首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholinergic hypothesis of Alzheimer’s disease has been advocated as an essential tool in the last couple of decades for the drug development. Here in, we report de novo fragment growing strategy for the design of novel 3,5-diarylpyrazoles and hit optimization of spiropyrazoline derivatives as acetyl cholinesterase inhibitors. Both type of scaffolds numbering forty compounds were synthesized and evaluated for their potencies against AChE, BuChE and PAMPA. Introduction of lipophilic cyclohexane ring in 3,5-diarylpyrazole analogs led to spiropyrazoline derivatives, which facilitated and improved the potencies. Compound 44 (AChE = 1.937 ± 0.066 µM; BuChE = 1.166 ± 0.088 µM; hAChE = 1.758 ± 0.095 µM; Pe = 9.491 ± 0.34 × 10−6 cm s1) showed positive results, which on further optimization led to the development of compound 67 (AChE = 0.464 ± 0.166 µM; BuChE = 0.754 ± 0.121 µM; hAChE = 0.472 ± 0.042 µM; Pe = 13.92 ± 0.022 × 10−6 cm s1). Compounds 44 and 67 produced significant displacement of propidium iodide from the peripheral anionic site (PAS) of AChE. They were found to be safer to MC65 cells and decreased metal induced Aβ1-42 aggregation. Further, in-vivo behavioral studies, on scopolamine induced amnesia model, the compounds resulted in better percentage spontaneous alternation scores and were safe, had no influence on locomotion in tested animal groups at dose of 3 mg/kg. Early pharmacokinetic assessment of optimized hit molecules was supportive for further drug development.  相似文献   

2.
Novel heteroaryl-containing benzamide derivatives were synthesized and screened using an in vitro assay measuring increases in glucose uptake and glucokinase activity stimulated by 10 mM glucose in rat hepatocytes. From a library of synthesized compounds, 3-(4-methanesulfonylphenoxy)-N-[1-(2-methoxy-ethoxymethyl)-1H-pyrazol-3-yl]-5-(3-methyl pyridin-2-yl)-benzamide (19e) was identified as a potent glucokinase activator with assays demonstrating an EC50 of 315 nM and the induction of a 2.23 fold increase in glucose uptake. Compound 19e exhibited a glucose AUC reduction of 32% (50 mg/kg) in an OGTT study with C57BL/6J mice compared to 28% for metformin (300 mg/kg). Single treatment of the compound in C57BL/J6 and ob/ob mice elicited basal glucose lowering activity, while in a two-week repeated dose study with ob/ob mice, the compound significantly decreased blood glucose levels with no evidence of hypoglycemia risk. In addition, 19e exhibited favorable pharmacokinetic parameters in mice and rats and excellent safety margins in liver and testicular toxicity studies. Compound 19e was therefore selected as a development candidate for the potential treatment of type 2 diabetes.  相似文献   

3.
The present research was designed for the selective synthesis of novel bi-heterocyclic acetamides, 9a-n, and their tyrosinase inhibition to overwhelm the problem of melanogenesis. The structures of newly synthesized compounds were confirmed by spectral techniques such as 1H NMR, 13C NMR, and EI-MS along with elemental analysis. The inhibitory effects of these bi-heterocyclic acetamides (9a-n) were evaluated against tyrosinase and all these molecules were recognized as potent inhibitors relative to the standard used. The Kinetics mechanism was analyzed by Lineweaver-Burk plots which explored that compound, 9h, inhibited tyrosinase competitively by forming an enzyme-inhibitor complex. The inhibition constants Ki calculated from Dixon plots for this compound was 0.0027 µM. The computational study was coherent with the experimental records and these ligands exhibited good binding energy values (kcal/mol). The hemolytic analysis revealed their mild cytotoxicity towards red blood cell membranes and hence, these molecules can be pondered as nontoxic medicinal scaffolds for skin pigmentation and related disorders.  相似文献   

4.
Alzheimer’s disease (AD) is the most prevalent disease of old age leading to dementia. Complex AD pathogenesis involves multiple factors viz. amyloid plaque formation, neurofibrillary tangles and inflammation. Herein we report of a new series of quinoxaline-bisthiazoles as multitarget-directed ligands (MTDLs) targeting BACE-1 and inflammation concurrently. Virtual screening of a library of novel quinoxaline-bisthiazoles was performed by docking studies. The most active molecules from the docking library were taken up for synthesis and characterized by spectral data. Compounds 8a-8n showed BACE-1 inhibition in micro molar range. One of the compounds, 8n showed BACE-1 inhibition at IC50 of 3 ± 0.07 µM. Rat paw edema inhibition in acute and chronic models of inflammation were obtained at 69 ± 0.45% and 55 ± 0.7%, respectively. Compound 8n also showed noteworthy results in AlCl3 induced AD model. The treated rats exhibited excellent antiamnesic, antiamyloid, antioxidant, and neuroprotective properties. Behavioural parameters suggested improved cognitive functions which further validates the testimony of present study. Moreover, compound 8n was found to have inherent gastrointestinal safety. This new string of quinoxaline-bisthiazoles were identified as effective lead for the generation of potent MTDLs and compound 8n was found to showcase qualities to tackle AD pathogenesis.  相似文献   

5.
We report the design, synthesis and biological evaluation of 17 novel 8-aryl-2-morpholino-3,4-dihydroquinazoline derivatives based on the standard model of DNA-PK and PI3K inhibitors. Novel compounds are sub-divided into two series where the second series of five derivatives was designed to have a better solubility profile over the first one. A combination of in vitro and in silico techniques suggested a plausible synergistic effect with doxorubicin of the most potent compound 14d on cell proliferation via DNA-PK and poly(ADP-ribose) polymerase-1 (PARP-1) inhibition, while alone having a negligible effect on cell proliferation.  相似文献   

6.
A series of 2-acetylphenol-donepezil hybrids was designed and synthesized based on multi-target-directed ligands strategy. The biological activities were evaluated by AChE/BChE inhibition and MAO-A/MAO-B inhibition. The results revealed that the tertiary amines and methylene chain length significantly affected the eeAChE inhibitory potency, in particular, compound TM-14 showed the best eeAChE inhibitory activity with IC50 value of 2.9 μM, in addition, both kinetic analysis of AChE inhibition and docking study displayed that TM-14 could simultaneously bind to the catalytic active site and peripheral anionic site of AChE. Moreover, compound TM-14 was a selective metal chelator and could form 1:1 TM-14-Cu2+ complex. The structure-active-relationship also indicated that the O-alkylamine fragment remarkably decreased hMAO-B inhibitory activity, compound TM-2 exhibited potent hMAO-B inhibitory activity (IC50 = 6.8 μM), which was supported by the molecular docking study. More interestingly, compounds TM-14 and TM-2 could cross the blood-brain barrier in vitro. Therefore, the structure-active-relationship of 2-acetylphenol-donepezil hybrids could encourage the development of multifunction agents with selective AChE inhibition or selective MAO-B inhibition for the treatment of Alzheimer’s disease.  相似文献   

7.
Meagre and suboptimal therapeutic response along with the side effect profile associated with the existing anticancer therapy have necessitated the development of new therapeutic modalities to curb this disease. Bearing in mind the current scenario, a series of 1,2,3-triazole linked 3-(1,3-diphenyl-1H-pyrazol-4-yl)acrylates was synthesized following a multi-step reaction scheme. Initial screening for anticancer potential was done by in vitro sulforhodamine B assay against four human cancer cell lines- MCF-7 (breast), A549 (Lung) and HCT-116 and HT-29 (Colon). On evaluation, several compounds showed promising growth inhibition against all the cell lines, particularly compounds 6e, 6f and 6n. Among them, compound 6f displayed IC50 values of 1.962, 3.597, 1.764 and 4.496 µM against A549, HCT-116, MCF-7 and HT-29 cell lines respectively. Furthermore, the apoptosis inducing potential of the compounds was determined by Hoechst staining and DNA fragmentation assay. Colony formation inhibition assay was also carried out to determine the long term cytotoxic potential of the molecules. Moreover, compounds 6e, 6f and 6n were also evaluated for anti-inflammatory activity by protein albumin denaturation assay and red blood cell membrane stabilizing assay.  相似文献   

8.
A series of novel quinazoline derivatives containing a dithioacetal moiety were designed and synthesized, and their structures were characterized by 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, and high-resolution mass spectrometry. Bioassay results indicated that compound 4b exhibited remarkable protective activity against cucumber mosaic virus (CMV, EC50 = 248.6 μg/mL) and curative activity against potato virus Y (EC50 = 350.5 μg/mL), which were better than those of ningnanmycin (357.7 μg/mL and 493.7 μg/mL, respectively). Moreover, compound 4b could increase the chlorophyll content in plants, improve photosynthesis, and effectively induce tobacco anti-CMV activity.  相似文献   

9.
A set of 19 oxadiazolone (OX) derivatives have been investigated for their antimycobacterial activity against two pathogenic slow-growing mycobacteria, Mycobacterium marinum and Mycobacterium bovis BCG, and the avirulent Mycobacterium tuberculosis (M. tb) mc26230. The encouraging minimal inhibitory concentrations (MIC) values obtained prompted us to test them against virulent M. tb H37Rv growth either in broth medium or inside macrophages. The OX compounds displayed a diversity of action and were found to act either on extracellular M. tb growth only with moderated MIC50, or both intracellularly on infected macrophages as well as extracellularly on bacterial growth. Of interest, all OX derivatives exhibited very low toxicity towards host macrophages. Among the six potential OXs identified, HPOX, a selective inhibitor of extracellular M. tb growth, was selected and further used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP, in order to identify its putative target(s). This approach, combined with mass spectrometry, identified 18 potential candidates, all being serine or cysteine enzymes involved in M. tb lipid metabolism and/or in cell wall biosynthesis. Among them, Ag85A, CaeA, TesA, KasA and MetA have been reported as essential for in vitro growth of M. tb and/or its survival and persistence inside macrophages. Overall, our findings support the assumption that OX derivatives may represent a novel class of multi-target inhibitors leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-containing enzymes involved in various important physiological processes.  相似文献   

10.
There is much interest in the use of phytoestrogens such as coumestrol in breast cancer intervention due to their antiestrogenic activity and multiple modes of tumor cell death. However, the clear beneficial effects of naturally occurring estrogen mimetic coumestrol remain controversial due to experimental evidence that it has been shown to stimulate MCF-7 cell proliferation via agonist effect on estrogen receptor at low concentration. Herein, to disconnect the ER interaction and apoptosis-specific mechanism of coumestrol, various 3, 9-di-O-substituted coumestrols (7a-7e) and their furan ring-opened analogs (5a-5e) were synthesized and assessed for antiproliferative properties. Attachment of a dimethylamine-containing side chain to 3-O of coumestrol led to the most promising compound 7e with improved antiproliferative activity (1.7-fold increase) against MCF-7 cells, decreased estrogen activity (>20 times weaker ERα binder) and a novel action to induce apoptosis. Mechanistic studies revealed that 7e is a tubulin polymerization inhibitor, which could arrest cell cycle at G2/M phase and induce apoptosis along with the decrease of mitochondrial membrane potential. In summary, such subtle modifications to the 3, 9-di-hydroxyl groups of coumestrol allow the generation of a novel apoptosis inducer with distinct pharmacological properties, providing an excellent starting point to future development of novel tumor-vascular disrupting agents targeting tubulin.  相似文献   

11.
Lambertellin (1) and ergosta-5,7,22-trien-3-ol (2) were isolated from the solid rice fermentation of the plant pathogenic fungus Pycnoporus sanguineus MUCL 51321. Their structures were elucidated using comprehensive spectroscopic methods. The isolated compounds were tested on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Lambertellin (1) exhibited promising inhibitory activity against nitric oxide (NO) production with IC50 value of 3.19 µM, and it significantly inhibited the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). Lambertellin (1) also decreased the expression of pro-inflammatory cytokines IL-6 and IL-1β. The study of the mechanistic pathways revealed that lambertellin (1) exerts its anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophage cells by modulating the activation of the mitogen activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling pathways. Therefore, lambertellin (1) could be a promising lead compound for the development of new anti-inflammatory drugs.  相似文献   

12.
Leukocyte transendothelial migration is one of the most important step in launching an inflammatory immune response and chronic inflammation can lead to devastating diseases. Leukocyte migration inhibitors are considered as promising and potentially effective therapeutic agents to treat inflammatory and auto-immune disorders. In this study, based on previous trioxotetrahydropyrimidin based integrin inhibitors that suboptimally blocked leukocyte adhesion, twelve molecules with a modified scaffold were designed, synthesized, and tested in vitro for their capacity to block the transendothelial migration of immune cells. One of the molecules, namely, methyl 4-((2-(tert-butyl)-6-((2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene) methyl) phenoxy) methyl) benzoate, (compound 12), completely blocked leukocyte transendothelial migration, without any toxic effects on immune or endothelial cells (IC50 = 2.4 µM). In vivo, compound 12 exhibited significant therapeutic effects in inflammatory bowel disease (IBD)/Crohn’s disease, multiple sclerosis, fatty liver disease, and rheumatoid arthritis models. A detailed acute and chronic toxicity profile of the lead compound in vivo did not reveal any toxic effects. Such a type of molecule might therefore provide a unique starting point for designing a novel class of leukocyte transmigration blocking agents with broad therapeutic applications in inflammatory and auto-immune pathologies.  相似文献   

13.
In the search for new treatments for complex disorders such as Alzheimer’s disease the Multi-Target-Directed Ligands represent a very promising approach. The aim of the present study was to identify multifunctional compounds among several series of non-imidazole histamine H3 receptor ligands, derivatives of 1-[2-thiazol-5-yl-(2-aminoethyl)]-4-n-propylpiperazine, 1-[2-thiazol-4-yl-(2-aminoethyl)]-4-n-propylpiperazine and 1-phenoxyalkyl-4-(amino)alkylopiperazine using in vitro and in vivo pharmacological evaluation and computational studies. Performed in vitro assays showed moderate potency of tested compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Molecular modeling studies have revealed possible interactions between the active compounds and both AChE and BuChE as well as the human H3 histamine receptor. Computational studies showed the high drug-likeness of selected compounds with very good physicochemical profiles. The parallel artificial membrane permeation assay proved outstanding blood–brain barrier penetration in test conditions. The most promising compound, A12, chemically methyl(4-phenylbutyl){2-[2-(4-propylpiperazin-1-yl)-1,3-thiazol-5-yl]ethyl}amine, possesses good balanced multifunctional profile with potency toward studied targets - H3 antagonist activity (pA2 = 8.27), inhibitory activity against both AChE (IC50 = 13.96 μM), and BuChE (IC50 = 14.62 μM). The in vivo pharmacological studies revealed the anti-amnestic properties of compound A12 in the passive avoidance test on mice.  相似文献   

14.
A new series of 3-substituted-4-hydroxycoumarin derivatives was designed, synthesized, and evaluated for CDK inhibiting and anticancer activities. All the synthesized target compounds showed remarkably high affinity and selectivity towards CDK1B, compared to flavopiridol, with Ki values in the low nanomolar range (Ki = 0.35–0.88 nM). Most of them elicited considerable inhibiting effect against CDK9T1 (Ki = 3.26–23.45 nM). Moreover, all the target compounds were tested in vitro against eighteen types of human tumor cell lines. The hydrazone 3a, N-phenylpyrazoline derivative 6b and 2-aminopyridyl-3-carbonitrile derivative 8c were the most potent anticancer agents against MCF-7 breast cancer cell line (IC50 = 0.21, 0.21 and 0.23 nM, respectively). The target compounds 3a, 6b and 8c were further evaluated in MCF-7 breast cancer mouse xenograft model and showed in vivo efficacy at 10 mg/kg dose. The docking study confirmed a unique binding mode in the active site of CDK1B with better score than flavopiridol. Quantitative structure activity relationship study was done and revealed a highly predictive power R2 of 0.81.  相似文献   

15.
Two new diastereomeric lignan amides (4 and 5) serving as dimeric caffeic acid-l-DOPA hybrids were synthesized. The synthesis involved the FeCl3-mediated phenol oxidative coupling of methyl caffeate to afford trans-diester 1a as a mixture of enantiomers, protection of the catechol units, regioselective saponification, coupling with a suitably protected l-DOPA derivative, separation of the two diastereomers thus obtained by flash column chromatography and finally global chemoselective deprotection of the catechol units. The effect of hybrids 4 and 5 and related compounds on the proliferation of two breast cancer cell lines with different metastatic potential and estrogen receptor status (MDA-MB-231 and MCF-7) and of one epithelial lung cancer cell line, namely A-549, was evaluated for concentrations ranging from 1 to 256 μM and periods of treatment of 24, 48 and 72 h. Both hybrids showed interesting and almost equipotent antiproliferative activities (IC50 64–70 μM) for the MDA-MB-231 cell line after 24–48 h of treatment, but they were more selective and much more potent (IC50 4–16 μM) for the MCF-7 cells after 48 h of treatment. The highest activity for both hybrids and both breast cancer lines was observed after 72 h of treatment (IC50 1–2 μM), probably as the result of slow hydrolysis of their methyl ester functions.  相似文献   

16.
PurposeTo describe our magnetic resonance imaging (MRI) simulated implementation of the 4D digital extended cardio torso (XCAT) phantom to validate our previously developed cardiac tracking techniques. Real-time tracking will play an important role in the non-invasive treatment of atrial fibrillation with MRI-guided radiosurgery. In addition, to show how quantifiable measures of tracking accuracy and patient-specific physiology could influence MRI tracking algorithm design.MethodsTwenty virtual patients were subjected to simulated MRI scans that closely model the proposed real-world scenario to allow verification of the tracking technique’s algorithm. The generated phantoms provide ground-truth motions which were compared to the target motions output from our tracking algorithm. The patient-specific tracking error, ep, was the 3D difference (vector length) between the ground-truth and algorithm trajectories. The tracking errors of two combinations of new tracking algorithm functions that were anticipated to improve tracking accuracy were studied. Additionally, the correlation of key physiological parameters with tracking accuracy was investigated.ResultsOur original cardiac tracking algorithm resulted in a mean tracking error of 3.7 ± 0.6 mm over all virtual patients. The two combinations of tracking functions demonstrated comparable mean tracking errors however indicating that the optimal tracking algorithm may be patient-specific.ConclusionsCurrent and future MRI tracking strategies are likely to benefit from this virtual validation method since no time-resolved 4D ground-truth signal can currently be derived from purely image-based studies.  相似文献   

17.
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) is a major impediment for clinical cancer therapy. 19 novel aromatic amides with triazole-core as MDR reversal agents were designed and synthesized via click chemistry to reverse MDR. Among them, compound 42 was identified as the most promising candidate with high potency (EC50 = 78.1 ± 5.4 nM), low cytotoxity (SI > 1282) and persistent duration in reversing doxorubicin (DOX) resistance in K562/A02 cells. 42 also enhanced the potency of other P-gp associated cytotoxic agents with different structures. In further study, remarkably increased intracellular accumulation of Rh123 and DOX in K562/A02 cells was achieved by compound 42, while CYP3A4 activity had no change by compound 42. These results indicate that compound 42 as a relatively safe modulator of P-gp-mediated MDR has good potential for further development.  相似文献   

18.
Cobalt (II) phen–based drug candidates of the formulation Co(phen)2Cl2, 1, Co(phen)2L, 2 where L = 1H–pyrazole–3,5–dicarboxylic acid were synthesized and thoroughly characterized by spectroscopic methods and single X–ray crystallography. DNA binding interaction of 1 and 2 was carried out employing biophysical techniques {UV–visible, fluorescence, thermal denaturation and cyclic voltammetry} to validate their potential to act as antitumor agents. The interpretations of these biophysical studies of 1 and 2 supported the non–covalent intercalative binding mode; furthermore, a higher binding trend of 2 was observed as compared to 1, phen and 1H–pyrazole–3,5–dicarboxylic acid alone. Cleavage studies of 1 and 2 with pBR322 were assessed by gel electrophoresis and it was observed that both drug candidates cleave DNA by hydrolytic pathway involving hydroxyl radical (OH). Cytotoxic activity of 1 and 2 against human cancer cell lines [MCF–7 (breast), HeLa (cervical), MIA–PA–CA 2 (pancreatic), A–498 (kidney), Hep–G2 (hepatoma)] was evaluated by SRB assay. The obtained results showed that drug candidate 1 showed significantly low GI50 value (<10 µg/ml) against MCF–7 and HeLa cell lines. However, candidate 2 revealed excellent cytotoxicity (<10 µg/ml) against all the tested cancer cell lines. The in vivo genotoxicity of 2 was evaluated by micronucleus (MN) test and chromosomal aberration (CA) in bone marrow cells of the Wistar rats to check cobalt(II)–induced systemic toxicity. The results showed that no significant chromosomal aberrations and micronucleus formation was observed at 5 mg/kg and 10 mg/kg in presence of drug candidate 2 implicating that it could be administered safely at a low dosage. However, an elevated percentage of chromosomal aberration and micronucleated polychromatic erythrocytes (MNPCE) was observed only at higher doses (20 mg/kg and 40 mg/kg) of drug candidate 2.  相似文献   

19.
Cytochrome c oxidase (CcOX) containing binuclear heme a3-Cu B centre (BNC) mechanises the process of electron transfer in the last phase of cellular respiration. The molecular modelling based structural analysis of CcOX – heme a3-Cu B complex was performed and the disturbance to this complex under cyanide poisoning conditions was investigated. Taking into consideration the results of molecular docking studies, new chemical entities were developed for clipping cyanide from the enzyme and restoring its normal function. It was found that the molecules obtained by combining syringaldehyde, oxindole and chrysin moieties bearing propyl/butyl spacing groups occupy the BNC region and effectively remove cyanide bound to the enzyme. The binding constant of compound 2 with CN was 2.3 × 105 M−1 and its ED50 for restoring the cyanide bound CcOX activity in 10 min was 16 µM. The compound interacted with CN over the pH range 5–10. The comparison of the loss of enzymatic activity in the presence of CN and resumption of enzymatic activity by compound 2 mediated removal of CN indicated the efficacy of the compound as antidote of cyanide.  相似文献   

20.
Lysine specific demethylase 1 (LSD1) is a flavin-dependent amine oxidase that selectively removes one or two methyl groups from H3 at Lys4 and is recognized as a promising therapeutic target for cancer and other diseases. Here, a series of 3-oxoamino-benzenesulfonamides were synthesized and evaluated for their inhibitory activity against LSD1. Compounds 7b and 7h showed the most potent inhibition with the IC50 values of 9.5 and 6.9 μM, respectively. Furthermore, the LSD1 inhibition of 7b and 7h were reversible and selective. Docking study presented the possible binding mode between 7b, 7h and the LSD1 active site. Taken together, 3-oxoamino-benzenesulfonamides may represent a new class of reversible LSD1 inhibitors and 7b and 7h were two hit compounds deserved further structural optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号