首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plantarflexion resistance of an ankle-foot orthosis (AFO) plays an important role to prevent foot-drop, but its impact on push-off has not been well investigated in individuals post-stroke. The aim of this study was to investigate the effect of plantarflexion resistance of an articulated AFO on ankle and knee joint power of the limb wearing the AFO in individuals post-stroke. Gait analysis was performed on 10 individuals with chronic stroke using a Vicon 3-dimensional motion capture system and a Bertec split-belt instrumented treadmill. They walked on the treadmill under 4 plantarflexion resistance levels (S1 < S2<S3 < S4) set on the AFO with resistance adjustable ankle joints. The ankle and knee joint power calculations were performed using Visual3D, and mean values were plotted across a gait cycle. Statistical analyses revealed significant differences in the peak ankle joint power generation according to the plantarflexion resistance of the AFO (P = 0.008). No significant differences were found in the knee joint power. Peak ankle joint power generation [Median (IQR: Interquartile range)] were S1: 0.0517 (0.0238–0.1071) W/kg, S2: 0.0342 (0.0132–0.0862) W/kg, S3: 0.0353 (0.0127–0.0821) W/kg, and S4: 0.0234 (0.0087–0.06764) W/kg. Reduction of the peak ankle joint power generation appeared to be related to reduction in the peak plantarflexion angular velocity at late stance due to increases in the plantarflexion resistance of the AFO. This study showed that peak ankle joint power generation was significantly, and somewhat systematically, affected by plantarflexion resistance of the AFO in individuals post-stroke.  相似文献   

2.
The Conventional Gait Model (CGM) needs to benefit from large investigations on localization of the hip joint centre (HJC). Incorrect positions from the native equations were demonstrated (Sangeux et al., 2014; Harrington et al., 2007). More accurate equations were proposed but their impact on kinematics and kinetic CGM outputs was never evaluated. This short communication aims at examining if adoption of new HJC equations would alter standard CGM outputs. Sixteen able bodied participants underwent a full 3-D optoelectronic gait analysis followed by a 3-D ultrasound localization of their hips. Data were processed through the open source python package pyCGM2 replicating kinematic and kinetic processing of the native CGM. Compared with 3D ultrasound location, Hara equations improved the accuracy of sagittal plane kinematics (0.6°) and kinetics (0.02 N m kg−1) for the hip. The worst case participant exhibited Harrington’s equations reached a deviation of 3° for the sagittal kinematics. In the coronal plane, Hara and Harrington equations presented similar differences (1°) for the hip whilst Davis equations had the largest deviation for hip abduction (2.7°) and hip abductor moment (0.10 N m kg−1).Both Harrington and Hara equations improved the CGM location of the HJC. Hara equations improved results in the sagittal plane, plus utilise a single anthropometrics measurement, leg length, that may be more robust. However, neither set of equations had significant effect on kinematics. We reported some effects on kinetics, particularly in the coronal plane, which warrant caution in interpreting outputs using different sets of equations.  相似文献   

3.
Runners rarely run to the point of maximum fatigue or exhaustion. However, no studies have investigated how the level of exertion associated with a typical running session influences running mechanics. The purpose of this study was to investigate the effects that running in an exerted state had on the kinematics and joint timing within the lower extremity of uninjured, recreational runners. Twenty runners performed a prolonged treadmill run at a self-selected pace that best represented each runner’s typical training run. The run ended based on heart rate or perceived exertion levels that represented a typical training run. Kinematics and joint timing between the foot, knee, and hip were analyzed at the beginning and end of the run. Increases were primarily observed at the end of the run for the peak angles, excursions, and peak velocities of eversion, tibial internal rotation, and knee internal rotation. No differences were observed for knee flexion, hip internal rotation, or any joint timing relationship. Based on these results, runners demonstrated subtle changes in kinematics in the exerted state, most notably for eversion. However, runners were able to maintain joint timing throughout the leg, which may have been a function of the knee. Thus, uninjured runners normally experience small alterations in kinematics when running with typical levels of exertion. It remains unknown how higher levels of exertion influence kinematics with joint timing and the association with running injuries, or how populations with running injuries respond to typical levels of exertion.  相似文献   

4.
5.
Ankle foot orthoses (AFOs) are designed to improve gait for individuals with neuromuscular conditions and have also been used to reduce energy costs of walking for unimpaired individuals. AFOs influence joint motion and metabolic cost, but how they impact muscle function remains unclear. This study investigated the impact of different stiffness AFOs on medial gastrocnemius muscle (MG) and Achilles tendon (AT) function during two walking speeds. We performed gait analyses for eight unimpaired individuals. Each individual walked at slow and very slow speeds with a 3D printed AFO with no resistance (free hinge condition) and four levels of ankle dorsiflexion stiffness: 0.25 Nm/°, 1 Nm/°, 2 Nm/°, and 3.7 Nm/°. Motion capture, ultrasound, and musculoskeletal modeling were used to quantify MG and AT lengths with each AFO condition. Increasing AFO stiffness increased peak AFO dorsiflexion moment with decreased peak knee extension and peak ankle dorsiflexion angles. Overall musculotendon length and peak AT length decreased, while peak MG length increased with increasing AFO stiffness. Peak MG activity, length, and velocity significantly decreased with slower walking speed. This study provides experimental evidence of the impact of AFO stiffness and walking speed on joint kinematics and musculotendon function. These methods can provide insight to improve AFO designs and optimize musculotendon function for rehabilitation, performance, or other goals.  相似文献   

6.
Many factors influence successful outcomes following transfemoral amputation. One factor is surgical technique. In this study, the influence of limb alignment and surgical technique on a muscle’s capacity to generate force was examined using musculoskeletal modeling. Non-amputee and transfemoral amputee models were analyzed while hip adduction, femur length, and reattached muscle wrap position, tension and stabilization technique were systematically varied. With muscle tension preserved, wrap position and femur length had little influence on muscle capacity. However, limb alignment, muscle tension and stabilization technique notably influenced muscle capacity. Overall, myodesis stabilization provided greater muscle balance and function than myoplasty stabilization.  相似文献   

7.
The Re-Link Trainer (RLT) is a modified walking frame with a linkage system designed to apply a non-individualized kinematic constraint to normalize gait trajectory of the left limb. The premise behind the RLT is that a user’s lower limb is constrained into a physiologically normal gait pattern, ideally generating symmetry across gait cycle parameters and kinematics. This pilot study investigated adaptations in the natural gait pattern of healthy adults when using the RLT compared to normal overground walking. Bilateral lower limb kinematic and electromyography data were collected while participants walked overground at a self-selected speed, followed by walking in the RLT. A series of 2-way analyses of variance examined between-limb and between-condition differences. Peak hip extension and knee flexion were reduced bilaterally when walking in the RLT. Left peak hip extension occurred earlier in the gait cycle when using the RLT, but later for the right limb. Peak hip flexion was significantly increased and occurred earlier for the constrained limb, while peak plantarflexion was significantly reduced. Peak knee flexion and plantarflexion in the right limb occurred later when using the RLT. Significant bilateral reductions in peak electromyography amplitude were evident when walking in the RLT, along with a significant shift in when peak muscle activity was occurring. These findings suggest that the RLT does impose a significant constraint, but generates asymmetries in lower limb kinematics and muscle activity patterns. The large interindividual variation suggests users may utilize differing motor strategies to adapt their gait pattern to the imposed constraint.  相似文献   

8.
The squat is an assessment of lower extremity alignment during movement, however there is little information regarding altered joint kinetics during poorly performed squats. The purpose of this study was to examine changes in joint kinetics and power from altered knee alignment during a squat. Thirty participants completed squats while displacing the knee medially, anteriorly, and with neutral alignment (control). Sagittal and frontal plane torques at the ankle, knee, and hip were altered in the descending and ascending phase of the squat in both the medial and anterior malaligned squat compared to the control squat. Ankle and trunk power increased and hip power decreased in the medial malaligned squat compared to the control squat. Ankle, knee, and trunk power increased and hip power decreased in the anterior malaligned squat compared to the control squat. Changes in joint torques and power during malaligned squats suggest that altered knee alignment increases ankle and trunk involvement to execute the movement. Increased anterior knee excursion during squatting may also lead to persistent altered loading of the ankle and knee. Sports medicine professionals using the squat for quadriceps strengthening must consider knee alignment to reduce ankle and trunk involvement during the movement.  相似文献   

9.
The purpose of the study was to investigate the effects of fatigue on lower extremity joint kinematics, and kinetics during repetitive drop jumps. Twelve recreationally active males (n = 6) and females (n = 6) (nine used for analysis) performed repetitive drop jumps until they could no longer reach 80% of their initial drop jump height. Kinematic and kinetic variables were assessed during the impact phase (100 ms) of all jumps. Fatigued landings were performed with increased knee extension, and ankle plantar flexion at initial contact, as well as increased ankle range of motion during the impact phase. Fatigue also resulted in increased peak ankle power absorption and increased energy absorption at the ankle. This was accompanied by an approximately equal reduction in energy absorption at the knee. While the knee extensors were the muscle group primarily responsible for absorbing the impact, individuals compensated for increased knee extension when fatigued by an increased use of the ankle plantar flexors to help absorb the forces during impact. Thus, as fatigue set in and individuals landed with more extended lower extremities, they adopted a landing strategy that shifted a greater burden to the ankle for absorbing the kinetic energy of the impact.  相似文献   

10.
Altering footwear worn during performance of the barbell back squat has been shown to change motion patterns, but it is not completely understood how this affects biomechanical loading demands. The primary objective was to compare lower back and extremity net joint moments in 24 experienced weightlifters (12M, 12F) who performed 80% one-repetition maximum back squats under three different footwear conditions (barefoot, running shoes, weightlifting shoes). Results showed that there was a significant main effect of footwear condition on the knee extension moment (p = 0.001), where the running and weightlifting shoes produced significantly larger moments than the barefoot condition. There was also a main effect of footwear condition on knee external rotation moments (p = 0.002), where the weightlifting shoe produced significantly larger moments than both other conditions. At the hip, there was also a main effect of footwear condition on the extension moment (p = 0.004), where the barefoot condition produced significantly larger moments than either the running shoe or weightlifting shoe condition. Lastly, there was also a significant main effect of footwear condition on both hip external (p = 0.005) and internal (p = 0.003) rotation moments, where the barefoot condition produced greater internal rotation and less external rotation moments than either shod condition. This study indicates that altering footwear conditions while performing the barbell back squat may redistribute the internal biomechanical loading patterns amongst the lower extremity joints and perhaps alter the musculoskeletal adaptations elicited.  相似文献   

11.
Introduction: Increased ankle muscle coactivation during gait is a compensation strategy for enhancing postural stability in patients after stroke. However, no previous studies have demonstrated that increased ankle muscle coactivation influenced ankle joint movements during gait in patients after stroke.

Purpose: To investigate the relationship between ankle muscle coactivation and ankle joint movements in hemiplegic patients after stroke.

Methods: Seventeen patients after stroke participated. The coactivation index (CoI) at the ankle joint was calculated separately for the first and second double support (DS1 and DS2, respectively) and single support (SS) phases on the paretic and non-paretic sides during gait using surface electromyography. Simultaneously, three-dimensional motion analysis was performed to measure the peak values of the ankle joint angle, moment, and power in the sagittal plane. Ground reaction forces (GRFs) of the anterior and posterior components and centers of pressure (COPs) trajectory ranges and velocities were also measured.

Results: The CoI during the SS phase on the paretic side was negatively related to ankle dorsiflexion angle, ankle plantarflexion moment, ankle joint power generation, and COP velocity on the paretic side. Furthermore, the CoI during the DS2 phase on both sides was negatively related to anterior GRF amplitude on each side.

Conclusion: Increased ankle muscle coactivation is related to decreased ankle joint movement during the SS phase on the paretic side to enhance joint stiffness and compensate for stance limb instability, which may be useful for patients who have paretic instability during the stance phase after stroke.  相似文献   


12.
We developed a Kalman smoothing algorithm to improve estimates of joint kinematics from measured marker trajectories during motion analysis. Kalman smoothing estimates are based on complete marker trajectories. This is an improvement over other techniques, such as the global optimisation method (GOM), Kalman filtering, and local marker estimation (LME), where the estimate at each time instant is only based on part of the marker trajectories. We applied GOM, Kalman filtering, LME, and Kalman smoothing to marker trajectories from both simulated and experimental gait motion, to estimate the joint kinematics of a ten segment biomechanical model, with 21 degrees of freedom. Three simulated marker trajectories were studied: without errors, with instrumental errors, and with soft tissue artefacts (STA). Two modelling errors were studied: increased thigh length and hip centre dislocation. We calculated estimation errors from the known joint kinematics in the simulation study. Compared with other techniques, Kalman smoothing reduced the estimation errors for the joint positions, by more than 50% for the simulated marker trajectories without errors and with instrumental errors. Compared with GOM, Kalman smoothing reduced the estimation errors for the joint moments by more than 35%. Compared with Kalman filtering and LME, Kalman smoothing reduced the estimation errors for the joint accelerations by at least 50%. Our simulation results show that the use of Kalman smoothing substantially improves the estimates of joint kinematics and kinetics compared with previously proposed techniques (GOM, Kalman filtering, and LME) for both simulated, with and without modelling errors, and experimentally measured gait motion.  相似文献   

13.
This study was to investigate the acute effects of wearing shoes on lower limb kinetics, kinematics and muscle activation during a drop jump. Eighteen healthy men performed a drop jump under barefoot and shod conditions. Vertical ground reaction force (GRF) was measured on a force plate during the contact phase of a drop jump, and GRF valuables were calculated for each condition. The angles of the knee and ankle joints, and the foot strike angle (the angle between the plantar surface of the foot and the ground during ground contact) as well as the electromyography of 7 muscles were measured. The shod condition showed a significant larger first peak GRF, longer time to first peak GRF from the initial ground contact and lower initial loading rate than the barefoot condition. The shod condition showed a significant larger ankle joint angle at initial ground contact, smaller knee joint angle between the second peak GRF and take-off as well as smaller foot strike angle at both initial ground contact and take-off than the barefoot condition. There were significant correlations between relative differences in ankle joint at the initial ground contact and relative differences in the initial loading rate. The muscle activity of all muscles during foot ground contact did not differ between two conditions; however, in the shod condition, muscle activation of 150 ms before foot ground contact was significantly higher in the rectus femoris, whereas it was lower in the biceps femoris and tibialis anterior muscles than the barefoot condition. These results indicate that wearing shoes alternates the GRF variables at initial ground contact, joint kinematics at the ground contact and muscle activation before foot ground contact during a drop jump, suggesting that the effects of wearing shoes on drop jump training differ from being barefoot.  相似文献   

14.
Little work has been done to examine the deep squat position (>130° sagittal knee flexion). In baseball and softball, catchers perform this squat an average of 146 times per nine-inning game. To alleviate some of the stress on their knees caused by this repetitive loading, some catchers wear foam knee supports.ObjectivesThis work quantifies the effects of knee support on lower-body joint kinematics and kinetics in the deep squat position.MethodsSubjects in this study performed the deep squat with no support, foam support, and instrumented support. In order to measure the force through the knee support, instrumented knee supports were designed and fabricated. We then developed an inverse dynamic model to incorporate the support loads. From the model, joint angles and moments were calculated for the three conditions.ResultsWith support there is a significant reduction in the sagittal moment at the knee of 43% on the dominant side and 63% on the non-dominant side compared to without support. These reductions are a result of the foam supports carrying approximately 20% of body weight on each side.ConclusionKnee support reduces the moment necessary to generate the deep squat position common to baseball catchers. Given the short moment arm of the patella femoral tendon, even small changes in moment can have a large effect in the tibial-femoral contact forces, particularly at deep squat angles. Reducing knee forces may be effective in decreasing incidence of osteochondritis dissecans.  相似文献   

15.
PurposeBiomechanical impairments are not apparent during walking in people with Joint Hypermobility Syndrome (JHS). This research explored biomechanical alterations during a higher intensity task, vertical jumping.Materials and methodsThis cross-sectional study compared a JHS group (n = 29) to a healthy control group (n = 30). Joint kinematics and kinetics were recorded using a Qualisys motion capture system synchronized with a Kistler platform. Independent sample t-tests and standardised mean differences (SMD) were used for statistical analysis.ResultsNo significant statistical or clinical differences were found between groups in joint kinematics and jump height (p ≥ 0.01). Sagittal hip and knee peak power generation were statistically lower in the JHS group during the compression phase (p ≤ 0.01), but not clinically relevant (SMD < 0.5). Clinically relevant reductions were found in the JHS group knee and ankle peak moments during the compression phase, and hip and knee peak power generation during the push phase (SMD ≥ 0.5), although these were not statistically significant (p ≥ 0.01).ConclusionThe JHS group achieved a similar jump height but with some biomechanical alterations. Further understanding of the joint biomechanical behavior could help to optimize management strategies for JHS, potentially focusing on neuromuscular control and strength/power training.  相似文献   

16.
Inverse Dynamic calculations are routinely used in joint moment and power estimates during gait with anthropometric data often taken from published sources. Many biomechanical analyses have highlighted the need to obtain subject-specific anthropometric data (e.g. Mass, Centre of Mass, Moments of Inertia) yet the types of imaging techniques required to achieve this are not always available in the clinical setting. Differences in anthropometric sets have been shown to affect the reactive force and moment calculations in normal subjects but the effect on a paediatric diplegic cerebral palsy group has not been investigated. The aim of this study was to investigate the effect of using different anthropometric sets on predicted sagittal plane moments during normal and diplegic cerebral palsy gait. Three published anthropometric sets were applied to the reactive force and moment calculations of 14 Cerebral Palsy and 14 Control subjects. Statistically significant differences were found when comparing the different anthropometric sets but variability in the resulting sagittal plane moment calculations between sets was low (0.01–0.07 Nm/kg). In addition, the GDI-Kinetic, used as an outcome variable to assess whether differences were clinically meaningful, indicated no clinically meaningful difference between sets. The results suggest that the effects of using different anthropometric sets on the kinetic profiles of normal and diplegic cerebral palsy subjects are clinically insignificant.  相似文献   

17.
ObjectiveInvestigate the influence of apprehensive gait on activation and cocontraction of lower limb muscles of younger and older female adults.MethodsData of 17 younger (21.47 ± 2.06 yr) and 18 older women (65.33 ± 3.14 yr) were considered for this study. Participants walked on the treadmill at two different conditions: normal gait and apprehensive gait. The surface electromyographic signals (EMG) were recorded during both conditions on: rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), tibialis anterior (TA), gastrocnemius lateralis (GL), and soleus (SO).ResultsApprehensive gait promoted greater activation of thigh muscles than normal gait (F = 5.34 and p = 0.007, for significant main effect of condition; RF, p = 0.002; VM, p < 0.001; VL, p = 0.003; and BF, p = 0.001). Older adults had greater cocontraction of knee and ankle stabilizer muscles than younger women (F = 4.05 and p = 0.019, for significant main effect of groups; VM/BF, p = 0.010; TA/GL, p = 0.007; and TA/SO, p = 0.002).ConclusionApprehensive gait promoted greater activation of thigh muscles and older adults had greater cocontraction of knee and ankle stabilizer muscles. Thus, apprehensive gait may leads to increased percentage of neuromuscular capacity, which is associated with greater cocontraction and contribute to the onset of fatigue and increased risk of falling in older people.  相似文献   

18.
Musculo-tendon forces and joint reaction forces are typically estimated using a two-step method, computing first the musculo-tendon forces by a static optimization procedure and then deducing the joint reaction forces from the force equilibrium. However, this method does not allow studying the interactions between musculo-tendon forces and joint reaction forces in establishing this equilibrium and the joint reaction forces are usually overestimated. This study introduces a new 3D lower limb musculoskeletal model based on a one-step static optimization procedure allowing simultaneous musculo-tendon, joint contact, ligament and bone forces estimation during gait. It is postulated that this approach, by giving access to the forces transmitted by these musculoskeletal structures at hip, tibiofemoral, patellofemoral and ankle joints, modeled using anatomically consistent kinematic models, should ease the validation of the model using joint contact forces measured with instrumented prostheses. A blinded validation based on four datasets was made under two different minimization conditions (i.e., C1 – only musculo-tendon forces are minimized, and C2 – musculo-tendon, joint contact, ligament and bone forces are minimized while focusing more specifically on tibiofemoral joint contacts). The results show that the model is able to estimate in most cases the correct timing of musculo-tendon forces during normal gait (i.e., the mean coefficient of active/inactive state concordance between estimated musculo-tendon force and measured EMG envelopes was C1: 65.87% and C2: 60.46%). The results also showed that the model is potentially able to well estimate joint contact, ligament and bone forces and more specifically medial (i.e., the mean RMSE between estimated joint contact force and in vivo measurement was C1: 1.14BW and C2: 0.39BW) and lateral (i.e., C1: 0.65BW and C2: 0.28BW) tibiofemoral contact forces during normal gait. However, the results remain highly influenced by the optimization weights that can bring to somewhat aphysiological musculo-tendon forces.  相似文献   

19.
Centre of Pressure (CoP) location error is common when using kinematic and kinetic data to predict intersegmental forces and net joint moments during gait. Changes in peak moments due to CoP error have been reported in the literature. However, debate exists as to what levels of error are acceptable. The aim of this study was to examine the impact of CoP error on the kinetic profiles of children with typical development (TD) and children with cerebral palsy (CP) during gait. Three-dimensional kinematic and kinetic data were recorded and simulated CoP errors were applied at 3 mm, 6 mm, 9 mm, 12 mm increments in both positive and negative anteroposterior and mediolateral directions. Absolute differences in maximum kinetic parameters between increments were assessed in conjunction with changes in the Gait Deviation Index-Kinetic (GDI-Kinetic). Changes in GDI-Kinetic above 3.6 points were considered clinically significant. Maximum peak changes of up to 24.8% (CP) and 34.7% (TD) (sagittal plane) and up to 36.8% (CP) and 61.5% (TD) (coronal plane) were demonstrated at the knee. While absolute percentage differences were high at some error increments, GDI-Kinetic results suggested that such large percentage differences may still be clinically acceptable. Children with TD demonstrated clinically significant changes in GDI-Kinetic for CoP displacements of 9 mm and 12 mm, corresponding to 23% and 35% absolute differences in maximum moments. In contrast, the clinically significant threshold was not reached for children with CP that may be related to a slower walking speed. The findings of this study highlight the need for laboratories to consider the thresholds currently used for CoP error, which will help guide quality assurance procedures.  相似文献   

20.
This study determined which knee joint motions lead to anterior cruciate ligament (ACL) rupture with the knee at 25° of flexion. The knee was subjected to internal and external rotations, as well as varus and valgus motions. A failure locus representing the relationship between these motions and ACL rupture was established using finite element simulations. This study also considered possible concomitant injuries to the tibial articular cartilage prior to ACL injury. The posterolateral bundle of the ACL demonstrated higher rupture susceptibility than the anteromedial bundle. The average varus angular displacement required for ACL failure was 46.6% lower compared to the average valgus angular displacement. Femoral external rotation decreased the frontal plane angle required for ACL failure by 27.5% compared to internal rotation. Tibial articular cartilage damage initiated prior to ACL failure in all valgus simulations. The results from this investigation agreed well with other experimental and analytical investigations. This study provides a greater understanding of the various knee joint motion combinations leading to ACL injury and articular cartilage damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号