首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A small library of antiplasmodial methoxy-thiazinoquinones, rationally designed on the model of the previously identified hit 1, has been prepared by a simple and inexpensive procedure. The synthetic derivatives have been subjected to in vitro pharmacological screening, including antiplasmodial and toxicity assays. These studies afforded a new lead candidate, compound 9, endowed with higher antiplasmodial potency compared to 1, a good selectivity index when tested against a panel of mammalian cells, no toxicity against RBCs, a synergistic antiplasmodial action in combination with dihydroartemisinin, and a promising inhibitory activity on stage V gametocyte growth. Computational studies provided useful insights into the structural requirements needed for the antiplasmodial activity of thiazinoquinone compounds and on their putative mechanism of action.  相似文献   

2.
Inosine 5′-monophosphate dehydrogenase (IMPDH, EC 1.1.1.205) catalyzes a crucial step in guanine nucleotide biosynthesis, thereby governing cell proliferation. In contrast to mammalian IMPDHs, microbial IMPDHs are relatively less explored as potential targets for antimicrobial drug discovery. In continuation with our previous work, here we report the discovery of moderately potent and highly selective Helicobacter pylori IMPDH (HpIMPDH) inhibitors. The present study is mainly focused around our previously identified, modestly potent and relatively nonselective (for HpIMPDH over human IMPDH2) hit molecule IX (16i). In an attempt to optimize the selectivity for the bacterial enzyme, we screened a set of 48 redesigned new chemical entities (NCEs) belonging to 5-aminoisobenzofuran-1(3H)-one series for their in vitro HpIMPDH and human IMPDH2 inhibition. A total of 12 compounds (hits) demonstrated ≥70% HpIMPDH inhibition at 10 μM concentration; none of the hits were active against hIMPDH2. Compound 24 was found to be the most potent and selective molecule (HpIMPDH IC50 = 2.21 µM) in the series. The study reaffirmed the utility of 5-aminoisobenzofuran-1(3H)-one as a promising scaffold with great potential for further development of potent and selective HpIMPDH inhibitors.  相似文献   

3.
We report the design, synthesis and biological evaluation of 17 novel 8-aryl-2-morpholino-3,4-dihydroquinazoline derivatives based on the standard model of DNA-PK and PI3K inhibitors. Novel compounds are sub-divided into two series where the second series of five derivatives was designed to have a better solubility profile over the first one. A combination of in vitro and in silico techniques suggested a plausible synergistic effect with doxorubicin of the most potent compound 14d on cell proliferation via DNA-PK and poly(ADP-ribose) polymerase-1 (PARP-1) inhibition, while alone having a negligible effect on cell proliferation.  相似文献   

4.
α-Methylacyl-CoA racemase (AMACR; P504S) is a promising novel drug target for prostate and other cancers. Assaying enzyme activity is difficult due to the reversibility of the ‘racemisation’ reaction and the difficulties in the separation of epimeric products; consequently few inhibitors have been described and no structure–activity relationship study has been performed. This paper describes the first structure–activity relationship study, in which a series of 23 known and potential rational AMACR inhibitors were evaluated. AMACR was potently inhibited (IC50 = 400–750 nM) by ibuprofenoyl-CoA and derivatives. Potency was positively correlated with inhibitor lipophilicity. AMACR was also inhibited by straight-chain and branched-chain acyl-CoA esters, with potency positively correlating with inhibitor lipophilicity. 2-Methyldecanoyl-CoAs were ca. 3-fold more potent inhibitors than decanoyl-CoA, demonstrating the importance of the 2-methyl group for effective inhibition. Elimination substrates and compounds with modified acyl-CoA cores were also investigated, and shown to be potent inhibitors. These results are the first to demonstrate structure–activity relationships of rational AMACR inhibitors and that potency can be predicted by acyl-CoA lipophilicity. The study also demonstrates the utility of the colorimetric assay for thorough inhibitor characterisation.  相似文献   

5.
6.
In this work six PBN-related indanonitrones 16 have been designed, synthesized, and their neuroprotection capacity tested in vitro, under OGD conditions, in SH-SY5Y human neuroblastoma cell cultures. As a result, we have identified indanonitrones 1, 3 and 4 (EC50 = 6.64 ± 0.28 μM) as the most neuroprotective agents, and in particular, among them, indanonitrone 4 was also the most potent and balanced nitrone, showing antioxidant activity in three experiments [LOX (100 μM), APPH (51%), DPPH (36.5%)], being clearly more potent antioxidant agent than nitrone PBN. Consequently, we have identified (Z)-5-hydroxy-N-methyl-2,3-dihydro-1H-inden-1-imine oxide (4) as a hit-molecule for further investigation.  相似文献   

7.
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) is a major impediment for clinical cancer therapy. 19 novel aromatic amides with triazole-core as MDR reversal agents were designed and synthesized via click chemistry to reverse MDR. Among them, compound 42 was identified as the most promising candidate with high potency (EC50 = 78.1 ± 5.4 nM), low cytotoxity (SI > 1282) and persistent duration in reversing doxorubicin (DOX) resistance in K562/A02 cells. 42 also enhanced the potency of other P-gp associated cytotoxic agents with different structures. In further study, remarkably increased intracellular accumulation of Rh123 and DOX in K562/A02 cells was achieved by compound 42, while CYP3A4 activity had no change by compound 42. These results indicate that compound 42 as a relatively safe modulator of P-gp-mediated MDR has good potential for further development.  相似文献   

8.
9.
Novel heteroaryl-containing benzamide derivatives were synthesized and screened using an in vitro assay measuring increases in glucose uptake and glucokinase activity stimulated by 10 mM glucose in rat hepatocytes. From a library of synthesized compounds, 3-(4-methanesulfonylphenoxy)-N-[1-(2-methoxy-ethoxymethyl)-1H-pyrazol-3-yl]-5-(3-methyl pyridin-2-yl)-benzamide (19e) was identified as a potent glucokinase activator with assays demonstrating an EC50 of 315 nM and the induction of a 2.23 fold increase in glucose uptake. Compound 19e exhibited a glucose AUC reduction of 32% (50 mg/kg) in an OGTT study with C57BL/6J mice compared to 28% for metformin (300 mg/kg). Single treatment of the compound in C57BL/J6 and ob/ob mice elicited basal glucose lowering activity, while in a two-week repeated dose study with ob/ob mice, the compound significantly decreased blood glucose levels with no evidence of hypoglycemia risk. In addition, 19e exhibited favorable pharmacokinetic parameters in mice and rats and excellent safety margins in liver and testicular toxicity studies. Compound 19e was therefore selected as a development candidate for the potential treatment of type 2 diabetes.  相似文献   

10.
Lambertellin (1) and ergosta-5,7,22-trien-3-ol (2) were isolated from the solid rice fermentation of the plant pathogenic fungus Pycnoporus sanguineus MUCL 51321. Their structures were elucidated using comprehensive spectroscopic methods. The isolated compounds were tested on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Lambertellin (1) exhibited promising inhibitory activity against nitric oxide (NO) production with IC50 value of 3.19 µM, and it significantly inhibited the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). Lambertellin (1) also decreased the expression of pro-inflammatory cytokines IL-6 and IL-1β. The study of the mechanistic pathways revealed that lambertellin (1) exerts its anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophage cells by modulating the activation of the mitogen activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling pathways. Therefore, lambertellin (1) could be a promising lead compound for the development of new anti-inflammatory drugs.  相似文献   

11.
The bromodomain and extraterminal (BET) family of proteins play a crucial role in promoting gene expression of critical oncogenes. Novel BET bromodomain inhibitors with excellent potency, drug metabolism and pharmacokinetics (DMPK) properties were in strong need for development. We reported a series of potential BET inhibitors through incorporation of imidazole into pyridine scaffold. Among them, a novel BET inhibitor with 7-methylimidazo[1,5-a]pyrazin-8(7H)-one core, compound 28, was considered to be the most promising for in-depth study. Compound 28 exhibited excellent BRD4-inhibitory activity with IC50 value of 33 nM and anti-proliferation potency with IC50 value of 110 nM in HL-60 (human promyelocytic leukemia) cancer cell lines. Western Blot indicated that compound 28 can effectively trigger apoptosis in BxPc3 cells by modulating the intrinsic apoptotic pathway. In conclusion, these results suggested that compound 28 has merely potential for leukemia treatment.  相似文献   

12.
As a ubiquitous, highly pleiotropic and constitutively active serine/threonine protein kinase, casein kinase 2 (CK2) is closely associated with tumorigenesis by its overexpression in cancer cells. Here we report several proteolysis targeting chimeras (PROTACs) via “click reaction” to connect a CK2 inhibitor (CX-4945) and pomalidomide for degradation of CK2 protein. Among them, compound 2 degraded CK2 in a dose and time-dependent manner, and kept CK2 at a low basal level by recruiting ubiquitin-proteasome system. The degradation of CK2 resulted in the reduced phosphorylation of Akt and the up-regulation of p53. As a CK2 protein degrader, 2 showed the analogous cytotoxicity to CX-4945 but with a quite different mechanism of action from the CK2 inhibitor, hinting that degradation of CK2 proteins by PROTACs is a potential way for cancer treatments.  相似文献   

13.
Alzheimer’s disease (AD) is the most prevalent disease of old age leading to dementia. Complex AD pathogenesis involves multiple factors viz. amyloid plaque formation, neurofibrillary tangles and inflammation. Herein we report of a new series of quinoxaline-bisthiazoles as multitarget-directed ligands (MTDLs) targeting BACE-1 and inflammation concurrently. Virtual screening of a library of novel quinoxaline-bisthiazoles was performed by docking studies. The most active molecules from the docking library were taken up for synthesis and characterized by spectral data. Compounds 8a-8n showed BACE-1 inhibition in micro molar range. One of the compounds, 8n showed BACE-1 inhibition at IC50 of 3 ± 0.07 µM. Rat paw edema inhibition in acute and chronic models of inflammation were obtained at 69 ± 0.45% and 55 ± 0.7%, respectively. Compound 8n also showed noteworthy results in AlCl3 induced AD model. The treated rats exhibited excellent antiamnesic, antiamyloid, antioxidant, and neuroprotective properties. Behavioural parameters suggested improved cognitive functions which further validates the testimony of present study. Moreover, compound 8n was found to have inherent gastrointestinal safety. This new string of quinoxaline-bisthiazoles were identified as effective lead for the generation of potent MTDLs and compound 8n was found to showcase qualities to tackle AD pathogenesis.  相似文献   

14.
A series of 2-acetylphenol-donepezil hybrids was designed and synthesized based on multi-target-directed ligands strategy. The biological activities were evaluated by AChE/BChE inhibition and MAO-A/MAO-B inhibition. The results revealed that the tertiary amines and methylene chain length significantly affected the eeAChE inhibitory potency, in particular, compound TM-14 showed the best eeAChE inhibitory activity with IC50 value of 2.9 μM, in addition, both kinetic analysis of AChE inhibition and docking study displayed that TM-14 could simultaneously bind to the catalytic active site and peripheral anionic site of AChE. Moreover, compound TM-14 was a selective metal chelator and could form 1:1 TM-14-Cu2+ complex. The structure-active-relationship also indicated that the O-alkylamine fragment remarkably decreased hMAO-B inhibitory activity, compound TM-2 exhibited potent hMAO-B inhibitory activity (IC50 = 6.8 μM), which was supported by the molecular docking study. More interestingly, compounds TM-14 and TM-2 could cross the blood-brain barrier in vitro. Therefore, the structure-active-relationship of 2-acetylphenol-donepezil hybrids could encourage the development of multifunction agents with selective AChE inhibition or selective MAO-B inhibition for the treatment of Alzheimer’s disease.  相似文献   

15.
A set of 19 oxadiazolone (OX) derivatives have been investigated for their antimycobacterial activity against two pathogenic slow-growing mycobacteria, Mycobacterium marinum and Mycobacterium bovis BCG, and the avirulent Mycobacterium tuberculosis (M. tb) mc26230. The encouraging minimal inhibitory concentrations (MIC) values obtained prompted us to test them against virulent M. tb H37Rv growth either in broth medium or inside macrophages. The OX compounds displayed a diversity of action and were found to act either on extracellular M. tb growth only with moderated MIC50, or both intracellularly on infected macrophages as well as extracellularly on bacterial growth. Of interest, all OX derivatives exhibited very low toxicity towards host macrophages. Among the six potential OXs identified, HPOX, a selective inhibitor of extracellular M. tb growth, was selected and further used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP, in order to identify its putative target(s). This approach, combined with mass spectrometry, identified 18 potential candidates, all being serine or cysteine enzymes involved in M. tb lipid metabolism and/or in cell wall biosynthesis. Among them, Ag85A, CaeA, TesA, KasA and MetA have been reported as essential for in vitro growth of M. tb and/or its survival and persistence inside macrophages. Overall, our findings support the assumption that OX derivatives may represent a novel class of multi-target inhibitors leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-containing enzymes involved in various important physiological processes.  相似文献   

16.
A new series of 3-substituted-4-hydroxycoumarin derivatives was designed, synthesized, and evaluated for CDK inhibiting and anticancer activities. All the synthesized target compounds showed remarkably high affinity and selectivity towards CDK1B, compared to flavopiridol, with Ki values in the low nanomolar range (Ki = 0.35–0.88 nM). Most of them elicited considerable inhibiting effect against CDK9T1 (Ki = 3.26–23.45 nM). Moreover, all the target compounds were tested in vitro against eighteen types of human tumor cell lines. The hydrazone 3a, N-phenylpyrazoline derivative 6b and 2-aminopyridyl-3-carbonitrile derivative 8c were the most potent anticancer agents against MCF-7 breast cancer cell line (IC50 = 0.21, 0.21 and 0.23 nM, respectively). The target compounds 3a, 6b and 8c were further evaluated in MCF-7 breast cancer mouse xenograft model and showed in vivo efficacy at 10 mg/kg dose. The docking study confirmed a unique binding mode in the active site of CDK1B with better score than flavopiridol. Quantitative structure activity relationship study was done and revealed a highly predictive power R2 of 0.81.  相似文献   

17.
A flexible approach to previously unknown spirofused and linked 1,3,4-thiadiazine derivatives of steroids with selective control of heterocyclization patterns is disclosed. (N-Arylcarbamoyl)spiroandrostene-17,6′ [1,3,4]thiadiazines and (N-arylcarbamoyl)17-[1′,3′,4′]thiadiazine-substituted androstenes, novel types of heterosteroids, were prepared from 16β,17β-epoxypregnenolone and 21-bromopregna-5,16-dien-20-one in good to high yields by the treatment with oxamic acid thiohydrazides. The synthesized compounds were screened for antiproliferative activity against the human androgen receptor-positive prostate cancer cell line 22Rv1. Most of (N-arylcarbamoyl)17-[1′,3′,4′]thiadiazine-substituted androstenes exhibit better antiproliferative potency (IC50 = 2.1–6.6 µM) than the antiandrogen bicalutamide. Compounds 7d with IC50 = 3.0 μM and 7j with IC50 = 2.1 μM proved to be the most active in the series under study. Lead synthesized compound 7j downregulates AR expression and activity in 22Rv1 cells. NF-κB activity is also blocked in 7j-treated 22Rv1 cells. Apoptosis is considered as a possible mechanism of 7j-induced cell death.  相似文献   

18.
Two new diastereomeric lignan amides (4 and 5) serving as dimeric caffeic acid-l-DOPA hybrids were synthesized. The synthesis involved the FeCl3-mediated phenol oxidative coupling of methyl caffeate to afford trans-diester 1a as a mixture of enantiomers, protection of the catechol units, regioselective saponification, coupling with a suitably protected l-DOPA derivative, separation of the two diastereomers thus obtained by flash column chromatography and finally global chemoselective deprotection of the catechol units. The effect of hybrids 4 and 5 and related compounds on the proliferation of two breast cancer cell lines with different metastatic potential and estrogen receptor status (MDA-MB-231 and MCF-7) and of one epithelial lung cancer cell line, namely A-549, was evaluated for concentrations ranging from 1 to 256 μM and periods of treatment of 24, 48 and 72 h. Both hybrids showed interesting and almost equipotent antiproliferative activities (IC50 64–70 μM) for the MDA-MB-231 cell line after 24–48 h of treatment, but they were more selective and much more potent (IC50 4–16 μM) for the MCF-7 cells after 48 h of treatment. The highest activity for both hybrids and both breast cancer lines was observed after 72 h of treatment (IC50 1–2 μM), probably as the result of slow hydrolysis of their methyl ester functions.  相似文献   

19.
In the search for new treatments for complex disorders such as Alzheimer’s disease the Multi-Target-Directed Ligands represent a very promising approach. The aim of the present study was to identify multifunctional compounds among several series of non-imidazole histamine H3 receptor ligands, derivatives of 1-[2-thiazol-5-yl-(2-aminoethyl)]-4-n-propylpiperazine, 1-[2-thiazol-4-yl-(2-aminoethyl)]-4-n-propylpiperazine and 1-phenoxyalkyl-4-(amino)alkylopiperazine using in vitro and in vivo pharmacological evaluation and computational studies. Performed in vitro assays showed moderate potency of tested compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Molecular modeling studies have revealed possible interactions between the active compounds and both AChE and BuChE as well as the human H3 histamine receptor. Computational studies showed the high drug-likeness of selected compounds with very good physicochemical profiles. The parallel artificial membrane permeation assay proved outstanding blood–brain barrier penetration in test conditions. The most promising compound, A12, chemically methyl(4-phenylbutyl){2-[2-(4-propylpiperazin-1-yl)-1,3-thiazol-5-yl]ethyl}amine, possesses good balanced multifunctional profile with potency toward studied targets - H3 antagonist activity (pA2 = 8.27), inhibitory activity against both AChE (IC50 = 13.96 μM), and BuChE (IC50 = 14.62 μM). The in vivo pharmacological studies revealed the anti-amnestic properties of compound A12 in the passive avoidance test on mice.  相似文献   

20.
Sanggenon O (SO) is a Diels-Alder type adduct extracted from Morus alba, which has been used for its anti-inflammatory action in the Oriental medicine. However, whether it has regulatory effect on human cancer cell proliferation and what the underlying mechanism remains unknown. Here, we found that SO could significantly inhibit the growth and proliferation of A549 cells and induce its pro-apoptotic action through a caspase-dependent pathway. It could also impair the mitochondria which can be reflected by mitochondrial membrane permeabilization. Besides, SQSTM1 up-regulation and autophagic flux measurement demonstrated that exposure to SO led to autophagosome accumulation, which plays a protective role in SO-treated cells. In addition, knocking down of LC3B increased SO triggered apoptotic cell rates. These results indicated that SO has great potential as a promising candidate combined with autophagy inhibitor for the treatment of NSCLC. In conclusion, our results identified a novel mechanism by which SO exerts potent anticancer activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号