首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silent chromatin at the middle and ends: lessons from yeasts   总被引:1,自引:0,他引:1       下载免费PDF全文
Eukaryotic centromeres and telomeres are specialized chromosomal regions that share one common characteristic: their underlying DNA sequences are assembled into heritably repressed chromatin. Silent chromatin in budding and fission yeast is composed of fundamentally divergent proteins tat assemble very different chromatin structures. However, the ultimate behaviour of silent chromatin and the pathways that assemble it seem strikingly similar among Saccharomyces cerevisiae (S. cerevisiae), Schizosaccharomyces pombe (S. pombe) and other eukaryotes. Thus, studies in both yeasts have been instrumental in dissecting the mechanisms that establish and maintain silent chromatin in eukaryotes, contributing substantially to our understanding of epigenetic processes. In this review, we discuss current models for the generation of heterochromatic domains at centromeres and telomeres in the two yeast species.  相似文献   

2.
We have cloned and sequenced the alcohol dehydrogenase gene of the fission yeast Schizosaccharomyces pombe. The gene was isolated by transformation and complementation of a Saccharomyces cerevisiae strain which lacked functional alcohol dehydrogenase with an S. pombe gene bank constructed in the autonomously replicating yeast plasmid YEp13. Southern hybridization analysis indicates that S. pombe contains only one alcohol dehydrogenase gene. The structural region of the gene is 50% homologous to the alcohol dehydrogenase encoding genes of the budding yeast S. cerevisiae. The gene exhibits a very strong codon usage bias; with the set of predominantly used codons generally resembling that which S. cerevisiae employs preferentially. All of the differences in codon usage bias between S. pombe and S. cerevisiae are in the direction of greater G + C content in S. pombe codons. It is argued that this observation supports the hypothesis that selection toward uniform codon-anticodon binding energies contributes to codon usage bias and that the optimum binding energy is, on the average, higher in S. pombe than S. cerevisiae.  相似文献   

3.
4.
5.
Homologous mRNA 3'' end formation in fission and budding yeast.   总被引:7,自引:1,他引:6       下载免费PDF全文
T Humphrey  P Sadhale  T Platt    N Proudfoot 《The EMBO journal》1991,10(11):3503-3511
Sequences resembling polyadenylation signals of higher eukaryotes are present downstream of the Schizosaccharomyces pombe ura4+ and cdc10+ coding regions and function in HeLa cells. However, these and other mammalian polyadenylation signals are inactive in S. pombe. Instead, we find that polyadenylation signals of the CYC1 gene of budding yeast Saccharomyces cerevisiae function accurately and efficiently in fission yeast. Furthermore, a 38 bp deletion which renders this RNA processing signal non-functional in S. cerevisiae has the equivalent effect in S. pombe. We demonstrate that synthetic pre-mRNAs encoding polyadenylation sites of S. pombe genes are accurately cleaved and polyadenylated in whole cell extracts of S. cerevisiae. Finally, as is the case in S. cerevisiae, DNA sequences encoding regions proximal to the S. pombe mRNA 3' ends are found to be extremely AT rich; however, no general sequence motif can be found. We conclude that although fission yeast has many genetic features in common with higher eukaryotes, mRNA 3' end formation is significantly different and appears to be formed by an RNA processing mechanism homologous to that of budding yeast. Since fission and budding yeast are evolutionarily divergent, this lower eukaryotic mechanism of mRNA 3' end formation may be generally conserved.  相似文献   

6.
The vacuole of Saccharomyces cerevisiae plays essential roles not only for osmoregulation and ion homeostasis but also down-regulation (degradation) of cell surface proteins and protein and organellar turnover. Genetic selections and genome-wide screens in S. cerevisiae have resulted in the identification of a large number of genes required for delivery of proteins to the vacuole. Although the complete genome sequence of the fission yeast Schizosaccharomyces pombe has been reported, there have been few reports on the proteins required for vacuolar protein transport and vacuolar biogenesis in S. pombe. Recent progress in the S. pombe genome project of has revealed that most of the genes required for vacuolar biogenesis and protein transport are conserved between S. pombe and S. cerevisiae. This suggests that the basic machinery of vesicle-mediated protein delivery to the vacuole is conserved between the two yeasts. Identification and characterization of the fission yeast counterparts of the budding yeast Vps and Vps-related proteins have facilitated our understanding of protein transport pathways to the vacuole in S. pombe. This review focuses on the recent advances in vesicle-mediated protein transport to the vacuole in S. pombe.  相似文献   

7.
The cDNAs and genes encoding the intron lariat-debranching enzyme were isolated from the nematode Caenorhabditis elegans and the fission yeast Schizosaccharomyces pombe based on their homology with the Saccharomyces cerevisiae gene. The cDNAs were shown to be functional in an interspecific complementation experiment; they can complement an S. cerevisiae dbr1 null mutant. About 2.5% of budding yeast S. cerevisiae genes have introns, and the accumulation of excised introns in a dbr1 null mutant has little effect on cell growth. In contrast, many S. pombe genes contain introns, and often multiple introns per gene, so that S. pombe is estimated to contain approximately 40 times as many introns as S. cerevisiae. The S. pombe dbr1 gene was disrupted and shown to be nonessential. Like the S. cerevisiae mutant, the S. pombe null mutant accumulated introns to high levels, indicating that intron lariat debranching represents a rate-limiting step in intron degradation in both species. Unlike the S. cerevisiae mutant, the S. pombe dbr1::leu1+ mutant had a severe growth defect and exhibited an aberrant elongated cell shape in addition to an intron accumulation phenotype. The growth defect of the S. pombe dbr1::leu1+ strain suggests that debranching activity is critical for efficient intron RNA degradation and that blocking this pathway interferes with cell growth.  相似文献   

8.
Squalene synthetase (farnesyl diphosphate:farnesyl diphosphate farnesyltransferase; EC 2.5.1.21) is thought to represent a major control point of isoprene and sterol biosynthesis in eukaryotes. We demonstrate structural and functional conservation between the enzymes from humans, a budding yeast (Saccharomyces cerevisiae), and a fission yeast (Schizosaccharomyces pombe). The amino acid sequences of the human and S. pombe proteins deduced from cloned cDNAs were compared to those of the known S. cerevisiae protein. All are predicted to encode C-terminal membrane-spanning proteins of approximately 50 kDa with similar hydropathy profiles. Extensive sequence conservation exists in regions of the enzyme proposed to interact with its prenyl substrates (i.e., two farnesyl diphosphate molecules). Many of the highly conserved regions are also present in phytoene and prephytoene diphosphate synthetases, enzymes which catalyze prenyl substrate condensation reactions analogous to that of squalene synthetase. Expression of cDNA clones encoding S. pombe or hybrid human-S. cerevisiae squalene synthetases reversed the ergosterol requirement of S. cerevisiae cells bearing ERG9 gene disruptions, showing that these enzymes can functionally replace the S. cerevisiae enzyme. Inhibition of sterol synthesis in S. cerevisiae and S. pombe cells or in cultured human fibroblasts by treatment with the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor lovastatin resulted in elevated levels of squalene synthetase mRNA in all three cell types.  相似文献   

9.
To investigate protein translocation in eukaryotes, we reconstituted a protein translocation system using the permeabilized spheroplasts (P-cells) of the fission yeast Schizosaccharomyces pombe. The precursor of a sex pheromone of Saccharomyces cerevisiae, prepro-alpha-factor, was translocated across the endoplasmic reticulum (ER) of S. pombe posttranslationally, and glycosylated to the same extent as in the ER of S. cerevisiae. This suggested that the size of N-linked core-oligosaccharide in the ER of S. pombe is similar to that in S. cerevisiae. This translocation into the ER of S. pombe was inhibited by puromycin, but the translocation in the P-cells of S. cerevisiae was not inhibited. This difference in sensitivity to puromycin was due to the membrane but not the cytosolic fraction. Our results suggested that the translocation machinery of S. pombe was sensitive to puromycin and different from that of S. cerevisiae.  相似文献   

10.
ABC14.5 (Rpb8) is a eukaryotic subunit common to all three nuclear RNA polymerases. In Saccharomyces cerevisiae, ABC14.5 (Rpb8) is essential for cell viability, however its function remains unknown. We have cloned and characterised the Schizosaccharomyces pombe rpb8(+) cDNA. We found that S.pombe rpb8, unlike the similarly diverged human orthologue, cannot substitute for S.cerevisiae ABC14. 5 in vivo. To obtain information on the function of this RNA polymerase shared subunit we have used S.pombe rpb8 as a naturally altered molecule in heterologous expression assays in S.cerevisiae. Amino acid residue differences within the 67 N-terminal residues contribute to the functional distinction of the two yeast orthologues in S.cerevisiae. Overexpression of the S.cerevisiae largest subunit of RNA polymerase III C160 (Rpc1) allows S.pombe rpb8 to functionally replace ABC14.5 in S.cerevisiae, suggesting a specific genetic interaction between the S.cerevisiae ABC14.5 (Rpb8) and C160 subunits. We provide further molecular and biochemical evidence showing that the heterologously expressed S.pombe rpb8 molecule selectively affects RNApolymerase III but not RNA polymerase I complex assembly. We also report the identification of a S.cerevisiae ABC14.5-G120D mutant which affects RNA polymerase III.  相似文献   

11.
The two model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe appear to have diverged 1000 million years ago. Here, we describe that S.?pombe vectors can be propagated efficiently in S.?cerevisiae as pUR19 derivatives, and the pREP and pJR vector series carrying the S.?cerevisiae LEU2 or the S.?pombe ura4(+) selection marker are maintained in S.?cerevisiae cells. In addition, genes transcribed from the S.?pombe nmt1(+) promoter and derivatives are expressed in budding yeast. Thus, S.?pombe vectors can be used as shuttle vectors in S.?cerevisiae and S.?pombe. Our finding greatly facilitates the testing for functional orthologs of protein families and simplifies the cloning of new S.?pombe plasmids by using the highly efficient in vivo homologous recombination activity of S.?cerevisiae.  相似文献   

12.
In the fission yeast Schizosaccharomyces pombe, cells of opposite mating type communicate via diffusible peptide pheromones prior to mating. We have cloned the S. pombe mam1 gene, which encodes a 1336-amino acid protein belonging to the ATP-binding cassette (ABC) superfamily. The mam1 gene is only expressed in M cells and the gene product is responsible for the secretion of the mating pheromone, M-factor, a nonapeptide that is S-farnesylated and carboxy-methylated on its C-terminal cysteine residue. The predicted Mam1 protein is highly homologous to mammalian multiple drug-resistance proteins and to the Saccharomyces cerevisiae STE6 gene product, which mediates export of a-factor mating pheromone. We show that STE6 can also mediate secretion of M-factor in S. pombe.  相似文献   

13.
We report the identification of a novel nucleolar protein from fission yeast, p17(nhp2), which is homologous to the recently identified Nhp2p core component of H+ACA snoRNPs in Saccharomyces cerevisiae. We show that the fission yeast p17(nhp2) localizes to the nucleolus in live S. cerevisiae or Schizosaccharomyces pombe cells and is functionally conserved since the fission yeast gene can complement a deletion of the NHP2 gene in budding yeast. Analysis of p17(nhp2) during the mitotic cell cycles of living fission and budding yeast cells shows that this protein, and by implication H+ACA snoRNPs, remains localized with nucleolar material during mitosis, although the gross organization of partitioning of p17(nhp2) during anaphase is different in a comparison of the two yeasts. During anaphase in S. pombe p17(nhp2) trails segregating chromatin, while in S. cerevisiae the protein segregates alongside bulk chromatin. The pattern of segregation comparing haploid and diploid S. cerevisiae cells suggests that p17(nhp2) is closely associated with the rDNA during nuclear division.  相似文献   

14.
裂殖酵母作为外源基因表达系统   总被引:1,自引:0,他引:1  
虽然裂殖酵母与酿酒酵母同属于子囊真菌,但比其它的酵母相比,裂殖酵母与更高等的真核细胞有许多相似的性质,使得裂殖酵母在分子生物学研究中成为一种提供信息的、准确的真核实验模型.它在外源基因表达方面同样具有前景.主要介绍了裂殖酵母的优点,其表达载体的性质,以及外源蛋白表达的例子.  相似文献   

15.
We identified 34 new ribosomal protein genes in the Schizosaccharomyces pombe database at the Sanger Centre coding for 30 different ribosomal proteins. All contain the Homol D-box in their promoter. We have shown that Homol D is, in this promoter type, the TATA-analogue. Many promoters contain the Homol E-box, which serves as a proximal activation sequence. Furthermore, comparative sequence analysis revealed a ribosomal protein gene encoding a protein which is the equivalent of the mammalian ribosomal protein L28. The budding yeast Saccharomyces cerevisiae has no L28 equivalent. Over the past 10 years we have isolated and characterized nine ribosomal protein (rp) genes from the fission yeast S.pombe . This endeavor yielded promoters which we have used to investigate the regulation of rp genes. Since eukaryotic ribosomal proteins are remarkably conserved and several rp genes of the budding yeast S.cerevisiae were sequenced in 1985, we probed DNA fragments encoding S.cerevisiae ribosomal proteins with genomic libraries of S.pombe . The deduced amino acid sequence of the different isolated rp genes of fission yeast share between 65 and 85% identical amino acids with their counterparts of budding yeast.  相似文献   

16.
17.
Chiron S  Suleau A  Bonnefoy N 《Genetics》2005,169(4):1891-1901
The translation elongation factor EF-Tu is a GTPase that delivers amino-acylated tRNAs to the ribosome during the elongation step of translation. EF-Tu/GDP is recycled by the guanine nucleotide exchange factor EF-Ts. Whereas EF-Ts is lacking in S. cerevisiae, both translation factors are found in S. pombe and H. sapiens mitochondria, consistent with the known similarity between fission yeast and human cell mitochondrial physiology. We constructed yeast mutants lacking these elongation factors. We show that mitochondrial translation is vital for S. pombe, as it is for human cells. In a genetic background allowing the loss of mitochondrial functions, a block in mitochondrial translation in S. pombe leads to a major depletion of mtDNA. The relationships between EF-Ts and EF-Tu from both yeasts and humans were investigated through functional complementation and coexpression experiments and by a search for suppressors of the absence of the S. pombe EF-Ts. We find that S. cerevisiae EF-Tu is functionally equivalent to the S. pombe EF-Tu/EF-Ts couple. Point mutations in the S. pombe EF-Tu can render it independent of its exchange factor, thereby mimicking the situation in S. cerevisiae.  相似文献   

18.
Recombinational repair was first detected in budding yeast Saccharomyces cerevisiae and was also studied in fission yeast Schizosaccharomyces pombe over the recent decade. The discovery of Sch. pombe homologs of the S. cerevisiae RAD52 genes made it possible not only to identify and to clone their vertebrate counterparts, but also to study in detail the role of DNA recombination in certain cell processes. For instance, recombinational repair was shown to play a greater role in maintaining genome integrity in fission yeast and in vertebrates compared with S. cerevisiae. The present state of the problem of recombinational double-strand break repair in fission yeast is considered with a focus on comparisons between Sch. pombe and higher eukaryotes. The role of double-strand break repair in maintaining genome stability is discussed.  相似文献   

19.
20.
Both the gene and the cDNA encoding the Rpb4 subunit of RNA polymerase II were cloned from the fission yeast Schizosaccharomyces pombe. The cDNA sequence indicates that Rpb4 consists of 135 amino acid residues with a molecular weight of 15,362. As in the case of the corresponding subunits from higher eukaryotes such as humans and the plant Arabidopsis thaliana, Rpb4 is smaller than RPB4 from the budding yeast Saccharomyces cerevisiae and lacks several segments, which are present in the S. cerevisiae RPB4 subunit, including the highly charged sequence in the central portion. The RPB4 subunit of S. cerevisiae is not essential for normal cell growth but is required for cell viability under stress conditions. In contrast, S. pombe Rpb4 was found to be essential even under normal growth conditions. The fraction of RNA polymerase II containing RPB4 in exponentially growing cells of S. cerevisiae is about 20%, but S. pombe RNA polymerase II contains the stoichiometric amount of Rpb4 even at the exponential growth phase. In contrast to the RPB4 homologues from higher eukaryotes, however, S. pombe Rpb4 formed stable hybrid heterodimers with S. cerevisiae RPB7, suggesting that S. pombe Rpb4 is similar, in its structure and essential role in cell viability, to the corresponding subunits from higher eukaryotes. However, S. pombe Rpb4 is closer in certain molecular functions to S. cerevisiae RPB4 than the eukaryotic RPB4 homologues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号