首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
We investigated changes in postural sway and its fractions associated with manipulations of the dimensions of the support area. Nine healthy adults stood as quietly as possible, with their eyes open, on a force plate as well as on 5 boards with reduced support area. The center of pressure (COP) trajectory was computed and decomposed into rambling (Rm) and trembling (Tr) trajectories. Sway components were quantified using RMS (root mean square) value, average velocity, and sway area. During standing on the force plate, the RMS was larger for the anterior-posterior (AP) sway components than for the mediolateral (ML) components. During standing on boards with reduced support area, sway increased in both directions. The increase was more pronounced when standing on boards with a smaller support area. Changes in the larger dimension of the support area also affected sway, but not as much as changes in the smaller dimension. ML instability had larger effects on indices of sway compared to AP instability. The average velocity of Rm was larger while the average velocity of Tr was smaller in the AP direction vs. the ML direction. The findings can be interpreted within the hypothesis of an active search function of postural sway. During standing on boards with reduced support area, increased sway may by itself lead to loss of balance. The findings also corroborate the hypothesis of Duarte and Zatsiorsky that Rm and Tr reveal different postural control mechanisms.  相似文献   

2.
Walking on uneven surfaces or while undergoing perturbations has been associated with increased gait variability in both modeling and human studies. Previous gait research involving continuous perturbations has focused on sinusoidal oscillations, which can result in individuals predicting the perturbation and/or entraining to it. Therefore, we examined the effects of continuous, pseudo-random support surface and visual field oscillations on 12 healthy, young participants. Participants walked in a virtual reality environment under no perturbation (NOP), anterior–posterior (AP) walking surface and visual oscillation and mediolateral (ML) walking surface and visual oscillation conditions. Participants exhibited shorter (p≤0.005), wider (p<0.001) and faster (p<0.001) steps relative to NOP during ML perturbations and shorter (p≤0.005) and wider (p<0.001) steps during AP perturbations. Step length variability and step width variability both increased relative to NOP during all perturbation conditions (p<0.001) but exhibited greater increases for the ML perturbations (p<0.001). Participants exhibited greater trunk position variability and trunk velocity variability in the ML direction than in the AP direction during ML perturbations relative to NOP (p<0.001). Significantly greater variability in the ML direction indicates that to maintain stability, participants needed to exert greater control in the ML direction. This observation is consistent with prior modeling predictions. The large and consistent responses observed during ML visual and walking surface perturbations suggest potential for application during gait training and patient assessment.  相似文献   

3.

Background

Diminished control of standing balance, traditionally indicated by greater postural sway magnitude and speed, is associated with falls in older adults. Tai Chi (TC) is a multisystem intervention that reduces fall risk, yet its impact on sway measures vary considerably. We hypothesized that TC improves the integrated function of multiple control systems influencing balance, quantifiable by the multi-scale “complexity” of postural sway fluctuations.

Objectives

To evaluate both traditional and complexity-based measures of sway to characterize the short- and potential long-term effects of TC training on postural control and the relationships between sway measures and physical function in healthy older adults.

Methods

A cross-sectional comparison of standing postural sway in healthy TC-naïve and TC-expert (24.5±12 yrs experience) adults. TC-naïve participants then completed a 6-month, two-arm, wait-list randomized clinical trial of TC training. Postural sway was assessed before and after the training during standing on a force-plate with eyes-open (EO) and eyes-closed (EC). Anterior-posterior (AP) and medio-lateral (ML) sway speed, magnitude, and complexity (quantified by multiscale entropy) were calculated. Single-legged standing time and Timed-Up–and-Go tests characterized physical function.

Results

At baseline, compared to TC-naïve adults (n = 60, age 64.5±7.5 yrs), TC-experts (n = 27, age 62.8±7.5 yrs) exhibited greater complexity of sway in the AP EC (P = 0.023), ML EO (P<0.001), and ML EC (P<0.001) conditions. Traditional measures of sway speed and magnitude were not significantly lower among TC-experts. Intention-to-treat analyses indicated no significant effects of short-term TC training; however, increases in AP EC and ML EC complexity amongst those randomized to TC were positively correlated with practice hours (P = 0.044, P = 0.018). Long- and short-term TC training were positively associated with physical function.

Conclusion

Multiscale entropy offers a complementary approach to traditional COP measures for characterizing sway during quiet standing, and may be more sensitive to the effects of TC in healthy adults.

Trial Registration

ClinicalTrials.gov NCT01340365  相似文献   

4.
Textured insoles may enhance sensory input on the plantar surfaces of the feet, thereby influencing neuromuscular function. The aim of this study was to investigate whether textured surfaces alter postural stability and lower limb muscle activity during quiet bipedal standing balance with eyes open. Anterior–posterior (AP) and mediolateral (ML) sway variables and the intensity of electromyographic (EMG) activity in eight dominant lower limb muscles were collected synchronously over 30 s in 24 young adults under three randomised conditions: control surface (C), texture 1 (T1) and texture 2 (T2). Repeated measures ANOVA showed that the textured surfaces did not significantly affect AP or ML postural sway in comparison to the control condition (p > 0.05). Neither did the textured surfaces significantly alter EMG activity in the lower limbs (p > 0.05). Under the specific conditions of this study, texture did not affect either postural sway or lower limb muscle activity in static bipedal standing. The results of this study point to three areas of further work including the effect of textured surfaces on postural stability and lower limb muscle activity: (i) in young healthy adults under more vigorous dynamic balance tests, (ii) post-fatigue, and (iii) in older adults presenting age-related deterioration.  相似文献   

5.
The objective of this study was to assess functional postural responses by analyzing the net joint torques (NJT) in the ankles and the hips resulting from perturbations delivered in multiple directions to subjects standing quietly. A total of eight subjects were standing on two force platforms while an apparatus randomly delivered controlled perturbations at the level of the pelvis in eight directions: anterio-posterior (AP), medio-lateral (ML), and four combinations of these principal directions. Perturbations were repeated five times in each direction for six conditions (i.e., three different perturbation strengths and three different feet orientations). The comparison of the averaged ankle sum NJT (AP) responses showed that the time courses of the responses elicited by a perturbation acting only in the AP direction were identical to those elicited by a combination of two corresponding AP and ML perturbations. In contrast the observed averaged ankle NJT (ML) responses did not follow the same similarity. The comparison of the averaged ankle and hip sum NJT (ML) responses revealed that the time courses of the responses elicited by a perturbation acting only in the ML direction were identical to those elicited by a combination of two corresponding AP and ML perturbations. These findings were invariable of the experimental conditions and were consistent among all the eight subjects. Thereby, we conclude that the ankle sum NJT (AP) and the ankle and hip sum NJT (ML) are the global variables being controlled. This shows that CNS controls the recovery from the multiple direction perturbations of moderate strength by decoupling the AP-ML postural space into two orthogonal directions (AP and ML).  相似文献   

6.
Pregnant women are at an increased risk of experiencing a fall. Numerous anatomical, physiological, and hormonal alterations occur during pregnancy, but the influence of these factors on dynamic postural stability has not been explored. The purpose of this study was to examine dynamic postural stability in pregnant women during their second and third trimesters as well as in a group of non-pregnant control women.MethodsEighty-one women (41 pregnant, 40 controls) participated stood on a force plate that translated anteroposteriorly at small, medium, and large magnitudes. Reaction time and center of pressure (COP) movement during the translations were analyzed. Trimester, perturbation direction, and perturbation magnitude were the independent variables in a mixed-model analysis of variance on each of the following dependent variables: reaction time, initial sway, total sway, and sway velocity.ResultsReaction time to the perturbation was not significantly different between the groups. Initial sway, total sway, and sway velocity were significantly less during the third trimester than during the second trimester and when compared to the non-pregnant controls (P<0.05). No differences were found in any of the measures between the pregnant women in their second trimesters and the control group.ConclusionAlterations in sway responses to perturbations are seen in the third trimester in healthy women with uncomplicated pregnancies. Further study is needed to examine the biomechanical and physiological reasons behind this altered dynamic postural stability.  相似文献   

7.
Abstract

There are a limited number of studies that have investigated sitting posture during infancy and the contribution of the sensory systems. The goal of this study was to examine the effects of altered visual and somatosensory signals on infant sitting postural control. Thirteen infants (mean age?±?SD, 259.69?±?16.88?days) participated in the study. Initially, a single physical therapist performed the Peabody Developmental Motor Scale to determine typical motor development. Then the child was placed onto a force platform under four randomized conditions: (a) Control (C) – sat independently on the force plate, (b) Somatosensory (SS) – Sat independently on a foam pad (low density), (c) Visual (VS) – sat independently on the force plate while the lights were turned off creating dim lighting, and (d) Combination of b and c (NVSS). Center of pressure (COP) data from both the anterior-posterior (AP) and the medial-lateral (ML) directions were acquired through the Vicon software at 240?Hz. The lights off conditions, both VS and NVSS, lead to increased Root Mean Square (RMS) and Range values in the AP direction, as well as increased Lyapunov Exponent (LyE) values in the ML direction. Altered visual information lead to greater disturbances of sitting postural control in typically developing infants than altered somatosensory information. The lights off conditions (VS and NVSS), unveiled different control mechanisms for AP and ML direction during sitting. Thus, the present findings confirm the dominance of vision during the early acquisition of a new postural accomplishment.  相似文献   

8.
ObjectiveTo provide normative postural stability data in young subjects.MethodsNinety-six healthy participants (58 W, 28 ± 6y) stood on a force plate during 60 s. We measured effects of support width (feet apart, FA; feet together, FT), vision (eyes open, EO; closed, EC), and cognitive load (single task, ST; dual tasking, DT) on anteroposterior (AP) and medio-lateral (ML) ranges, area and planar velocity of center of pressure (COP) trajectory.ResultsAll variables increased with FT (AP range, +15%; ML, +185%; area, +242%; velocity, +50%, p < 0.0002 for all, MANOVA). Visual deprivation increased COP ranges with added constraints (FT or DT, p = 0.002) and increased velocity in all conditions (FA/ST, +16%; DT, +18%; FT/ST, +29%; DT, +23%, p < 0.0002 for all). Dual tasking reduced COP displacements with FT (AP range, EO, −15%; EC, −11%; ML range, EO, −19%; EC, −13%; area, EO, −40%; EC, −28%, p < 0.0002 for all) and increased velocity in most conditions (FA/EO, +15%; FA/EC, +16%; FT/EO, +7%, p < 0.0002 for all).ConclusionIn young healthy adults, base of support reduction increases COP displacements. Vision particularly affects postural stability with feet together or dual tasking. Dual tasking increases velocity but decreases COP displacements in challenging postural tasks, potentially by enhanced lower limb stiffness.  相似文献   

9.
Older adults demonstrate increased amounts of postural sway, which may ultimately lead to falls. Temperature is known to have a profound effect on the performance of the neuromuscular system which could have important implications on motor control. It is, therefore, of interest to investigate if the age-related decline in postural stability could be affected by changes in local limbs temperature. The present study investigated the effects of localized warming and cooling on postural sway in nine young (22+/-3 years) and nine older (73+/-3 years) women. Postural sway was assessed, using a single force platform, during quiet standing at three muscle temperature conditions: control (34.2+/-0.2 degrees C), cold (31.3+/-0.3 degrees C) and warm (37.0+/-0.1 degrees C). Two stances were evaluated, the Romberg (large support base) and modified Tandem (narrow support base), under both eyes-open and eyes-closed conditions. Root mean square (RMS), mean velocity (MV), sway area (SA) and mean power frequency (MPF) were calculated from the centre of pressure (COP) displacement. Neither warming nor cooling significantly affected any of the postural parameters which were, however, all higher (P<0.05) in the older group than the young group in all conditions. This study demonstrated that, in quiet standing conditions, a moderate variation (+/-3 degrees C) in lower limbs temperature does not affect postural steadiness in either young or older women.  相似文献   

10.
The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = -0.34, P = 0.002) and percent (R = -0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors.  相似文献   

11.
Technical advancements in instrumentation and analytical methods have improved the ability of assessing balance control. This study investigated the effects of early stages of aging on postural sway using traditional and contemporary postural indices from different domains. Eleven healthy young adults and fourteen healthy non-faller older adults performed two postural tasks: (a) functional limits of stability and (b) unperturbed bipedal stance for 120 s. Postural indices from spatial, temporal, frequency, and structural domains were extracted from the body’s center of pressure (COP) signals and its Rambling and Trembling components. Results revealed a preservation of functional limits of upright stability in older adults accompanied by larger, faster, and shakier body sway in both anterior-posterior and medio-lateral directions; increased medio-lateral sway frequency; increased irregularity of body sway pattern in time in both directions; and increased area, variability, velocity, and jerkiness of both rambling and trembling components of the COP displacement in the anterior-posterior direction (p < 0.02). Such changes might be interpreted as compensatory adjustments to the age-related decline of sensory, neural, and motor functions. In conclusion, balance assessment using postural indices from different domains extracted from the COP displacement was able to capture subtle effects of the natural process of aging on the mechanisms of postural control. Our findings suggest the use of such indices as potential markers for postural instability and fall risk in older adults.  相似文献   

12.

Background

Postural stability deficits have been proposed to influence the onset and progression of adolescent idiopathic scoliosis (AIS). This study aimed to systematically identify, critically evaluate and meta-analyse studies assessing postural stability during unperturbed stance with posturography in AIS compared to typically developed adolescents.

Methods

Studies from four electronic databases (PubMed, Scopus, CINAHL, PEDro) were searched and case-control methodological quality assessed using a risk-of-bias assessment tool and a posturography methodological quality checklist. Pooled data regarding centre of pressure (COP) parameters such as sway area, Mediolateral (ML) and Anteroposterior (AP) position and range were compared for AIS and typically developed adolescents using Cohen’s d effect size (ES) and homogeneity estimates.

Results

Eighteen studies for quality analysis and 9 of these for meta-analysis were identified from 971 records. Risk-of-bias assessment identified 6 high, 10 moderate and 2 low risk-of-bias studies. The posturography methodological quality checklist identified 4 low, 7 moderate and 7 high-quality studies. Meta-analysis was performed for sway area whereas ML and AP are presented in three different meta-analyses due to divergent measurement units used in the studies: ML position 1 (MLP1), ML position 2 (MLP2) and ML range (MLR); AP position 1 (APP1), AP position 2 (APP2) and AP range (APR). Cohen’s d showed a medium ES difference in sway area 0.65, 95% CI (0.49–0.63), whereas ML showed no (MLP1, MLP2) and large (MLR) ES differences; MLP1 0.15, 95% CI (0.08–0.22); MLP2 0.14, 95% CI (0.08–0.19); and MLR 0.94, 95% CI (0.83–1.04). Cohen’s d for AP showed small ES (APP1) and large ES difference (APP2 and APR); APP1 0.43, 95% CI (0.31–0.54); APP2 0.85, 95% CI (0.72–0.97); and APR 0.98, 95% CI (0.87–1.09). Cochran’s Q and Higgins I2 showed homogeneity between studies.

Conclusions

There is moderate quality evidence for decreased postural stability in AIS measured as COP parameters sway area, ML and AP range with a positional shift posteriorly in the sagittal plane. The findings support studying postural stability in early stage AIS and also prospectively identify cause and effect of the curvature as well as effectiveness of postural control interventions in the prevention of scoliosis progression.
  相似文献   

13.
Objectives:A positive association between levels of blood 25-hydroxyvitamin D (25[OH]D), an index of vitamin D status, and physical balance has been reported from cross-sectional studies, but longitudinal studies are rare. The present study aimed to test the hypothesis that low serum 25(OH)D levels are longitudinally associated with impaired postural sway over a 6-year follow-up period in older women.Methods:The present cohort consisted of 392 community-dwelling Japanese women aged ≥69 years. Baseline examinations included serum 25(OH)D and physical performance tests, including postural sway velocity. Standing postural sway was evaluated by measuring gravity-center sway velocity. Follow-up physical performance tests were conducted 6 years later.Results:Mean subject age and serum 25(OH)D levels were 73.3 years (SD 3.7) and 61.0 nmol/L (SD 16.9), respectively. No significant association was found between 25(OH)D levels and changes in postural sway velocity (adjusted P for trend=0.72). Women with 25(OH)D <30 nmol/L tended to have lower Δpostural sway velocity than those with 25(OH)D ≥30 nmol/L (mean, -0.59 vs 0.37 cm/s, respectively; adjusted P=0.13).Conclusions:Vitamin D levels are not longitudinally associated with impaired postural sway in older women. Further longitudinal studies are needed to corroborate the results of this study.  相似文献   

14.

Objective

Previous studies have demonstrated that ankle muscle fatigue alters postural sway. Our aim was to better understand postural control mechanisms during upright stance following plantar flexor fatigue.

Method

Ten healthy young volunteers, 25.7 ± 2.2 years old, were recruited. Foot center-of-pressure (CoP) displacement data were collected during narrow base upright stance and eyes closed (i.e. blindfolded) conditions. Subjects were instructed to stand upright and as still as possible on a force platform under five test conditions: (1) non-fatigue standing on firm surface; (2) non-fatigue standing on foam; (3) ankle plantar flexor fatigue, standing on firm surface; (4) ankle plantar flexor fatigue, standing on foam; and (5) upper limb fatigue, standing on firm surface. An average of the ten 30-s trials in each of five test conditions was calculated to assess the mean differences between the trials. Traditional measures of postural stability and stabilogram-diffusion analysis (SDA) parameters were analyzed.

Results

Traditional center of pressure parameters were affected by plantar flexor fatigue, especially in the AP direction. For the SDA parameters, plantar flexor fatigue caused significantly higher short-term diffusion coefficients, and critical displacement in both mediolateral (ML) and anteroposterior (AP) directions. Long-term postural sway was different only in the AP direction.

Conclusions

Localized plantar flexor fatigue caused impairment to postural control mainly in the Sagittal plane. The findings indicate that postural corrections, on average, occurred at a higher threshold of sway during plantar flexor fatigue compared to non-fatigue conditions.  相似文献   

15.
Our purpose was to identify the effect of diminished plantar cutaneous sensation on time-to-boundary (TTB) measures of postural control during double and single limb quiet standing. Thirty-two healthy young adults underwent 10 min of ice immersion of the plantar aspect of the feet prior to balance testing. On a different day, the subjects did not receive this intervention prior to testing. A 2 × 2 vision (eyes open, eyes closed) by sensation (control, hypoesthesia) repeated measures design was used to analyze the TTB measures. In double limb stance, there were significant interactions between sensation and vision for the absolute TTB minimum and the mean of TTB minima in the anteroposterior (AP) direction. There was a significant increase in both measures after sensation was diminished with eyes closed compared to the control, but not with eyes open. In single limb stance, the TTB absolute minimum, the mean of TTB minima in the AP direction, and the standard deviation of TTB minima significantly increased with hypoesthesia regardless of vision. No significant differences were found in the medial–lateral (ML) direction for any of the TTB measures in double or single limb stance. Sensory information from the plantar cutaneous receptors appears to be most important in the maintenance of AP postural control.  相似文献   

16.
Prolonged walking could alter postural control leading to an increased risk of falls in older adults. The aim of this study was to determine the effect of level and uphill prolonged walking on the postural control of older adults. Sixteen participants (64 ± 5 years) attended 3 visits. Postural control was assessed during quiet standing and the limits of stability immediately pre, post and post 15 min rest a period of 30 min walking on level and uphill (5.25%) gradients on separate visits. Each 30 min walk was divided into 3 10 min blocks, the limits of stability were measured between each block. Postural sway elliptical area (PRE: 1.38 ± 0.22 cm2, POST: 2.35 ± 0.50 cm2, p = .01), medio-lateral (PRE: 1.33 ± 0.03, POST: 1.40 ± 0.03, p = .01) and anterio-posterior detrended fluctuation analysis alpha exponent (PRE: 1.43 ± 0.02, POST: 1.46 ± 0.02, p = .04) increased following walking. Medio-lateral alpha exponent decreased between post and post 15 min’ rest (POST: 1.40 ± 0.03, POST15: 1.36 ± 0.03, p = .03). Forward limits of stability decreased between the second walking interval and post 15 min’ rest (Interval 2: 28.1 ± 1.6%, POST15: 25.6 ± 1.6%, p = .01) and left limits of stability increased from pre-post 15 min’ rest (PRE: 27.7 ± 1.2%, POST15: 29.4 ± 1.1%, p = .01). The neuromuscular alterations caused by prolonged walking decreased the anti-persistence of postural sway and altered the limits of stability in older adults. However, 15 min’ rest was insufficient to return postural control to pre-exercise levels.  相似文献   

17.
Faster trunk motions could be a strategy to prevent loss of balance and fall injuries due to unexpected perturbations. However, it is unclear how trunk sway velocities can be compensated during stepping in subjects with low back pain (LBP). The purpose of this study was to investigate lower limb reaction, swing, and step times, as well as trunk sway velocities at heel strike and toe-off, following repeated step perturbations between subjects with and without LBP. There were 30 subjects with LBP and 42 control subjects who were exposed to treadmill-induced perturbations at a velocity of 0.12 m/sec for 0.62 m. The treadmill-induced steps caused subjects to walk forward for 4.90 sec after the perturbation. The groups demonstrated significant interactions on the lower limb reaction times and on the number of repeated perturbations (F = 4.83, p = 0.03) due to a decreased step time at the first perturbation (t = 2.52, p = 0.01) in the LBP group. For the trunk sway velocities, the repeated perturbations demonstrated a significant interaction between groups (F = 4.65, p = 0.03). This adaptive trunk strategy for gait stability increased step times with repeated perturbations in the LBP group. The group interactions on the trunk sway velocities also indicated a possible somatosensory integration for step time adjustments to avoid potential fall hazards. This adaptive response with repeated step perturbations could result in compensatory trunk sway for gait stability.  相似文献   

18.
Our purpose was to identify the effect of diminished plantar cutaneous sensation on time-to-boundary (TTB) measures of postural control during double and single limb quiet standing. Thirty-two healthy young adults underwent 10 min of ice immersion of the plantar aspect of the feet prior to balance testing. On a different day, the subjects did not receive this intervention prior to testing. A 2 x 2 vision (eyes open, eyes closed) by sensation (control, hypoesthesia) repeated measures design was used to analyze the TTB measures. In double limb stance, there were significant interactions between sensation and vision for the absolute TTB minimum and the mean of TTB minima in the anteroposterior (AP) direction. There was a significant increase in both measures after sensation was diminished with eyes closed compared to the control, but not with eyes open. In single limb stance, the TTB absolute minimum, the mean of TTB minima in the AP direction, and the standard deviation of TTB minima significantly increased with hypoesthesia regardless of vision. No significant differences were found in the medial-lateral (ML) direction for any of the TTB measures in double or single limb stance. Sensory information from the plantar cutaneous receptors appears to be most important in the maintenance of AP postural control.  相似文献   

19.
Obesity in older adults is a growing public health problem. Excess weight causes biomechanical burden to lower extremity joints and contribute to joint pathology. The aim of this study was to identify specific characteristics of gait associated with body mass index (BMI). Preferred and maximum speed walking and related gait characteristics were examined in 164 (50–84 years) participants from Baltimore Longitudinal Study of Aging (BLSA) able to walk unassisted. Participants were divided into three groups based on their BMI: normal weight (19≤BMI<25 kg/m2), overweight (25≤BMI<30 kg/m2) and obese (BMI 30≤BMI<40 kg/m2). Total ankle generative mechanical work expenditure (MWE) in the anterior–posterior (AP) plane was progressively and significantly lower with increase in BMI for both preferred (p=0.026) and maximum speed walking (p<0.001). In the medial–lateral (ML) plane, total knee generative MWE was higher in obese participants in the preferred speed task (p=0.002), and total hip absorptive MWE was higher in obese in both preferred speed (p<0.001) and maximum speed (p=0.002) walking task compared to the normal weight participants. Older adults with obesity show spatiotemporal gait patterns that may help in reducing contact impacts. In addition, in obese persons mechanical energy usages tend to be lower in the AP plane and higher in the ML plane. Since forward progression forces are mainly implicated in normal walking, this pattern found in obese participants is suggestive of lower energetic efficiency.  相似文献   

20.
Ground reaction force during human quiet stance is modulated synchronously with the cardiac cycle through hemodynamics [1]. This almost periodic hemodynamic force induces a small disturbance torque to the ankle joint, which is considered as a source of endogenous perturbation that induces postural sway. Here we consider postural sway dynamics of an inverted pendulum model with an intermittent control strategy, in comparison with the traditional continuous-time feedback controller. We examine whether each control model can exhibit human-like postural sway, characterized by its power law behavior at the low frequency band 0.1–0.7 Hz, when it is weakly perturbed by periodic and/or random forcing mimicking the hemodynamic perturbation. We show that the continuous control model with typical feedback gain parameters hardly exhibits the human-like sway pattern, in contrast with the intermittent control model. Further analyses suggest that deterministic, including chaotic, slow oscillations that characterize the intermittent control strategy, together with the small hemodynamic perturbation, could be a possible mechanism for generating the postural sway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号