首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiovascular simulations have great potential as a clinical tool for planning and evaluating patient-specific treatment strategies for those suffering from congenital heart diseases, specifically Fontan patients. However, several bottlenecks have delayed wider deployment of the simulations for clinical use; the main obstacle is simulation cost. Currently, time-averaged clinical flow measurements are utilized as numerical boundary conditions (BCs) in order to reduce the computational power and time needed to offer surgical planning within a clinical time frame. Nevertheless, pulsatile blood flow is observed in vivo, and its significant impact on numerical simulations has been demonstrated. Therefore, it is imperative to carry out a comprehensive study analyzing the sensitivity of using time-averaged BCs. In this study, sensitivity is evaluated based on the discrepancies between hemodynamic metrics calculated using time-averaged and pulsatile BCs; smaller discrepancies indicate less sensitivity.The current study incorporates a comparison between 3D patient-specific CFD simulations using both the time-averaged and pulsatile BCs for 101 Fontan patients. The sensitivity analysis involves two clinically important hemodynamic metrics: hepatic flow distribution (HFD) and indexed power loss (iPL). Paired demographic group comparisons revealed that HFD sensitivity is significantly different between single and bilateral superior vena cava cohorts but no other demographic discrepancies were observed for HFD or iPL. Multivariate regression analyses show that the best predictors for sensitivity involve flow pulsatilities, time-averaged flow rates, and geometric characteristics of the Fontan connection. These predictors provide patient-specific guidelines to determine the effectiveness of analyzing patient-specific surgical options with time-averaged BCs within a clinical time frame.  相似文献   

2.
IntroductionFractionated radiotherapy in brain tumors is commonly associated with several detrimental effects, largely related to the higher radiosensitivity of the white matter (WM) with respect to gray matter. However, no dose constraints are applied to preserve WM structures at present. Magnetic Resonance (MR) Tractography is the only technique that allows to visualize in vivo the course of WM eloquent tracts in the brain. In this study, the feasibility of integrating MR Tractography in tomotherapy treatment planning has been investigated, with the aim to spare eloquent WM regions from the dose delivered during treatment.MethodsNineteen high grade glioma patients treated with fractionated radiotherapy were enrolled. All the patients underwent pre-treatment MR imaging protocol including Diffusion Tensor Imaging (DTI) acquisitions for MR Tractography analysis. Bilateral tracts involved in several motor, language, cognitive functions were reconstructed and these fiber bundles were integrated into the Tomotherapy Treatment planning system. The original plans without tracts were compared with the optimized plans incorporating the fibers, to evaluate doses to WM structures in the two differently optimized plans.ResultsNo significant differences were found between plans in terms of planning target volume (PTV) coverage between the original plans and the optimized plans incorporating fiber tracts. Comparing the mean as well as the maximal dose (Dmean and Dmax), a significant dose reduction was found for most of the tracts. The dose sparing was more relevant for contralateral tracts (P < 0.0001).ConclusionThe integration of MR Tractography into radiotherapy planning is feasible and beneficial to preserve important WM structures without reducing the clinical goal of radiation treatment.  相似文献   

3.
Particle image velocimetry (PIV) and phase contrast magnetic resonance imaging (PC-MRI) have not been compared in complex biofluid environments. Such analysis is particularly useful to investigate flow structures in the correction of single ventricle congenital heart defects, where fluid dynamic efficiency is essential. A stereolithographic replica of an extracardiac total cavopulmonary connection (TCPC) is studied using PIV and PC-MRI in a steady flow loop. Volumetric two-component PIV is compared to volumetric three-component PC-MRI at various flow conditions. Similar flow structures are observed in both PIV and PC-MRI, where smooth flow dominates the extracardiac TCPC, and superior vena cava flow is preferential to the right pulmonary artery, while inferior vena cava flow is preferential to the left pulmonary artery. Where three-component velocity is available in PC-MRI studies, some helical flow in the extracardiac TCPC is observed. Vessel cross sections provide an effective means of validation for both experiments, and velocity magnitudes are of the same order. The results highlight similarities to validate flow in a complex patient-specific extracardiac TCPC. Additional information obtained by velocity in three components further describes the complexity of the flow in anatomic structures.  相似文献   

4.
Non-invasive hemodynamic assessment of total cavopulmonary connection (TCPC) is challenging due to the complex anatomy. Additive manufacturing (AM) is a suitable alternative for creating patient-specific in vitro models for flow measurements using four-dimensional (4D) Flow MRI. These in vitro systems have the potential to serve as validation for computational fluid dynamics (CFD), simulating different physiological conditions. This study investigated three different AM technologies, stereolithography (SLA), selective laser sintering (SLS) and fused deposition modeling (FDM), to determine differences in hemodynamics when measuring flow using 4D Flow MRI. The models were created using patient-specific MRI data from an extracardiac TCPC. These models were connected to a perfusion pump circulating water at three different flow rates. Data was processed for visualization and quantification of velocity, flow distribution, vorticity and kinetic energy. These results were compared between each model. In addition, the flow distribution obtained in vitro was compared to in vivo. The results showed significant difference in velocities measured at the outlets of the models that required internal support material when printing. Furthermore, an ultrasound flow sensor was used to validate flow measurements at the inlets and outlets of the in vitro models. These results were highly correlated to those measured with 4D Flow MRI. This study showed that commercially available AM technologies can be used to create patient-specific vascular models for in vitro hemodynamic studies at reasonable costs. However, technologies that do not require internal supports during manufacturing allow smoother internal surfaces, which makes them better suited for flow analyses.  相似文献   

5.
《Journal of biomechanics》2014,47(16):3882-3890
Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms.  相似文献   

6.
PurposeA retrospective planning study was undertaken to evaluate the dosimetric advantages of the irregular surface compensator (ISC) technique, a forward planning technique with electronic compensation algorithm available on Varian Eclipse treatment planning system. This was extensively compared to the conventional four-field box (4FB) and intensity modulated radiation therapy using 5 fields (IMRT5F) on gynecologic cancer patients.MethodsTwenty-two patients were enrolled. The prescribed dose was 50.4 Gy in 28 fractions to the primary target including pelvic lymph nodes. 4FB treatment plans were generated, then fluence of anterior and posterior fields were modified to generate ISC plans. IMRT5F were inversely optimized with equally spaced five coplanar fields. Dose-volume parameters were evaluated for the comparison of three planning techniques. The MU and delivery time were also estimated.ResultsIn terms of target coverage, the conformity and homogeneity index of ISC (1.67 and 1.03, respectively) were superior to those of 4FB (2.43 and 1.06, respectively) but slightly inferior to those of IMRT5F (1.10 and 1.02, respectively). ISC also illustrated an overall improvement in normal organ saving. Compared to 4FB, the mean dose of the rectum was reduced by about 4.0–5.0 Gy with ISC and IMRT5F. The volume receiving large doses was reduced for bladder with statistical significance with ISC and more with IMRT5F relative to 4FB. The mean number of MU per fraction were 200.86 (4FB), 446.09 (ISC) and 895.59 (IMRT5F).ConclusionThe ISC technique has the superior target coverage and healthy tissue sparing in comparison with conventional 4FB and comparable normal organ saving compared to IMRT5F. The ISC can be an available option for gynecologic radiotherapy.  相似文献   

7.
Dietary methionine restriction (MR) extends lifespan, an effect associated with reduction of body weight gain, and improvement of insulin sensitivity in mice and rats as a result of metabolic adaptations in liver, adipose tissue and skeletal muscle. To test whether MR confers resistance to adiposity and insulin resistance, C57BL/6J mice were fed a high fat diet (HFD) containing either 0.86% methionine (control fed; CF) or 0.12% methionine (methionine-restricted; MR). MR mice on HFD had lower body weight gain despite increased food intake and absorption efficiency compared to their CF counterparts. MR mice on HFD were more glucose tolerant and insulin sensitive with reduced accumulation of hepatic triglycerides. In plasma, MR mice on HFD had higher levels of adiponectin and FGF21 while leptin and IGF-1 levels were reduced. Hepatic gene expression showed the downregulation of Scd1 while Pparg, Atgl, Cd36, Jak2 and Fgf21 were upregulated in MR mice on HFD. Restriction of growth rate in MR mice on HFD was also associated with lower bone mass and increased plasma levels of the collagen degradation marker C-terminal telopeptide of type 1 collagen (CTX-1). It is concluded that MR mice on HFD are metabolically healthy compared to CF mice on HFD but have decreased bone mass. These effects could be associated with the observed increase in FGF21 levels.  相似文献   

8.
9.
In patients with congenital heart disease and a single ventricle (SV), ventricular support of the circulation is inadequate, and staged palliative surgery (usually 3 stages) is needed for treatment. In the various palliative surgical stages individual differences in the circulation are important and patient-specific surgical planning is ideal. In this study, an integrated approach between clinicians and engineers has been developed, based on patient-specific multi-scale models, and is here applied to predict stage 2 surgical outcomes. This approach involves four distinct steps: (1) collection of pre-operative clinical data from a patient presenting for SV palliation, (2) construction of the pre-operative model, (3) creation of feasible virtual surgical options which couple a three-dimensional model of the surgical anatomy with a lumped parameter model (LPM) of the remainder of the circulation and (4) performance of post-operative simulations to aid clinical decision making. The pre-operative model is described, agreeing well with clinical flow tracings and mean pressures. Two surgical options (bi-directional Glenn and hemi-Fontan operations) are virtually performed and coupled to the pre-operative LPM, with the hemodynamics of both options reported. Results are validated against postoperative clinical data. Ultimately, this work represents the first patient-specific predictive modeling of stage 2 palliation using virtual surgery and closed-loop multi-scale modeling.  相似文献   

10.
BACKGROUND: The total cavopulmonary connection (TCPC), a palliative correction for congenital defects of the right heart, is based on the corrective technique developed by Fontan and Baudet. Research into the TCPC has primarily focused on reducing power loss through the connection as a means to improve patient longevity and quality of life. The goal of our study is to investigate the efficacy of including a caval offset on the hemodynamics and, ultimately, power loss of a connection. As well, we will quantify the effect of vessel wall compliance on these factors and, in addition, the distribution of hepatic blood to the lungs. METHODS: We employed a computational fluid dynamic model of blood flow in the TCPC that includes both the non-Newtonian shear thinning characteristics of blood and the nonlinear compliance of vessel tissue. RESULTS: Power loss in the rigid-walled simulations decayed exponentially as caval offset increased. The compliant-walled results, however, showed that after an initial substantial decrease in power loss for offsets up to half the caval diameter, power loss increased slightly again. We also found only minimal mixing in both simulations of all offset models. CONCLUSIONS: The increase in power loss beyond an offset of half the caval diameter was due to an increase in the kinetic contribution. Reduced caval flow mixing, on the other hand, was due to the formation of a pressure head in the offset region which acts as a barrier to flow.  相似文献   

11.

In order for computational fluid dynamics to provide quantitative parameters to aid in the clinical assessment of type B aortic dissection, the results must accurately mimic the hemodynamic environment within the aorta. The choice of inlet velocity profile (IVP) therefore is crucial; however, idealised profiles are often adopted, and the effect of IVP on hemodynamics in a dissected aorta is unclear. This study examined two scenarios with respect to the influence of IVP—using (a) patient-specific data in the form of a three-directional (3D), through-plane (TP) or flat IVP; and (b) non-patient-specific flow waveform. The results obtained from nine simulations using patient-specific data showed that all forms of IVP were able to reproduce global flow patterns as observed with 4D flow magnetic resonance imaging. Differences in maximum velocity and time-averaged wall shear stress near the primary entry tear were up to 3% and 6%, respectively, while pressure differences across the true and false lumen differed by up to 6%. More notable variations were found in regions of low wall shear stress when the primary entry tear was close to the left subclavian artery. The results obtained with non-patient-specific waveforms were markedly different. Throughout the aorta, a 25% reduction in stroke volume resulted in up to 28% and 35% reduction in velocity and wall shear stress, respectively, while the shape of flow waveform had a profound influence on the predicted pressure. The results of this study suggest that 3D, TP and flat IVPs all yield reasonably similar velocity and time-averaged wall shear stress results, but TP IVPs should be used where possible for better prediction of pressure. In the absence of patient-specific velocity data, effort should be made to acquire patient’s stroke volume and adjust the applied IVP accordingly.

  相似文献   

12.
Abstract

Computed tomography is used more routinely to design patient-specific instrumentation for knee replacement surgery. Its moderate imaging cost and simplified segmentation reduce design costs compared with magnetic resonance (MR) imaging, but it cannot provide the necessary cartilage information. Our method based on statistical shape modelling proved to be successful in predicting tibiofemoral cartilage in leave-one-out experiments. The obtained accuracy of 0.54?mm for femur and 0.49?mm for tibia outperforms the average cartilage thickness distribution and reported inter-observer MR segmentation variability. These results suggest that shape modelling is able to predict tibiofemoral cartilage with sufficient accuracy to design patient-specific instrumentation.  相似文献   

13.
Abstract

This paper describes a systematic investigation on the hemodynamic environment in a patient-specific AAA with tortuous common iliac artery(CIA) and external iliac artery (EIA). 3D reconstructions from CT scans and subsequent computational simulation are carried out. It is found out that the Newtonian and non-Newtonian models have very similar flow field and WSS distribution. More importantly, it is revealed that the torturous CIA maintained its helical flow. It is concluded that the assumption of Newtonian blood is adequate in capturing the intra-aneurysmal hemodynamics. Moreover, it is speculated that the physiological spiral flow protects the twisted CIA from the thrombosis formation.  相似文献   

14.
The aim of this study is to develop and validate a patient-specific distributed model of the systemic arterial tree. This model is built using geometric and hemodynamic data measured on a specific person and validated with noninvasive measurements of flow and pressure on the same person, providing thus a patient-specific model and validation. The systemic arterial tree geometry was obtained from MR angiographic measurements. A nonlinear viscoelastic constitutive law for the arterial wall is considered. Arterial wall distensibility is based on literature data and adapted to match the wave propagation velocity of the main arteries of the specific subject, which were estimated by pressure waves traveling time. The intimal shear stress is modeled using the Witzig-Womersley theory. Blood pressure is measured using applanation tonometry and flow rate using transcranial ultrasound and phase-contrast-MRI. The model predicts pressure and flow waveforms in good qualitative and quantitative agreement with the in vivo measurements, in terms of wave shape and specific wave features. Comparison with a generic one-dimensional model shows that the patient-specific model better predicts pressure and flow at specific arterial sites. These results obtained let us conclude that a patient-specific one-dimensional model of the arterial tree is able to predict well pressure and flow waveforms in the main systemic circulation, whereas this is not always the case for a generic one-dimensional model.  相似文献   

15.
Little is known about the impact of the total cavopulmonary connection (TCPC) on resting and exercise hemodynamics in a single ventricle (SV) circulation. The aim of this study was to elucidate this mechanism using a lumped parameter model of the SV circulation. Pulmonary vascular resistance (1.96+/-0.80 WU) and systemic vascular resistances (18.4+/-7.2 WU) were obtained from catheterization data on 40 patients with a TCPC. TCPC resistances (0.39+/-0.26 WU) were established using computational fluid dynamic simulations conducted on anatomically accurate three-dimensional models reconstructed from MRI (n=16). These parameters were used in a lumped parameter model of the SV circulation to investigate the impact of TCPC resistance on SV hemodynamics under resting and exercise conditions. A biventricular model was used for comparison. For a biventricular circulation, the cardiac output (CO) dependence on TCPC resistance was negligible (sensitivity=-0.064 l.min(-1).WU(-1)) but not for the SV circulation (sensitivity=-0.88 l.min(-1).WU(-1)). The capacity to increase CO with heart rate was also severely reduced for the SV. At a simulated heart rate of 150 beats/min, the SV patient with the highest resistance (1.08 WU) had a significantly lower increase in CO (20.5%) compared with the SV patient with the lowest resistance (50%) and normal circulation (119%). This was due to the increased afterload (+35%) and decreased preload (-12%) associated with the SV circulation. In conclusion, TCPC resistance has a significant impact on resting hemodynamics and the exercise capacity of patients with a SV physiology.  相似文献   

16.
Boundary conditions (BCs) are an essential part in computational fluid dynamics (CFD) simulations of blood flow in large arteries. Although several studies have investigated the influence of BCs on predicted flow patterns and hemodynamic wall parameters in various arterial models, there is a lack of comprehensive assessment of outlet BCs for patient-specific analysis of aortic flow. In this study, five different sets of outlet BCs were tested and compared using a subject-specific model of a normal aorta. Phase-contrast magnetic resonance imaging (PC-MRI) was performed on the same subject and velocity profiles extracted from the in vivo measurements were used as the inlet boundary condition. Computational results obtained with different outlet BCs were assessed in terms of their agreement with the PC-MRI velocity data and key hemodynamic parameters, such as pressure and flow waveforms and wall shear stress related indices. Our results showed that the best overall performance was achieved by using a well-tuned three-element Windkessel model at all model outlets, which not only gave a good agreement with in vivo flow data, but also produced physiological pressure waveforms and values. On the other hand, opening outlet BCs with zero pressure at multiple outlets failed to reproduce any physiologically relevant flow and pressure features.  相似文献   

17.
PurposeCarbon ion radiotherapy (CIRT) is sensitive to anatomical density variations. We examined the dosimetric effect of variable intestinal filling condition during CIRT to ten sacral chordoma patients.MethodsFor each patient, eight virtual computed tomography scans (vCTs) were generated by varying the density distribution within the rectum and the sigmoid in the planning computed tomography (pCT) with a density override approach mimicking a heterogeneous combination of gas and feces. Totally full and empty intestinal preparations were modelled. In addition, five different intestinal filling conditions were modelled by a mixed density pattern derived from two combined and weighted Gaussian distributions simulating gas and feces respectively. Finally, a patient-specific mixing proportion was estimated by evaluating the daily amount of gas detected in the cone beam computed tomography (CBCT). Dose distribution was recalculated on each vCT and dose volume histograms (DVHs) were examined.ResultsNo target coverage degradation was observed at different vCTs. Rectum and sigma dose degradation ranged respectively between: [−6.7; 21.6]GyE and [−0.7; 15.4]GyE for D50%; [−377.4; 1197.9] and [−95.2; 1027.5] for AUC; [−1.2; 10.7]GyE and [−2.6; 21.5]GyE for D1%.ConclusionsVariation of intestinal density can greatly influence the penetration depth of charged particle and might compromise dose distribution. In particular cases, with large clinical target volume in very close proximity to rectum and sigmoid colon, it is appropriate to evaluate the amount of gas present in the daily CBCT images even if it is totally included in the reference planning structures.  相似文献   

18.
IntroductionCT simulation data in image-guided radiation therapy (IGRT) provides patient-specific subject contrast. This information can be exploited to establish, a priori, a suitable imaging goal and to select patient-specific imaging acquisition parameters that optimize the similarity between reference and daily set-up images and reduce imaging dose. This study aims to describe and clinically validate a computerized algorithm designed to provide such optimization.Material and methodsAn image planning system (IPS) was developed to assist in planar kV imaging technique selection for radiation therapy. The system's patient-specific image quality and dose reduction capabilities were validated herein. Anthropomorphic phantom and clinical data were acquired. Mutual information (MI) was used to compare simulated and measured images in both phantom and clinical tests. Variations in contrast resolution resulting from imaging panel underexposure, saturation and a contrast plateau were investigated. For evaluation of patient-specific imaging dose reduction, the IPS was used to modify acquisition settings for six patients.ResultsPhantom data confirmed the IPS's predictive capability regarding image contrast. Measured and simulated images showed similar progressions from under-exposure, image quality peak, and loss of contrast due to detector saturation. Clinical data demonstrated that contrast resolution and imaging dose could be prospectively improved without loss of image contrast. The algorithm reduced imaging dose by an average of 47%, and a maximum of 80%.ConclusionsLoss of image contrast resulting from under-exposure or over-exposure, as well as a contrast plateau can be predicted by use of a prospective image planning algorithm. Image acquisition parameters can be predicted that reduce patient dose without loss of useful contrast.  相似文献   

19.
BackgroundThe incidence of heart failure is anticipated to rise by 2030, resulting in more than 8 million adults with this condition in US. Despite the advancement in pharmacological and surgical treatments, some patients progress to severe forms of cardiac dysfunction requiring cardiac transplantation as a last-resort treatment. Cardiac assist devices play an essential role in the recovery of normal cardiac performance through reversible remodeling or in assisting the weak organ to prolong survival rate. However, these devices need to be monitored carefully, as prolonged use may lead to physiological maladaptation and further cardiac complications. The optimization of such devices has done through the development and use of numerical simulations that allow the analysis of in-vivo hemodynamic patterns of blood flow. This study aims to investigate the performance of a model of extra-aortic assist device surrounding the descending aorta through three-dimensional patient-specific modeling.MethodsA three-dimensional model of the aorta was constructed from patient-specific cardiac CT images of a 60-year-old male diagnosed with left ventricular failure at the Tehran Heart Center (THC). Numerical simulation was conducted for two complete cardiac cycles using fluid-structure interaction (FSI) analysis under the assumption that the balloon and the aortic vessel behave as linear elastic materials, and that blood is a Newtonian and incompressible fluid.ResultsThe numerical simulation demonstrated a high correlation between the FSI analysis and clinical data of the patient-specific anatomical and physiological conditions. Blood velocity, pressure, deformation, and strain contours were simulated and analyzed through three-dimensional modeling. Compared to the unassisted aorta, the device provided an increase in blood flow displacement of an additional 15 ml of blood in the descending aorta, brachiocephalic, carotid, and subclavian arteries. The maximum von Mises stress distribution across the aortic vessel was higher than the stress imposed on the system in the unassisted heart, with values of 3.3 MPa and 0.28 MPa, respectively. Numerical investigation of structural responses revealed that no remarkable force was exerted on the aortic valve by the device at the descending aorta.ConclusionWe present the numerical investigation of a counterpulsation device around the descending aorta that has not previously been tested on human or animal models. While this extra-aortic balloon pump (EABP) did not show a significant improvement in coronary perfusion, there is room for improvement in further studies to optimize the geometry of the balloon. Additional investigations are required to determine the efficacy of this device and its safety before in-vivo experimental studies are pursued. This simulation has clinical relevance when choosing an appropriate cardiac assist device to address patient-specific physiological and pathological conditions.  相似文献   

20.
The hemodynamic alteration in the cerebral circulation caused by the geometric variations in the cerebral circulation arterial network of the circle of Wills (CoW) can lead to fatal ischemic attacks in the brain. The geometric variations due to impairment in the arterial network result in incomplete cerebral arterial structure of CoW and inadequate blood supply to the brain. Therefore, it is of great importance to understand the hemodynamics of the CoW, for efficiently and precisely evaluating the status of blood supply to the brain. In this paper, three-dimensional computational fluid dynamics of the main CoW vasculature coupled with zero-dimensional lumped parameter model boundary condition for the CoW outflow boundaries is developed for analysis of the blood flow distribution in the incomplete CoW cerebral arterial structures. The geometric models in our study cover the arterial segments from the aorta to the cerebral arteries, which can allow us to take into account the innate patient-specific resistance of the arterial trees. Numerical simulations of the governing fluid mechanics are performed to determine the CoW arterial structural hemodynamics, for illustrating the redistribution of the blood flow in CoW due to the structural variations. We have evaluated our coupling methodology in five patient-specific cases that were diagnosed with the absence of efferent vessels or impairment in the connective arteries in their CoWs. The velocity profiles calculated by our approach in the segments of the patient-specific arterial structures are found to be very close to the Doppler ultrasound measurements. The accuracy and consistency of our hemodynamic results have been improved (to \(16.1 \pm 18.5\) %) compared to that of the pure-resistance boundary conditions (of 43.5 \(\pm \) 28 %). Based on our grouping of the five cases according to the occurrence of unilateral occlusion in vertebral arteries, the inter-comparison has shown that (i) the flow reduction in posterior cerebral arteries is the consequence of the unilateral vertebral arterial occlusion, and (ii) the flow rate in the anterior cerebral arteries is correlated with the posterior structural variations. This study shows that our coupling approach is capable of providing comprehensive information of the hemodynamic alterations in the pathological CoW arterial structures. The information generated by our methodology can enable evaluation of both the functional and structural status of the clinically significant symptoms, for assisting the treatment decision-making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号