首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Functional asymmetry of G‐protein‐coupled receptor (GPCR) dimers has been reported for an increasing number of cases, but the molecular architecture of signalling units associated to these dimers remains unclear. Here, we characterized the molecular complex of the melatonin MT1 receptor, which directly and constitutively couples to Gi proteins and the regulator of G‐protein signalling (RGS) 20. The molecular organization of the ternary MT1/Gi/RGS20 complex was monitored in its basal and activated state by bioluminescence resonance energy transfer between probes inserted at multiple sites of the complex. On the basis of the reported crystal structures of Gi and the RGS domain, we propose a model wherein one Gi and one RGS20 protein bind to separate protomers of MT1 dimers in a pre‐associated complex that rearranges upon agonist activation. This model was further validated with MT1/MT2 heterodimers. Collectively, our data extend the concept of asymmetry within GPCR dimers, reinforce the notion of receptor specificity for RGS proteins and highlight the advantage of GPCRs organized as dimers in which each protomer fulfils its specific task by binding to different GPCR‐interacting proteins.  相似文献   

2.
A series of 7-azaindolic ligands bearing a methoxy group and a N-acetyl chain as melatoninergic pharmacophores were synthesized and their binding affinities towards MT1 and MT2 receptors were evaluated. Compounds 7a-c and 12 (cyclohexyl ring connected at C-2 and C-3 position) appears as important melatonin MT2 and MT1 receptors agonists. On the other hand, the presence of basic groups (amines) at position C-3 was detrimental to the melatoninergic affinities.  相似文献   

3.
Herein we describe the synthesis of novel tricyclic analogues issued from the rigidification of the methoxy group of the benzofuranic analogue of melatonin as MT1 and MT2 ligands. Most of the synthesized compounds displayed high binding affinities at MT1 and MT2 receptors subtypes. Compound 6b (MT1, Ki = 0.07 nM; MT2, Ki = 0.08 nM) exhibited with the vinyl 6c and allyl 6d the most interesting derivatives of this series. Functional activity of these compounds showed full agonist activity with EC50 in the nanomolar range. Compounds 6a (EC50 = 0.8 nM and Emax = 98%) and 6b (EC50 = 0.2 nM and Emax = 121%) exhibited good pharmacological profiles.  相似文献   

4.
Prokineticin 1 (pk1) and prokineticin 2 (pk2) interact with two structurally related G-protein coupled receptors, prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). Cellular signalling studies show that the activated receptors can evoke Ca2+-mobilization, pertussis toxin-sensitive ERK phosphorylation, and intracellular cAMP accumulation, which suggests the partecipation of several G protein subtypes, such as Gq/11, Gi/o and Gs. However, direct interactions with these transduction proteins have not been studied yet. Here we measured by bioluminescence resonance energy transfer (BRET) the association of PKR1 and PKR2 with different heterotrimeric Gα proteins in response to pk1 and pk2 activation. Using host-cell lines carrying gene deletions of Gαq/11 or Gαs, and pertussis toxin treatment to abolish the receptor interactions with Gαi/o, we determined that both receptors could couple with comparable efficiency to Gq/11 and Gi/o, but far less efficiently to Gs or other pertussis toxin-insensitive G proteins. We also used BRET methodology to assess the association of prokineticin receptors with β-arrestin isoforms. Fluorescent versions of the isoforms were transfected both in HEK293 cells and in double KO β-arrestin 1/2 mouse fibroblasts, to study receptor interaction with the reconstituted individual β-arrestins without background expression of the endogenous genes. Both receptors formed stable BRET-emitting complexes with β-arrestin 2 but not with β-arrestin 1, indicating strong selectivity for the former. In all the studied transducer interactions and in both receptors, pk2 was more potent than pk1 in promoting receptor binding to transduction proteins.  相似文献   

5.
Novel heterodimer analogues of melatonin were synthesized, when agomelatine (1) and various aryl units are linked via a linear alkyl chain through the methoxy group. The compounds were tested for their actions at melatonin receptors. Several of these ligands are MT1-selective with nanomolar or subnanomolar affinity. In addition, while most of the derivatives behave as partial agonists on one or both receptor subtypes, N-[2-(7-{4-[6-(1-methoxycarbonylethyl)naphthalen-2-yloxy]butoxy}naphthalen-1-yl)ethyl]acetamide (36), a subnanomolar MT1 ligand with an 11-fold preference over MT2 receptors, is a full antagonist on both receptors. Our results also confirm that the selectivity seen for the MT1 receptor arises predominantly from steric factors and is not a consequence of the bridging of melatonin receptor dimers.  相似文献   

6.
A series of substituted isoquinolinones were synthesized and their binding affinities and functional activities towards human melatonin MT1 and MT2 receptors were evaluated. Structure-activity relationship analysis revealed that substituted isoquinolinones bearing a 3-methoxybenzyloxyl group at C5, C6 or C7 position respectively (C5>C6>C7 in terms of their potency) conferred effective binding and selectivity toward the MT2 receptor, with 15b as the most potent compound. Most of the tested compounds were MT2-selective agonists as revealed in receptor-mediated cAMP inhibition, intracellular Ca2+ mobilization and phosphorylation of extracellular signal-regulated protein kinases. Intriguingly, compounds 7e and 7f bearing a 4-methoxybenzyloxyl group or 4-methylbenzyloxyl at C6 behaved as weak MT2-selective antagonists. These results suggest that substituted isoquinolinones represent a novel family of MT2-selective melatonin ligands. The position of the substituted benzyloxyl group, and the substituents on the benzyl ring appeared to dictate the functional characteristics of these compounds.  相似文献   

7.
Hexahydroindenopyridine (HHIP) is an interesting heterocyclic framework that contains an indene core similar to ramelteon. This type of tricyclic piperidines aroused our interest as potential melatoninergic ligands. Melatonin receptor ligands have applications in insomnia and depression. We report herein an efficient two-step method to prepare new HHIP by the reaction of an enamine with 3-bromopropylamine hydrobromide. Some synthesized compounds showed moderate affinity for melatonin receptors in the nanomolar or low micromolar range. Furthermore, the methylenedioxy HHIPs 2d (N-phenylacetamide) and 2f (N,N-diethylacetamide), exhibited high selectivity at MT1 or MT2 receptors, respectively, when compared with melatonin. It seems that the methylenedioxy group on the indene ring system and the N-acetamide substituent are important structural features to bind selectively MT1 or MT2 subtypes.  相似文献   

8.
Gastrodia elata is a famous traditional Chinese herb with medicinal and edible application. In this study, nine polybenzyls (1?9), including six new ones (2?5, 7 and 9), were isolated from the EtOAc extract of G. elata. Five compounds 1, 3, 4, 6 and 8 were found to activate melatonin receptors. Especially, compound 1 showed agonistic effects on MT1 and MT2 receptors with EC50 values of 237 and 244 μM. For better understanding their structure-activity relationships (SARs), ten polybenzyl analogs were further synthesized and assayed for their activities on melatonin receptors. Preliminary SARs study suggested that two para-hydroxy groups were the key pharmacophore for maintaining activity. Molecular docking simulations verified that compound 1 could strongly interact with MT2 receptor by bonding to Phe 118, Gly 121, His 208, Try 294 and Ala 297 residues.  相似文献   

9.
A series of substituted N-[3-(3-methoxyphenyl)propyl] amides were synthesized and their binding affinities towards human melatonin MT1 and MT2 receptors were evaluated. It was discovered that a benzyloxyl substituent incorporated at C6 position of the 3-methoxyphenyl ring dramatically enhanced the MT2 binding affinity and at the same time decreased MT1 binding affinity.  相似文献   

10.
11.
Homodimers of dopamine D2-like receptors are suggested to be of particular importance in the pathophysiology of schizophrenia and, thus, serve as promising targets for the discovery of atypical antipsychotics. This study describes the development of a series of novel bivalent molecules with a pharmacophore derived from the dopamine receptor antagonist haloperidol. These dimers were investigated in comparison to their monomeric analogues for their D2long, D2short, D3, and D4 receptor binding and the ability to bridge two neighboring receptor protomers. Radioligand binding studies provided diagnostic insights when Hill slopes close to two for the bivalent ligand 13 incorporating 22 spacer atoms and a comparative analysis with monovalent control ligands indicated a bivalent binding mode with a simultaneous occupancy of two neighboring binding sites.  相似文献   

12.
Three series of bitobic arylpiperazine-phenyl-hexahydropyrazinoquino- lines analogues were designed, synthesizedand evaluated as a novel class of selective ligands for the dopamine D3 receptor. Compounds 15a (Ki of 11.7 ± 1.8 and 373 nM at D3 and D2, respectively), 15c (Ki of 5.49 and 264 nM at D3 and D2, respectively), 15e (Ki of 14.9 and 325 nM at D3 and D2, respectively), 15i (Ki of 13.8 and 401 nM at D3 and D2, respectively) and 15l (Ki of 13.6 and 870 nM at D3 and D2, respectively) were found to demonstrate good binding affinity and selectivity, and especially compound 15c showeda similar binding affinity and selectivity compared with the contrast drug BP897.  相似文献   

13.
In mammals, the circadian hormone melatonin targets two seven‐transmembrane–spanning receptors, MT1 and MT2, of the G protein‐coupled receptor (GPCR) super‐family. Evidence accumulated over the last 15 yrs convincingly demonstrates that GPCRs, classically considered to function as monomers, are actually organized as homodimers and heterodimerize with other GPCR family members. These dimers are formed early in the biosynthetic pathway and remain stable throughout the entire life cycle. A growing number of observations demonstrate that GPCR oligomerization may occur in native tissues and may have important consequences on receptor function. The formation of MT1 and MT2 homodimers and MT1/MT2 heterodimers has been shown in heterologous expression systems at physiological expression levels. Formation of MT1/MT2 heterodimers remains to be shown in native tissues but is suggested by the documented co‐expression of MT1 and MT2 in many melatonin‐sensitive tissues, such as the hypothalamic suprachiasmatic nuclei, retina, arteries, and adipose tissue. Considering that multiple GPCRs are expressed simultaneously in most cells, the possible engagement into heterodimeric complexes has to be considered and taken into account for the interpretation of experimental data obtained from native tissues and knockout animals.  相似文献   

14.
The apelinergic system comprises the apelin receptor and its cognate apelin and elabela peptide ligands of various lengths. This system has become an increasingly attractive target for pulmonary and cardiometabolic diseases. Small molecule regulators of this receptor with good drug-like properties are needed. Recently, we discovered a novel pyrazole based small molecule agonist 8 of the apelin receptor (EC50 = 21.5 µM, Ki = 5.2 µM) through focused screening which was further optimized to initial lead 9 (EC50 = 0.800 µM, Ki = 1.3 µM). In our efforts to synthesize more potent agonists and to explore the structural features important for apelin receptor agonism, we carried out structural modifications at N1 of the pyrazole core as well as the amino acid side-chain of 9. Systematic modifications at these two positions provided potent small molecule agonists exhibiting EC50 values of <100 nM. Recruitment of β-arrestin as a measure of desensitization potential of select compounds was also investigated. Functional selectivity was a feature of several compounds with a bias towards calcium mobilization over β-arrestin recruitment. These compounds may be suitable as tools for in vivo studies of apelin receptor function.  相似文献   

15.
Ligand-biased receptor signaling has been proposed for several G-protein coupled receptors including the niacin receptor GPR109A. Coupling to the Gi/o pathway has been shown to be responsible for the well described triglyceride lowering effect of nicotinic acid in mice, while activation of the β-arrestin pathway has been suggested to be responsible for its peripheral vasodilatory effect that causes cutaneous flushing. Several ligands have been described to selectively induce triglyceride lowering without inducing flushing.Cellular impedance has been demonstrated to determine G-protein coupled receptors activation in a G-protein specific manner. Agonists, which induce triglyceride lowering, but not flushing show a profile in cellular impedance that is distinct from the one induced by niacin and those compounds that induce triglyceride lowering as well as flushing. The strength of the signal correlates with the activation of β-arrestin.  相似文献   

16.
A series of phenoxyalkyl and phenylthioalkyl amides were prepared as melatoninergic ligands. Modulation of affinity of the newly synthesized compound by applying SARs around the terminal amide moiety, the alkyl chain, and the methoxy group on the aromatic ring provides compounds with nanomolar affinity for both melatonin receptor subtypes. Affinity towards MT1 and MT2 receptors were modulated also exploiting chirality. The investigation of intrinsic activity revealed that all the tested compounds behave as full or partial agonists.  相似文献   

17.
Apelin plays a prominent role in body fluid and cardiovascular homeostasis. We previously showed that the C-terminal Phe of apelin 17 (K17F) is crucial for triggering apelin receptor internalization and decreasing blood pressure (BP) but is not required for apelin binding or Gi protein coupling. Based on these findings, we hypothesized that the important role of the C-terminal Phe in BP decrease may be as a Gi-independent but β-arrestin-dependent signaling pathway that could involve MAPKs. For this purpose, we have used apelin fragments K17F and K16P (K17F with the C-terminal Phe deleted), which exhibit opposite profiles on apelin receptor internalization and BP. Using BRET-based biosensors, we showed that whereas K17F activates Gi and promotes β-arrestin recruitment to the receptor, K16P had a much reduced ability to promote β-arrestin recruitment while maintaining its Gi activating property, revealing the biased agonist character of K16P. We further show that both β-arrestin recruitment and apelin receptor internalization contribute to the K17F-stimulated ERK1/2 activity, whereas the K16P-promoted ERK1/2 activity is entirely Gi-dependent. In addition to providing new insights on the structural basis underlying the functional selectivity of apelin peptides, our study indicates that the β-arrestin-dependent ERK1/2 activation and not the Gi-dependent signaling may participate in K17F-induced BP decrease.  相似文献   

18.
Glycogenolysis, in brain parenchyma an astrocyte-specific process, has changed from being envisaged as an emergency procedure to playing central roles during brain response to whisker stimulation, memory formation, astrocytic K+ uptake and stimulated release of ATP. It is activated by several transmitters and by even very small increases in extracellular K+ concentration, and to be critically dependent upon an increase in free cytosolic Ca2+ concentration ([Ca2+]i), whereas cAMP plays only a facilitatory role together with increased [Ca2+]i. Detailed knowledge about the signaling pathways eliciting glycogenolysis is therefore of interest and was investigated in the present study in well differentiated cultures of mouse astrocytes. The β-adrenergic agonist isoproterenol stimulated glycogenolysis by a β1-adrenergic effect, which initiated a pathway in which cAMP/protein kinase A activated a Gi/Gs shift, leading to Ca2+-activated glycogenolysis. Inhibition of this pathway downstream of cAMP but upstream of the Gi/Gs shift abolished the glycogenolysis. However, inhibitors operating downstream of the Ca2+-sensitive step, but preventing transactivation-mediated epidermal growth factor (EGF) receptor stimulation, a later step in the activated pathway, also caused inhibition of glycogenolysis. For this reason the effect of EGF was investigated and it was found to be glycogenolytic. Large increases in extracellular K+ activated glycogenolysis by a nifedipine-inhibited L-channel opening allowing influx of Ca2+, known to be glycogenolysis-dependent. Small increases (addition of 5 mM KCl) caused a smaller effect by a similarly glycogenolysis-reliant opening of an IP3 receptor-dependent ouabain signaling pathway. The same pathway could be activated by GABA (also in brain slices) due to its depolarizing effect in astrocytes.  相似文献   

19.
Melatonin is a neurohormone primarily synthesized by the pineal gland following a circadian rhythm with a high level during the night and a low level during the day. Alterations in the synthesis and secretion of melatonin have been reported in various mood disorders, including major depressive disorder. However, the role of endogenous melatonin in the pathophysiology of depressive disorder is unclear. Melatonin primarily acts through two G protein‐coupled receptors, termed MT1 and MT2. The present study investigated the effect of genetic deletion of the MT1 and/or MT2 receptors on tests associated with depression‐ and anxiety‐like behaviors in C3H/HeN mice. Deletion of the MT1 and/or MT2 receptors caused a deficit in hedonic and social interaction behavior, and increased anxiety‐like behavior. It is likely that dysregulations of the MT1 and/or MT2 melatonin receptors could be involved in the pathophysiology of depression and anxiety.  相似文献   

20.
Two series of 4-arylpiperidinyl amide and N-arylpiperdin-3-yl-cyclopropane carboxamide derivatives exhibiting diverse functionality at rat MT1 and MT2 receptors are reported. Compounds 11f and 18b (MT1/MT2 agonist) have human microsomal intrinsic clearance comparable to ramelteon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号