 46°C/47°C, and 47°C/48°C) was assessed using a six-category confidence rating scale. Heat stimuli were administered to the forearm. Two conditions with presentation numbers of 17 trials per stimulus (representing the median number of trials in previous studies) and 40 trials per stimulus (used in a previous study with a similar protocol) were used.Results and discussion.?Participants’ discriminability stabilized at approximately the 20th trial based on the lowest frequency of indeterminate and non-model conforming results under both conditions. A simple linear regression model showed a statistically significant positive relationship between discriminability for the two conditions (slope?=?0.65, p?<?0.001; constant?=?0.33, p?=?0.02; r2?=?0.51). As a rule of thumb, approximately 20 trials per stimulus intensity could be used to obtain a stabilized discriminability outcome. 相似文献
17.
The effect of stimulus discriminability on strategies for learning multiple temporal discriminations
Paulo Guilhardi Marina Menez Marcelo S. Caetano Russell M. Church 《Behavioural processes》2010,84(1):476-483
The goal was to identify training conditions under which temporal intervals that are signaled by different stimuli are memorized (i.e., the temporal behavior is readily shown to be under stimulus control). Undergraduate students were trained on three signaled temporal discriminations using a peak procedure. The intervals were trained in either blocks of trials or with trials intermixed within the session, and then they were given a transfer test with intermixed trials. There were two levels of stimulus discriminability, defined by the similarity of the stimuli. Most participants memorized the intervals when the discriminations were intermixed within the session, or were easy, but not when the discriminations occurred in blocks and were difficult. In the transfer tests, those participants trained in the difficult discrimination that occurred in blocks of trials typically continued to perform as they did during the last-trained interval, regardless of the stimulus presented. These results are better explained by a memory retrieval than a memory storage account. 相似文献
18.
Transcranial magnetic stimulation (TMS) has revealed differences in the motor cortex (M1) between people with and without low back pain (LBP). There is potential to reverse these changes using motor skill training, but it remains unclear whether changes can be induced in people with LBP or whether this differs between LBP presentations. This study (1) compared TMS measures of M1 (single and paired-pulse) and performance of a motor task (lumbopelvic tilting) between individuals with LBP of predominant nociceptive (n = 9) or nociplastic presentation (n = 9) and pain-free individuals (n = 16); (2) compared these measures pre- and post-training; and (3) explored correlations between TMS measures, motor performance, and clinical features. TMS measures did not differ between groups at baseline. The nociplastic group undershot the target in the motor task. Despite improved motor performance for all groups, only MEP amplitudes increased across the recruitment curve and only for the pain-free and nociplastic groups. TMS measures did not correlate with motor performance or clinical features. Some elements of motor task performance and changes in corticomotor excitability differed between LBP groups. Absence of changes in intra-cortical TMS measures suggests regions other than M1 are likely to be involved in skill learning of back muscles. 相似文献
19.
S. E. Mathiassen T. Aminoff 《European journal of applied physiology and occupational physiology》1997,76(5):434-444
Ten females (25–50 years of age) performed isometric shoulder flexions, holding the right arm straight and in a horizontal
position. The subjects were able to see the rectified surface electromyogram (EMG) from either one of two electrode pairs
above the upper trapezius muscle and were instructed to keep its amplitude constant for 15 min while gradually unloading the
arm against a support. The EMG electrodes were placed at positions representing a “cranial” and a “caudal” region of the muscle
suggested previously to possess different functional properties. During the two contractions, recordings were made of: (1)
EMG root mean square-amplitude and zero crossing (ZC) frequency from both electrode pairs on the trapezius as well as from
the anterior part of the deltoideus, (2) supportive force, (3) heart rate (HR) and mean arterial blood pressure (MAP), and
(4) perceived fatigue. The median responses during the cranial isoelectric contraction were small as compared to those reported
previously in the literature: changes in exerted glenohumeral torque and ZC rate of the isoelectric EMG signal of −2.81% · min−1 (P = 0.003) and 0.03% · min−1 (P= 0.54), respectively, and increases in HR and MAP of 0.14 beats · min−2 (P= 0.10) and 0.06 mmHg · min−1 (P= 0.33), respectively. During the contraction with constant caudal EMG amplitude, the corresponding median responses were
−2.51% · min−1 (torque), 0.01% · min−1 (ZC rate), 0.31 beats · min−2 (HR), and 0.93 mmHg · min−1 (MAP); P=0.001, 0.69, 0.005, and 0.003, respectively. Considerable deviations from the “isoelectric” target amplitude were common
for both contractions. Individuals differed markedly in response, and three distinct subgroups of subjects were identified
using cluster analysis. These groups are suggested to represent different motor control scenarios, including differential
engagement of subdivisions of the upper trapezius, alternating motor unit recruitment and, in one group, a gradual transition
towards a greater involvement of type II motor units. The results indicate that prolonged low-level contractions of the shoulder
muscles may in general be accomplished with a moderate metabolic stress, but also that neuromuscular adaptation strategies
differ significantly between individuals. These results may help to explain why occupational shoulder-neck loads of long duration
cause musculoskeletal disorders in some subjects but not in others.
Accepted: 1 March 1997 相似文献
20.
CHAORONG TANG DEBAO HUANG JIANGHUA YANG SHUJIN LIU SOULAÏMAN SAKR HEPING LI YIHUA ZHOU YUNXIA QIN 《Plant, cell & environment》2010,33(10):1708-1720
Efficient sucrose loading in rubber‐producing cells (laticifer cells) is essential for retaining rubber productivity in Hevea brasiliensis, but the molecular mechanisms underlying the regulation of this process remain unknown. Here, we functionally characterized a putative Hevea SUT member, HbSUT3, mainly in samples from regularly exploited trees. When expressed in yeast, HbSUT3 encodes a functional sucrose transporter that exhibits high sucrose affinity with a Km value of 1.24 mm at pH 4.0, and possesses features typical of sucrose/H + symporters. In planta, when compared to the expression of other Hevea SUT genes, HbSUT3 was found to be the predominant member expressed in the rubber‐containing cytoplasm (latex) of laticifers. The comparison of HbSUT3 expression among twelve Hevea tissues demonstrates a relatively tissue‐specific pattern, i.e. expression primarily in the latex and in female flowers. HbSUT3 expression is induced by the latex stimulator Ethrel (an ethylene generator), and relates to its yield‐stimulating effect. Tapping (the act of rubber harvesting) markedly increased the expression of HbSUT3, whereas wounding alone had little effect. Moreover, the expression of HbSUT3 was found to be positively correlated with latex yield. Taken together, our results provide evidence favouring the involvement of HbSUT3 in sucrose loading into laticifers and in rubber productivity. 相似文献