首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
四氧嘧啶糖尿病大鼠主动脉零应力状态的变化   总被引:4,自引:0,他引:4  
目的和方法:将沿径向切开的糖尿病大鼠及对照大鼠主动脉坏分别转正圩Krebs液中,向其中分别加入缩血管物质及舒血管物质达各种浓度;观察其角度变化。用S-P法对大鼠主动脉壁肌动蛋白进行染色。结果:四氧嘧啶糖尿病大鼠病程4周时主动脉环展开角显著大于对照(P〈0.001)。使用药物后大鼠主动脉坏展开角与使用前相比无明显差异(P〉0.05)。糖尿病大鼠主动脉壁肌动蛋白色较对照组明显加深、染色的光密度显著大于  相似文献   

2.
Studies of various biological tissues have shown that residual strains are important for tissue function. Since a force balance exists in whole wall thickness specimens cut radially, it is evident that layer separation is an important procedure in the understanding of the meaning of residual stresses and strains. The present study investigated the zero-stress state and residual strain distribution in a three-layer model of the pig oesophagus. The middle part of the oesophagus was obtained from six slaughterhouse pigs. Four 3-mm-wide rings were serially cut from each oesophagus. Two of them were used for separating the wall into mucosa-submucosa, inner and outer muscle layers. The remaining two rings were kept as intact rings. The inner and outer circumferences and wall thickness of different layers in intact and separated rings were measured from the digital images in the no-load state and zero-stress state. The opening angle was measured and the residual strain at the inner and outer surface of different layers and the intact wall were computed. Compared with intact sectors (62.8+/-9.8 degrees ), the opening angles were smaller in the inner muscle sectors (37.2+/-11.4 degrees , P<0.01), whereas the opening angles of mucosa-submucosa (63.9+/-6.8 degrees ) and outer muscle sectors (63.9+/-6.8 degrees ) did not differ (P>0.1). Referenced to the zero-stress state of the intact sectors, the inner and outer residual strains of the intact rings was -0.128+/-0.043 and outer residual strain was 0.308+/-0.032. Referenced to the "true" zero-stress state of separated three-layered sectors, the inner residual strain of intact rings were -0.223+/-0.021 (P<0.01) and 0.071+/-0.022 (P<0.01). Referenced to the "true" zero-stress state, the residual strain distribution of different layers in intact rings was shown that the inner surface residual strain was negative at mucosa-submucosa and inner muscle layers and was positive at outer muscle layer, whereas the outer surface residual strain was negative at the mucosa-submucosa layer and positive at the inner and outer muscle layers. For the separated different layered rings, the inner residual strain was negative and outer residual strain was positive; however, the absolute values did not differ (P>0.1). In conclusion, it is possible to microsurgically separate the oesophagus into three layers, i.e., mucosa-submucosa, inner muscle and outer muscle layers, the residual strain differ between the layers, and the residual strain distribution was more uniform after the layers were separated.  相似文献   

3.
The objective of our study was to study the effect of danshen, a Chinese herbal medicine known to prevent hypertension, on the zero-stress state of rat's abdominal aorta. The zero-stress state of a blood vessel represents the release of residual stress on the vessel wall, and is the basic configuration of blood vessel affected solely by intrinsic parameters. At the in vivo state, the rat's abdominal aorta was subjected to blood pressure and flow and longitudinal stress. After dissecting from the abdominal aorta, the aortic specimens were cut into small rings at no-load state, in which the internal pressure, external pressure, and longitudinal stress in a short ring-shaped segment were all zero; by cutting radially to release the residual stress in the wall, the vessel ring opened up into a sector quickly, and the sector's configuration would not change at 20 min after cutting and was defined as the zero-stress state of a blood vessel, which was characterized by its residual strain and opening angle. Then aqueous extract of danshen prepared with methanol was added in the Krebs solution, and the changes of the aorta's zero-stress state were monitored by taking photos routinely for analysis to determine the opening angle and residual strain. Additionally, other sets of samples were tested in a Norepinephrine-Krebs solution as positive control or a Krebs solution as negative control, respectively. It was demonstrated that the zero-stress state of rat's abdominal aorta was affected by danshen extract and norepinephrine in two different patterns, while the Krebs solution did not have similar effects. The present work provides a new approach to study the anti-hypertension effect and mechanism of danshen.  相似文献   

4.
The oesophagus is subjected to large axial strains in vivo and the zero-stress state is not a closed cylinder but an open circular cylindrical sector. The closed cylinder with no external loads applied is called the no-load state and residual strain is the difference in strain between the no-load state and zero-stress state. To understand oesophageal physiology and pathophysiology, it is necessary to know the distribution of axial strain, the zero-stress state, the stress-strain relations of oesophageal tissue, and the changes of these states and relationships due to biological remodeling of the tissue under stress. This study is addressed to such biomechanical properties in normal rabbits. The oesophagi were marked on the surface in vivo, photographed, excised (in vitro state), photographed again, and sectioned into rings (no-load state) in an organ bath containing calcium-free Kreb's solution with dextran and EGTA added. The rings were cut radially to obtain the zero-stress state for the non-separated wall and further dissected to separate the muscle and submucosa layers. Equilibrium was awaited for 30min in each state and the specimens were photographed in no-load and the zero-stress states. The oesophageal length, circumferences, layer thicknesses and areas, and openings angle were measured from the digitised images. The oesophagus shortened axially by 35% after excision. The in vivo axial strain showed a significant variation with the highest values in the mid-oesophagus (p<0.001). Luminal area, circumferences, and wall and layer thicknesses and areas varied in axial direction (in all tests p<0.05). The residual strain was compressive at the mucosal surface and tensile at the serosal surface. The dissection studies demonstrated shear forces between the two layers in the non-separated wall in the no-load and zero-stress states. In conclusion, our data show significant axial variation in passive morphometric and biomechanical properties of the oesophagus. The oesophagus is a layered composite structure with nonlinear and anisotropic mechanical behaviour.  相似文献   

5.
Zero-stress states of human pulmonary arteries and veins   总被引:1,自引:0,他引:1  
The zero-stressstates of the pulmonary arteries and veins fromorder3 toorder9 were determined in six normal humanlungs within 15 h postmortem. The zero-stress state of each vessel was obtained by cutting the vessel transversely into a series of short rings, then cutting each ring radially, which caused the ring to springopen into a sector. Each sector was characterized by its opening angle.The mean opening angle varied between 92 and 163° in the arterialtree and between 89 and 128° in the venous tree. There was atendency for opening angles to increase as the sizes of the arteriesand veins increased. We computed the residual strains based on theexperimental measurements and estimated the residual stresses accordingto Hooke's law. We found that the inner wall of a vessel at the statein which the internal pressure, external pressure, and longitudinalstress are all zero was under compression and the outer wall was intension, and that the magnitude of compressive stress was greater thanthe magnitude of tensile stress.

  相似文献   

6.
《Biorheology》1996,33(6):439-449
If an artery is cut transversely into rings, and the rings are then cut radially, they spring open into sectors. This phenomenon implies the existence of residual stresses and strains in the arterial wall in the non-loaded state. In the present paper, we propose a new method to calculate the residual strain from the measured wall dimensions and a polar angle of a specimen in the stress-free state, assuming that the wall is homogeneous and incompressible, and that a radially cut, stress-free specimen forms a circular sector. For this analysis, edge angles were measured at the edges of the opened-up specimen. Residual strains were obtained for the descending thoracic aorta, the common carotid artery, and the femoral artery in the rabbit. The results obtained indicated that the magnitude of residual strain was largest in the femoral artery and smallest in the aorta among the three arteries. The opening angle did not depend upon the length of a ring specimen if the ratio of the length to the diameter was ≤ 3.  相似文献   

7.
Species dependence of the zero-stress state of aorta: pig versus rat.   总被引:12,自引:0,他引:12  
The zero-stress state of an aorta can be characterized by the angle with which each segment of the vessel opens up when it is cut radially. The opening angle varies with the region of the aorta: significantly with respect to the axial location, less significantly with respect to polar angle of the radial cut. Both pig and rat aortas have large opening angles in the neighborhood of 130 deg in the aortic arch region. In the thoracic region, the species difference is evident. The opening angle of the pig aorta in the middle thoracic region is rather constant in the neighborhood of 60 deg. The opening angle of the rat aorta in the thoracic region varies considerably, decreasing to 10 deg at the lower end of the thoracic region. In the abdominal region the opening angle of the pig increases from 60 to about 80 deg, that of the rat increases from about 10 to 90 deg. The potassium ion has effect on vascular smooth muscle, but has little effect on the opening angle. This suggests that the opening angle is not sensitive to smooth muscle contraction, similar to a previously known result that the opening angle is not affected by papaverine. The vessel wall thickness and vessel diameter were measured. It is shown that the ratio of the wall thickness to diameter of the pig is considerably larger than that of the rat throughout the aorta.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Gregersen H  Zhao J  Lu X  Zhou J  Falk E 《Biorheology》2007,44(2):75-89
Atherosclerosis is the most frequent cause of death and severe chronic disability in North America and Europe. The atherosclerosis-prone apolipoprotein E (apoE)-deficient mice contain the entire spectrum of lesions observed during atherogenesis. Significant remodelling of the artery occurs in atherosclerosis. The aim was to study the remodelling of the zero-stress state of the aorta in apoE-deficient mice up to 56 weeks of age. Normal wild-type mice served as control groups. The mice were euthanised at ages 10, 28 and 56 weeks and tissue rings where excised from several locations along the aorta. The rings where photographed in the no-load state (without any external forces applied), then cut radially to obtain the zero-stress state and photographed again. The cross-sectional wall area and wall thickness increased over time in apoE-deficient mice compared to controls (P<0.001). The residual strains at the inner and outer surface varied as function of aortic location both in controls and apoE-deficient mice (P<0.001). From age 28 to age 56 weeks a gradual increase in positive strain at the outer surface and negative strain at the inner surface was found in the apoE-deficient mice when compared to age-matched control mice (P<0.001). Furthermore, the inner residual strain in the plaque location was significantly smaller than in the non-plaque location in the rings with atherosclerotic plaques (P<0.001). The change over time of the opening angle was especially pronounced in the aortic arch. The opening angle increased to app. 200 degrees in the aortic arch in apoE-deficient mice at 56 weeks of age whereas it in age-matched controls was app. 125 degrees. Correspondingly, atherosclerotic plaques were prominent in the apoE-deficient mice, especially at week 56 in the ascending aorta and the aortic arch. In conclusion, a pronounced remodelling of the biomechanical properties in aorta was found in apoE-deficient mice. The stress gradient across the vessel wall in the plaque region is likely larger in vivo due to the smaller residual strain in the plaque area.  相似文献   

9.
The no-load state and zero-stress state of the normal rat trachea were analyzed. It was found that there exist compressive residual strains in the inner wall region of the rat trachea and tensile residual strains in the outer wall region. The fact that the opening angle of the rat trachea cut at the cartilaginous region is significantly larger than that cut at the muscular portion shows that residual strains exist mainly in the muscular region in the rat trachea. It was also indicated that the opening angles and residual strains expressed by cutting at the muscular portion are basically identical along longitudinal location and those expressed by cutting in the cartilaginous region tend to increase in the longitudinal direction in the normal rat, and that there exists quantitatively positive correlation between the opening angles and residual strains in rat trachea. The results will help to further understand the opening angles and residual strains in the trachea and study tracheal remodeling in response to mechanical environment.  相似文献   

10.
The no-load state and zero-stress state o1 the normal rat trachea were analyzed. It was found that there exist compressive residual strains in the inner wall region of the rat trachea and tensile residual strains in the outer wall region. The fact that the opening angle of the rat trachea cut at the cartilaginous region is significantly larger than that cut at the muscular portion shows that residual strains exist mainly in the muscular region in the rat trachea. It was also indicated that the opening angles and residual strains expressed by cutting at the muscular portion are basically identical along longitudinal location and those expressed by cutting in the cartilaginous region tend to increase in the longitudinal direction in the normal rat, and that there exists quantitatively positive correlation between the opening angles and residual strains in rat trachea. The results will help to further understand the opening angles and residual strains in the trachea and study tracheal remodeling in response  相似文献   

11.
Some pathological conditions may affect osmolarity, which can impact cell, tissue, and organ volume. The hypothesis of this study is that changes in osmolarity affect the zero-stress state and mechanical properties of the aorta. To test this hypothesis, a segment of mouse abdominal aorta was cannulated in vivo and mechanically distended by perfusion of physiological salt (NaCl) solutions with graded osmolarities from 145 to 562 mosM. The mechanical (circumferential stress, strain, and elastic modulus) and morphological (wall thickness and wall area) parameters in the loaded state were determined. To determine the osmolarity-induced changes of zero-stress state, the opening angle was observed by immersion of the sectors of mouse, rat, and pig thoracic aorta in NaCl solution with different osmolarities. Wall volume and tissue water content of the rings were also recorded at different osmolarities. Our results show that acute aortic swelling due to low osmolarity leads to an increase in wall thickness and area, a change in the stress-strain relationship, and an increase in the elastic modulus (stiffness) in mouse aorta. The opening angle, wall volume, and water content decreased significantly with increase in osmolarity. These findings suggest that acute aortic swelling and shrinking result in immediate mechanical changes in the aorta. Osmotic pressure-induced changes in the zero-stress state may serve to regulate mechanical homeostasis.  相似文献   

12.
Postsurgical changes of the opening angle of canine autogenous vein graft.   总被引:2,自引:0,他引:2  
The opening angles of 30 canine autogenous vein grafts were measured to determine the postsurgical change of residual strain in the vein graft. Canine femoral veins were grafted to femoral arteries in the end-to-end anastomosis fashion. When harvested, the vein grafts were cut into short segments and the segments were cut open radially. The opened-up configurations were taken as the zero-stress states of the vessels. Opening angle, defined as the angle between the two lines from the middle point to the tips of the inner wall, was used to describe the zero-stress states. Results show that the opening angles (mean +/- SD) are 63.0 +/- 30.6 deg for normal femoral veins, and -0.4 +/- 4.6, 6.1 +/- 19.4, 25.4 +/- 20.1, and 47.8 +/- 11.4 deg for vein grafts at 1 day, 1 week, 4 and 12 weeks postsurgery, respectively. The postsurgical changes in opening angle reveal nonuniform transmural tissue remodeling in the vascular wall. The relations between the changes in opening angle and the changes in the morphology of the vein grafts are discussed. Intimal hyperplasia is correlated to the opening angle and is suggested to be the main factor for the postsurgical increase in opening angle. The longitudinal strain in the vein graft is found to decrease postsurgically.  相似文献   

13.
This paper introduces a new method, termed Twice Cutting, for obtaining the zero-stress states of cartilage and muscle of trachea. The method applied cuts at the two junctions of tracheal cartilage and muscle perpendicular to the tangent lines of cartilage at its tips. The cartilaginous and muscular opening angles are defined for the first time in Twice Cutting methods. Based on the analysis of cartilaginous and muscular geometric information in no-load and zero-stress states, it is found that there are compressive and tensile residual strains in the inner and outer walls of the cartilage respectively. Residual strains at the muscular inner wall of tracheal rings near bifurcation are negative, whereas those of other rings are positive, and residual strains at outer wall of all rings are positive. This phenomenon of tracheal muscle residual strains is different from those of vessel etc. The results also show that the absolute values of cartilaginous strains are considerably smaller than that of muscular ones, with the ratio being around 0.05. The values of all the tracheal parameters, including residual strains and opening angles, are reducing with the increasing value of tracheal rings’ position. So the consequences obtained in this paper not only indicate that the trachea is a non-uniform tissue along the circumferential and axial directions, but also reveal the differences between the trachea and other living tissues, such as vessel, esophagus. This is a basic research for further work, such as determining stress in trachea, to which the cartilaginous and muscular zero-stress states should be referred.  相似文献   

14.
Examination of changes occurring in the zero-stress state of an organ provides a way to study cellular growth in the organ due to change of physical stresses. The zero-stress state of the aorta is not a tube. It is a sector with an opening angle that varies with the location on the aorta and changes with cellular remodeling. Blood vessel remodeling can be induced by imposing a constriction on the abdominal aorta by a metal clip (aortic banding), which causes an increase of blood pressure, hypertrophy of the aortic wall, and large change of opening angle. The correlation of the opening angle with the blood vessel wall thickness and blood pressure changes in rat's aorta due to aortic banding is presented in this report. The opening angle changes daily following the aortic banding. Blood pressure rises in vessels of the upper body, but that in the lower body decreases at first and then rises to an asymptotic value. Blood vessel wall thickness increases in rough proportion to blood pressure. Vessel diameter changes also. But the most dramatic is the course of change of the zero-stress state. Typically, the time to reach 50 percent of asymptotic hypertrophy of blood vessel wall thickness is about 3-5 days. The corresponding time for blood pressure is about 7 days. The opening angle of the zero-stress state, however, increases rapidly at first, reaches a peak in about 2 to 4 days, then decreases gradually to a reduced asymptote. The exact values of the time constants depend on the location along the aortic tree. In general, the course of change of residual strain is very different from those of the blood pressure and the blood vessel wall thickness.  相似文献   

15.
The zero-stress state of a blood vessel has been extensively studied because it is the reference state for which all calculations of intramural stress and strain must be based. It has also been found to reflect nonuniformity in growth and remodeling in response to chemical or physical changes. The zero-stress state can be characterized by an opening angle, defined as the angle subtended by two radii connecting the midpoint of the inner wall. All prior studies documented the zero-stress state or opening angle with no regard to duration of the no-load state. Our hypotheses were that, given the viscoelastic properties of blood vessels, the zero-stress state may have "memory" of prior circumferential and axial loading, i.e., duration of the no-load state influences opening angle. To test these hypotheses, we considered ring pairs of porcine coronary arteries to examine the effect of duration in the no-load state after circumferential distension. Our results show a significant reduction in opening angle as duration of the no-load state increases, i.e., vessels that are reduced to the zero-stress state directly from the loaded state attain much larger opening angles at 30 min after the radial cut than rings that are in the no-load state for various durations. To examine the effect of axial loading, we found similar reductions in opening angle with duration in the no-load from the in situ state, albeit the effect was significantly smaller than that of circumferential loading. Hence, we found that the zero-stress state has memory of both circumferential and axial loading. These results are important for understanding viscoelastic properties of coronary arteries, interpretation of the enormous data on the opening angle and strain in the literature, and standardization of future measurements on the zero-stress state.  相似文献   

16.
Han and Fung (1991)[1] studied the zero-stressstates of porcine and canine tracheas by cutting themidpoints of cartilage and muscle respectively. Themethod of Fung, termed Once Cutting method in thispaper, was also used by Liu, Wang and Teng (2002)[2]in studying residual strain of rat tracheas. They all re-ported that the no-load state of trachea is not itszero-stress state, but the residual stress (strain) existsin no-load tracheal ring. The tracheal ring would openup into a figure of “C…  相似文献   

17.
Zhao J  Lu X  Zhuang F  Gregersen H 《Biorheology》2000,37(5-6):385-400
Morphometric and passive biomechanical properties were studied in isolated segments of the thoracic and abdominal aorta, left common carotid artery, left femoral artery and the left pulmonary artery in 20 non-diabetic and 28 streptozotocin (STZ)-induced diabetic rats. The diabetic and non-diabetic rats were divided into groups living 1, 4, 8, and 12 weeks after the induction of diabetes (n = 7 for each diabetic group) or sham injection (n = 5 for each group). The mechanical test was performed as a distension experiment where the proximal end of the arterial segment was connected via a tube to the container used for applying pressures to the segment and the distal end was left free. The vessel diameter and length were obtained from digitized images of the arterial segments at pre-selected pressures and at no-load and zero-stress states. Circumferential and longitudinal stresses (force per area) and strains (deformation) were computed from the length, diameter and pressure data and from the zero-stress state data. The zero-stress state was obtained by cutting vessel rings radially causing the rings to open up into a sector. Diabetes was associated with pronounced morphometric changes, e.g., wall thickness. With respect to the biomechanical data, the opening angle increased and reached a plateau in 4 weeks after which it decreased again (p < 0.05). The opening angle was smallest in the thoracic aorta and largest in the pulmonary artery. Furthermore, it was found that the circumferential stiffness of the arteries studied increased with the duration of diabetes. In the longitudinal direction significant differences were found 8 weeks after injection of STZ in all arteries except the pulmonary artery. In the 12 weeks group, the femoral artery was stiffest in the circumferential direction whereas the thoracic aorta was stiffest in the longitudinal direction. The accumulated serum glucose level correlated with the arterial wall thickness and elastic modulus (correlation coefficient between 0.56 and 0.81).  相似文献   

18.
Intestinal stress-strain distributions are important determinants of intestinal function and are determined by the mechanical properties of the intestinal wall, the physiological loading conditions and the zero-stress state of the intestine. In this study the distribution of morphometric measures, residual circumferential strains and stress-strain relationships along the rat large intestine were determined in vitro. Segments from four parts of the large intestine were excised, closed at both ends, and inflated with pressures up to 2kPa. The outer diameter and length were measured. The zero-stress state was obtained by cutting rings of large intestine radially. The geometric configuration at the zero-stress state is of fundamental importance because it is the basic state with respect to which the physical stresses and strains are defined. The outer and inner circumferences, wall thickness and opening angle were measured from digitised images. Subsequently, residual strain and stress-strain distributions were calculated. The wall thickness and wall thickness-to-circumference ratio increased in the distal direction. The opening angle varied between approximately 40 and approximately 125 degrees with the highest values in the beginning of proximal colon (F=1.739, P<0.05). The residual strain at the inner surface was negative indicating that the mucosa-submucosal layers of the large intestine in no-load state are in compression. The four segments showed stress-strain distributions that were exponential. All segments were stiffer in longitudinal direction than in the circumferential direction (P<0.05). The transverse colon seemed stiffest both in the circumferential and longitudinal directions. In conclusion, significant variations were found in morphometric and biomechanical properties along the large intestine. The circumferential residual strains and passive elastic properties must be taken into account in studies of physiological problems in which the stress and strain are important, e.g. large intestinal bolus transport function.  相似文献   

19.
Alterations in airway wall anatomic properties and the consequential effects on airway narrowing have been assessed by use of computational models. In these models, it is generally assumed that at zero transmural pressure the airway wall exists in a zero-stress state. Many studies have shown that this is often not the case, as evidenced by a nonzero opening angle. In this study, we measured the opening angle of airway rings at zero transmural pressure to test this assumption. The airway tree was dissected from human, pig, sheep, and rabbit lungs. Airways were excised from the tree, and the opening angle was measured. There were obvious species and regional differences in opening angle. Rabbit airways from both extraparenchymal and intraparenchymal sites exhibited marked opening angles (7-82 degrees). Extraparenchymal airways from sheep had large opening angles (up to 50 degrees), but ovine intraparenchymal airways had small opening angles. Measurable opening angles were rarely observed in human and porcine airways of any size. The assumption of a stable zero-stress state at zero transmural pressure is therefore valid for human and porcine, but not rabbit and sheep, airways.  相似文献   

20.
The transmural distributions of stress and strain at the in vivo state have important implications for the physiology and pathology of the vessel wall. The uniform transmural strain hypothesis was proposed by Takamyzawa and Hayashi (Takamizawa K and Hayashi K. J Biomech 20: 7-17, 1987; Biorheology 25: 555-565, 1988) as describing the state of arteries in vivo. From this hypothesis, they derived the residual stress and strain at the no-load condition and the opening angle at the zero-stress state. However, the experimental evidence cited by Takamyzawa and Hayashi (J Biomech 20: 7-17, 1987; and Biorheology 25: 555-565, 1988) to support this hypothesis was limited to arteries whose opening angles (theta) are <180 degrees. It is well known, however, that theta > 180 degrees do exist in the cardiovascular system. Our hypothesis is that the transmural strain distribution cannot be uniform when theta; is >180 degrees. We present both theoretical and experimental evidence for this hypothesis. Theoretically, we show that the circumferential stretch ratio cannot physically be uniform across the vessel wall when theta; exceeds 180 degrees and the deviation from uniformity will increase with an increase in theta; beyond 180 degrees. Experimentally, we present data on the transmural strain distribution in segments of the porcine aorta and coronary arterial tree. Our data validate the theoretical prediction that the outer strain will exceed the inner strain when theta > 180 degrees. This is the converse of the gradient observed when the residual strain is not taken into account. Although the strain distribution may not be uniform when theta exceeds 180 degrees, the uniformity of stress distribution is still possible because of the composite nature of the blood vessel wall, i.e., the intima-medial layer is stiffer than the adventitial layer. Hence, the larger strain at the adventitia can result in a smaller stress because the adventitia is softer at physiological loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号