首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer’s disease is the fourth biggest killer in developed countries. Amyloid precursor protein (APP) plays a central role in the development of the disease, through the generation of a peptide called Aβ by proteolysis of the precursor protein. APP can function as a metalloprotein and modulate copper transport via its extracellular copper binding domain (CuBD). Copper binding to this domain has been shown to reduce Aβ levels and hence a molecular understanding of the interaction between metal and protein could lead to the development of novel therapeutics to treat the disease. We have recently determined the three-dimensional structures of apo and copper bound forms of CuBD. The structures provide a mechanism by which CuBD could readily transfer copper ions to other proteins. Importantly, the lack of significant conformational changes to CuBD on copper binding suggests a model in which copper binding affects the dimerisation state of APP leading to reduction in Aβ production. We thus predict that disruption of APP dimers may be a novel therapeutic approach to treat Alzheimer’s disease. Australian Society for Biophysics Special Issue: Metals and Membranes in Neuroscience.  相似文献   

2.
More than half of the mutations of the amyloid precursor protein (APP) discovered in familiar forms of Alzheimer’s disease are located in the transmembrane domain. The pathogenic mutations presumably affect the lateral dimerization of the APP transmembrane domain in the membrane and change the dimer conformation and/or stability. Thus, the mutations cause an alternative APP digestion pattern in the membrane and neurotoxic amyloid β-peptide generation. For the detailed study of the specific protein-protein and protein-lipid interactions of the APP transmembrane domain, an E. coli recombinant expression construct was made. The recombinant protein contains an APP transmembrane domain (APPtm(686–726)) with adjacent extramembrane N and C ends. Here, we report the method of isotope-labeled APPtm expression and purification in quantities necessary for a heteronuclear NMR spectroscopy structure and dynamics study. On the basis of the 1H-15N-HSQC spectra, we developed APPtm(686–726) solubilization conditions in the membrane-emulated milieu detergent micelles and lipid bicelles.  相似文献   

3.
4.
5.
It is becoming evident that chronic exposure to stress not only might result in insulin resistance or cognitive deficits, but may also be considered a risk factor for pathologies such as depression or Alzheimer's disease (AD). There is great interest in determining the molecular mechanisms underlying interactions between stress, aging, memory and Alzheimer's disease (AD). We have used the chronic mild stress (CMS) model to study the effects of chronic stress on the aging process and the development of central insulin resistance and AD pathology. CMS aged mice showed cognitive impairments in the novel object recognition test. In addition, CMS aged mice displayed both peripheral insulin resistance, as shown by HOMA index, and decreased hippocampal levels of pIRS and downstream intracellular signaling (pAKT, pGSK and pERK1/2). Interestingly, there was a significant increase in both C99:C83 ratio and BACE1 levels in the hippocampus of CMS aged mice. Increased expression of the AD marker pTau was also found in stressed aged mice. Increased expression of the stress-activated protein kinase JNK was found in CMS aged mice, accompanied by significant decreases in glucocorticoid receptor (GR) expression and increases in mineralocorticoid receptor (MR) expression. It is suggested that the interaction of stress with aging should be considered when studying determinants of the onset and progression of AD.  相似文献   

6.
7.
8.
Summary The Kunitz-type protease inhibitor is one of the serine protease inhibitors. It is found in blood, saliva, and all tissues in mammals. Recently, a Kunitz-type sequence was found in the protein sequence of the amyloid precursor protein (APP). It is known that APP accumulates in the neuritic plaques and cerebrovascular deposits of patients with Alzheimer's disease. Collagen type VI in chicken also has an insertion of a Kunitz-type sequence. To elucidate the evolutionary origin of these insertion sequences, we constructed a phylogenetic tree by use of all the available sequences of Kunitz-type inhibitors. The tree shows that the ancestral gene of the Kunitz-type inhibitor appeared about 500 million years ago. Thereafter, this gene duplicated itself many times, and some of the duplicates were inserted into other protein-coding genes. During this process, the Kunitz-type sequence in the present APP gene diverged from its ancestral gene about 270 million years ago and was inserted into the gene soon after duplication. Although the function of the insertion sequences is unknown, our molecular evolutionary analysis shows that these insertion sequences in APP have an evolutionarily close relationship with the inter--trypsin inhibitor or trypstatin, which inhibits the activity of tryptase, a novel membrane-bound serine protease in human T4+ lymphocytes.Offprint requests to: T. Gojobori  相似文献   

9.
The mevalonate–isoprenoid–cholesterol biosynthesis pathway plays a key role in human health and disease. The importance of this pathway is underscored by the discovery that two major isoprenoids, farnesyl and geranylgeranyl pyrophosphate, are required to modify an array of proteins through a process known as protein prenylation, catalyzed by prenyltransferases. The lipophilic prenyl group facilitates the anchoring of proteins in cell membranes, mediating protein–protein interactions and signal transduction. Numerous essential intracellular proteins undergo prenylation, including most members of the small GTPase superfamily as well as heterotrimeric G proteins and nuclear lamins, and are involved in regulating a plethora of cellular processes and functions. Dysregulation of isoprenoids and protein prenylation is implicated in various disorders, including cardiovascular and cerebrovascular diseases, cancers, bone diseases, infectious diseases, progeria, and neurodegenerative diseases including Alzheimer’s disease (AD). Therefore, isoprenoids and/or prenyltransferases have emerged as attractive targets for developing therapeutic agents. Here, we provide a general overview of isoprenoid synthesis, the process of protein prenylation and the complexity of prenylated proteins, and pharmacological agents that regulate isoprenoids and protein prenylation. Recent findings that connect isoprenoids/protein prenylation with AD are summarized and potential applications of new prenylomic technologies for uncovering the role of prenylated proteins in the pathogenesis of AD are discussed.  相似文献   

10.
Alzheimer’s disease (AD) is the most prevalent chronic neurodegenerative disease. Current approved therapies are symptomatic treatments having some effect on cognitive function. Therapies that target β-amyloid (Aβ) have been the focus of efforts to develop a disease modification treatment for AD but these approaches have failed to show any clinical benefit so far. Beyond the ‘Aβ hypothesis’, there are a number of newer approaches to treat AD with neuroinflammation emerging as a very active area of research based on risk gene analysis. This short review will summarize approved drug therapies, recent clinical trials and new approaches for the treatment of AD.  相似文献   

11.
Metabolomics - Since ancient times medicinal plants have been used as medicine in many parts of the world to promote human health and longevity. In recent years many novel secondary metabolites of...  相似文献   

12.
Studies of Alzheimer’s disease have become particularly important and attract now much attention of scientists all over the world due to worldwide dissemination of this dangerous disorder. Causes of this pathology still remain unknown, while the final image, originally obtained on microscopic brain sections from patients with this disease more than a hundred years ago, is well familiar to clinicians. This includes deposition of amyloid-β (Aβ) in the brain tissue of senile plaques and fibrils. Many authors believe that the deposition of Aβ provokes secondary neuronal changes, responsible for death of neurons. Other authors associate the death of neurons with hyperphosphorylation of tau-proteins, which form neurofibrillar tangles inside nerve cells and cause their death. Creation of methods of preclinical diagnostics and effective treatment of Alzheimer’s disease requires novel knowledge: on the nature of triggering factors of sporadic forms of Alzheimer’s disease, on cause-effect relationships of phosphorylation of amyloid precursor protein with formation of pathogenic beta-amyloids, on the relationship between these factors underlying tau-protein hyperphosphorylation and neuron death. In this review we have analyzed reports describing increased intensity of protein synthesis in neurons under normal and various stress conditions, possibility of development of energy imbalance of neurons and activation of their protective systems. Phosphorylation and hyperphosphorylation of tau-proteins is also tightly associated with protective mechanisms of cells and with processes of evacuation of phosphates, adenosine monophosphates and pyrophosphates from the region of protein synthesis. Prolonged highly intensive protein synthesis causes overload of protective mechanisms and impairments in concerted metabolic processes. This leads to neuronal dysfunction, transport collapse, and death of neurons.  相似文献   

13.
Alzheimer’s disease (AD) is the most common form of dementia, afflicting more than 30 million people worldwide. Currently, there is no cure or way to prevent this devastating disease. Extracellular plaques, containing various forms of amyloid-β protein (Aβ), and intracellular neurofibrillary tangles (NFTs), composed of hyper-phosphorylated tau protein, are two major pathological hallmarks of the AD brain. Aggregation, deposition, and N-terminal modification of Aβ protein and tau phosphorylation and aggregation are thought to precede the onset of cognitive decline, which is better correlated with tangle formation and neuron loss. Active and passive vaccines against various forms of Aβ have shown promise in pre-clinical animal models. However, translating these results safely and effectively into humans has been challenging. Recent clinical trials showed little or no cognitive efficacy, possibly due to the fact that the aforementioned neurodegenerative processes most likely pre-existed in the patients well before the start of immunotherapy. Efforts are now underway to treat individuals at risk for AD prior to or in the earliest stages of cognitive decline with the hope of preventing or delaying the onset of the disease. In addition, efforts to immunize against tau and other AD-related targets are underway.  相似文献   

14.
Zhi P  Chia PZ  Chia C  Gleeson PA 《IUBMB life》2011,63(9):721-729
The main component of the amyloid plaques found in the brains of those with Alzheimer's disease (AD) is a polymerized form of the β-amyloid peptide (Aβ) and is considered to play a central role in the pathogenesis of this neurodegenerative disorder. Aβ is derived from the proteolytic processing of the amyloid precursor protein (APP). Beta site APP-cleaving enzyme, BACE1 (also known as β-secretase) is a membrane-bound aspartyl protease responsible for the initial step in the generation of Aβ peptide and is thus a prime target for therapeutic intervention. Substantive evidence now indicates that the processing of APP by BACE1 is regulated by the intracellular sorting of the enzyme and, moreover, perturbations in these intracellular trafficking pathways have been linked to late-onset AD. In this review, we highlight the recent advances in the understanding of the regulation of the intracellular sorting of BACE1 and APP and illustrate why the trafficking of these cargos represent a key issue for understanding the membrane-mediated events associated with the generation of the neurotoxic Aβ products in AD.  相似文献   

15.
Deposits of amyloid peptide Aβ and intracellular aggregates of hyperphosphorylated tau protein in the brain of patients are major neuropathological features of Alzheimer’s disease (AD). For a long time, the possibility of horizontal transmission of Aβ aggregates from cell to cell and from person to person remained hypothetical, since there was no experimental evidence. However, in 1993, the formation of senile plaques was confirmed in the brains of animals after intracerebral injections of AD patient brain homogenates. or homogenates of the brain of transgenic mice enriched with Aβ aggregates Other experiments indicate that amyloid peptide Aβ and intracellular aggregates of hyperphosphorylated tau protein may be transferred from cell to cell like prions. In 2015 and 2016, it was reported that AD could be transmitted to humans during medical procedures, i.e., that this disease might be iatrogenic. This review discusses the mechanisms by which pathogenic Aβ protein can be transmitted between cells and analyzes the current evidence concerning the possibility of horizontal Aβ transmission from person to person.  相似文献   

16.

Background  

The amyloid precursor protein (APP) is transported via the secretory pathway to the cell surface, where it may be cleaved within its ectodomain by α-secretase, or internalized within clathrin-coated vesicles. An alternative proteolytic pathway occurs within the endocytic compartment, where the sequential action of β- and γ-secretases generates the amyloid β protein (Aβ). In this study, we investigated the effects of modulators of endocytosis on APP processing.  相似文献   

17.
18.
Protein prenylation is an important lipid posttranslational modification of proteins. It includes protein farnesylation and geranylgeranylation, in which the 15-carbon farnesyl pyrophosphate or 20-carbon geranylgeranyl pyrophosphate is attached to the C-terminus of target proteins, catalyzed by farnesyl transferase or geranylgeranyl transferases, respectively. Protein prenylation facilitates the anchoring of proteins into the cell membrane and mediates protein–protein interactions. Among numerous proteins that undergo prenylation, small GTPases represent the largest group of prenylated proteins. Small GTPases are involved in regulating a plethora of cellular functions including synaptic plasticity. The prenylation status of small GTPases determines the subcellular locations and functions of the proteins. Dysregulation or dysfunction of small GTPases leads to the development of different types of disorders. Emerging evidence indicates that prenylated proteins, in particular small GTPases, may play important roles in the pathogenesis of Alzheimer’s disease. This review focuses on the prenylation of Ras and Rho subfamilies of small GTPases and its relation to synaptic plasticity and Alzheimer’s disease.  相似文献   

19.
20.
In this immunohistopathological study α1-antichymotrypsin, which is barely demonstrable in the normal brain, was found in amyloid fibrils, endothelial cells and the cytoplasm of astroglial cells in brains from patients with Alzheimer’s disease. Amyloid precursors stained with methenamine silver were arrayed mainly along the membranes, and amyloid fibrils, which stained densely with anti-α1-antichymotrypsin, were in direct contact with the fibrous structures connecting with the membranes of vascular feet or astrocytic processes. From the above findings, α1-antichymotrypsin seems to play a role in the production of amyloid fibrils in Alzheimer’s disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号