首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steroid sulfatase (STS) has recently emerged as a drug target for management of hormone-dependent malignancies. In the present study, a new series of twenty-one aryl amido-linked sulfamate derivatives 1a-u was designed and synthesized, based upon a cyclohexyl lead compound. All members were evaluated as STS inhibitors in a cell-free assay. Adamantyl derivatives 1h and 1p-r were the most active with more than 90% inhibition at 10 µM concentration and, for those with the greatest inhibitory activity, IC50 values were determined. These compounds exhibited STS inhibition within the range of ca 25–110 nM. Amongst them, compound 1q possessing a o-chlorobenzene sulfamate moiety exhibited the most potent STS inhibitory activity with an IC50 of 26 nM. Furthermore, to assure capability to pass through the cell lipid bilayer, compounds with low IC50 values were tested against STS activity in JEG-3 whole-cell assays. Consequently, 1h and 1q demonstrated IC50 values of ca 14 and 150 nM, respectively. Thus, compound 1h is 31 times more potent than the corresponding cyclohexyl lead (IC50 value = 421 nM in a JEG-3 whole-cell assay). Furthermore, the most potent STS inhibitors (1h and 1p-r) were evaluated for their antiproliferative activity against the estrogen-dependent breast cancer cell line T-47D. They showed promising activity with single digit micromolar IC50 values (ca 1–6 µM) and their potency against T-47D cells was comparable to that against STS enzyme. In conclusion, this new class of adamantyl-containing aryl sulfamate inhibitor has potential for further development against hormone-dependent tumours.  相似文献   

2.
A series of novel benzotriazole N-acylarylhydrazone hybrids was synthesized according fragment-based design strategy. All the synthesized compounds were evaluated for their anticancer activity against 60 human tumor cell lines by NCI (USA). Five compounds: 3d, 3e, 3f, 3o and 3q exhibited significant to potent anticancer activity at low concentrations. Compound 3q showed the most prominent broad-spectrum anticancer activity against 34 tumor cell lines, with mean growth inhibition percent of 45.80%. It exerted the highest potency against colon HT-29 cell line, with cell growth inhibition 86.86%. All leukemia cell lines were highly sensitive to compound 3q. Additionally, compound 3q demonstrated lethal activity to MDA-MB-435 belonging melanoma. Compound 3e exhibited the highest anticancer activity against leukemic CCRF-CEM and HL-60(TB) cell lines, with cell growth inhibition 86.69% and 86.42%, respectively. Moreover, it exerted marked potency against ovarian OVCAR-3 cancer cell line, with cell growth inhibition 78.24%. Four compounds: 3d, 3e, 3f and 3q were further studied through determination of IC50 values against the most sensitive cancer cell lines. The four compounds exhibited highly potent anticancer activity against ovarian cancer OVCAR-3 and leukemia HL-60 (TB) cell lines, with IC50 values in nano-molar range between 25 and 130 nM. They showed 18–2.3 folds more potent anticancer activity than doxorubicin. The most prominent compound was 3e, (IC50 values 29 and 25 nM against OVCAR-3 and HL-60 (TB) cell lines, respectively), representing 10 and 18 folds more potency than doxorubicin. The anti-proliferative activity of these four compounds appeared to correlate well with their ability to inhibit FAK at nano-molar range between 44.6 and 80.75 nM. Compound 3e was a potent, inhibitor of FAK and Pyk2 activity with IC50 values of 44.6 and 70.19 nM, respectively. It was 1.6 fold less potent for Pyk2 than FAK. Additionally, it displayed inhibition in cell based assay measuring phosphorylated-FAK (IC50 = 32.72 nM). Inhibition of FAK enzyme led to a significant increase in the level of active caspase-3, compared to control (11.35 folds), accumulation of cells in pre-G1 phase and annexin-V and propidium iodide staining in addition to cell cycle arrest at G2/M phase indicating that cell death proceeded through an apoptotic mechanism.  相似文献   

3.
A series of 6-aminocarbonyl pyrrolo[2,1-f][1,2,4]triazine derivatives were designed by scaffold hopping strategy. The IC50 values of compound 14a against PI3Ks were measured, showing selective activity against p110α and p110δ with IC50s of 122 nM and 119 nM respectively. All the synthesized compounds were evaluated for their antiproliferative activity against human cancer cells by SRB assay. Compounds 14a, 14p and 14q exhibited potent antiproliferative activity against five types of human cancer cells and the PK property of 14q was also investigated here.  相似文献   

4.
Aiming to identify new optimization strategy effective for ALK-mutations, two series of pyrroformyl-containing 2,4-diaminopyrimidine compounds (11a-o, 12a-o) were designed, synthesized and evaluated for their anti-proliferative activities against three cancer cell lines in vitro by MTT assay. The biological evaluations on cellular assay resulted in discovery of compound 11k, which performed considerable activity with IC50 value of 0.034 μM against H2228 cell. Meanwhile, 11k exhibited outstanding enzymatic inhibitory potency with IC50 values of 1.9 nM and 3.1 nM against ALKWT and ALKL1196M, respectively, surpassing the reference ceritinib (IC50 = 2.4 nM and 7.6 nM). Ultimately, the binding mode of 11k with ALK was established to explore the SARs. Overall, 11k was considered as a promising ALK inhibitor for mutation treatment.  相似文献   

5.
An efficient synthesis of a series of 6-chloro-3-substituted-[1,2,4]triazolo[4,3-b]pyridazines is described via intramolecular oxidative cyclization of various 6-chloropyridazin-3-yl hydrazones with iodobenzene diacetate. The structures of the newly synthesized compounds were assigned on the basis of elemental analysis, IR, NMR (1H and 13C) and mass spectral data. All the thirty three compounds 3a-q and 4b-q synthesized in the present study were evaluated for their in vitro cytotoxic activities against two Acute Lymphoblastic Leukemia (ALL) cell lines named, SB-ALL and NALM-6, and a human breast adenocarcinoma cell lines (MCF-7). The results revealed that triazoles 4 exhibit better cytotoxicity than their hydrazone precursors 3. Among triazoles, compounds 4f, 4j and 4q exhibited potent cytotoxic activity against SB-ALL and NALM-6 with IC50 values in the range of ∼1.64–5.66 μM and ∼1.14–3.7 μM, respectively, compared with doxorubicin (IC50 = 0.167 μM, SB-ALL). Compounds 4f, 4j and 4q were subjected to apoptosis assay after 48 h treatment and these compounds induced apoptosis of NALM-6 cells via caspase 3/7 activation. Results revealed that compound 4q represents potential promising lead.  相似文献   

6.
A new class of 2(1H)-pyrimidinone derivatives was identified as potential EGFR T790M inhibitors against TKI-resistant NSCLC. These novel compounds inhibited the EGFR T790M kinase activity at concentrations in the range of 85.3 to 519.9 nM. In particular, compound 7e exhibited the strongest activity against both EGFRWT (IC50 = 96.9 nM) and EGFRT790M (IC50 = 85.3 nM) kinases in the cells. Compared with inhibitor 7e, compound 7b displayed enhanced antiproliferative activity against gefitinib-resistant H1975 cells harboring the EGFR T790M mutation. In addition, compound 7b also has low toxicity against the normal human liver cells LO2, with an IC50 of 11.1 µM. Moreover, both the AO/EB and DAPI staining assays also demonstrated the inhibitory efficacy of 7b against the resistant H1975 cells. This contribution provides a new scaffold 2(1H)-pyrimidinone as potential EGFR T790M inhibitor against drug-resistant NSCLC.  相似文献   

7.
Hormone sensitive lipase (HSL) is an attractive therapeutic target of dyslipidemia. We designed and synthesized several compounds as reversible HSL inhibitors with a focus on hydrophobic interactions, which was thought to be effective upon the HSL inhibitory activity. In these efforts, we identified boronated compound 12 showing a potent HSL inhibitory activity with an IC50 value of 7 nM and a high selectivity against cholinesterases. Furthermore, compound 12 is the first boron containing HSL inhibitor that has shown an antilipolytic effect in rats after oral administration at 3 mg/kg.  相似文献   

8.
A new sesquiterpene quinone, 21-dehydroxybolinaquinone (5), together with two known related analogues, bolinaquinone (6) and dysidine (7), had been isolated from the Hainan sponge Dysidea villosa. The structure of the new compound 5 was elucidated on the basis of detailed analysis of spectroscopic data and by comparison with related model compounds. Compounds 57 were evaluated for the inhibitory activity against hPTP1B, a potential drug target for treatment of type-II diabetes and obesity, and cytotoxic activity against Hela cell line. The results showed that dysidine (7) had the strongest hPTP1B inhibitory activity with an IC50 value of 6.70 μM and 6 had significant cytotoxic activity against Hela cell line with an IC50 value of 5.45 μM. New compound 5 showed moderate PTP1B inhibitory activity and cytotoxicity with IC50 values of 39.50 and 19.45 μM, respectively.  相似文献   

9.
Twenty five newly synthesized coumarin scaffold based derivatives were assayed for their in vitro anticancer activity against MCF-7 breast and PC-3 prostate cancer cell lines and were further assessed for their in vitro VEGFR-2 kinase inhibitory activity. The in vitro cytotoxic studies revealed that most of the synthesized compounds possessed very promising cytotoxicity against MCF-7, particularly; compounds 4a (IC50 = 1.24 µM) and 3d (IC50 = 1.65 µM) exhibited exceptional activities superior to the positive control staurosporine (IC50 = 8.81 µM). Similarly, the majority of the compounds exhibited higher antiproliferative activities compared to the reference standard with IC50 values ranging from 2.07 to 8.68 µM. The two cytotoxic derivatives 4a and 3d were selected to evaluate their inhibitory potencies against VEGFR-2 kinase. Remarkably, compound 4a, exhibited significant IC50 of 0.36 µM comparable to staurosporine (IC50; 0.33 µM). Moreover, it was capable of inducing preG1 apoptosis, cell growth arrest at G2/M phase and activating caspase-9. On the other hand, insignificant cytotoxic activity was observed for all compounds towards PC-3 cell line. Molecular docking study was carried out for the most active anti-VEGFR-2 derivative 4a, which demonstrated the ability of the tested compound to interact with the key amino acids in the target VEGFR-2 kinase binding site. Additionally, the ADME parameters and physicochemical properties of compound 4a were examined in silico.  相似文献   

10.
A series of novel N-hydroxypropenamides containing adamantane moiety were identified and most of them exhibited HDAC inhibitory activity and could reverse the resistance of cisplatin in NSCLC cell lines. In this process, molecular docking was employed to verify the rationality of designing, subsequently, target compounds were synthesized and conducted to enzyme- and cell-based biological evaluation. Most of synthesized compounds could inhibit HDAC activity with the IC50 values lower than 50 nM and result in the increase of Ac-H4 and p21 in A549 cells. Importantly, we assessed the reversal effect of those compounds and found several compounds display an anti-resistant effect in lung cancer cells, especially compound 8f.As compared to belinostat and cisplatin, compound 8f showed improved inhibitory activity against A549/CDDP cell lines with IC50 value of 5.76 μM, and far lower resistance index of 1.24. Moreover, the structure–activity relationships of these compounds were summarized and compound 8f could serve as a research tool for identifying the mechanism of reversing resistance and a template for designing novel compounds to reverse cisplatin resistance.  相似文献   

11.
A series of quinoline-chalcone hybrids was designed as potential anti-cancer agents, synthesized and evaluated. Different cytotoxic assays revealed that compounds experienced promising activity. Compounds 9i and 9j were the most potent against all the cell lines tested with IC50 = 1.91–5.29 µM against A549 and K-562 cells. Mechanistically, 9i and 9j induced G2/M cell cycle arrest and apoptosis in both A549 and K562 cells. Moreover, all PI3K isoforms were inhibited non selectively with IC50s of 52–473 nM when tested against the two mentioned compounds with 9i being most potent against PI3K-γ (IC50 = 52 nM). Docking of 9i and 9j showed a possible formation of H-bonding with essential valine residues in the active site of PI3K-γ isoform. Meanwhile, Western blotting analysis revealed that 9i and 9j inhibited the phosphorylation of PI3K, Akt, mTOR, as well as GSK-3β in both A549 and K562 cells, suggesting the correlation of blocking PI3K/Akt/mTOR pathway with the above antitumor activities. Together, our findings support the antitumor potential of quinoline-chalcone derivatives for NSCLC and CML by inhibiting the PI3K/Akt/mTOR pathway.  相似文献   

12.
A novel series of acridine linked to thioacetamides 9a–o were synthesized and evaluated for their α-glucosidase inhibitory and cytotoxic activities. All the synthesized compounds exhibited excellent α-glucosidase inhibitory activity in the range of IC50 = 80.0 ± 2.0–383.1 ± 2.0 µM against yeast α-glucosidase, when compared to the standard drug acarbose (IC50 = 750.0 ± 1.5 µM). Among the synthesized compounds, 2-((6-chloro-2-methoxyacridin-9-yl)thio)-N-(p-tolyl) acetamide 9b displayed the highest α-glucosidase inhibitory activity (IC50 = 80.0 ± 2.0 μM). The in vitro cytotoxic assay of compounds 9a–o against MCF-7 cell line revealed that only the compounds 9d, 9c, and 9n exhibited cytotoxic activity. Cytotoxic compounds 9d, 9c, and 9n did not show cytotoxic activity against the normal human cell lines HDF. Kinetic study revealed that the most potent compound 9b is a competitive inhibitor with a Ki of 85 μM. Furthermore, the interaction modes of the most potent compounds 9b and 9f with α-glucosidase were evaluated through the molecular docking studies.  相似文献   

13.
In this work, a new series of imidazo[2,1-b]thiazole was designed and synthesized. The new compounds are having 3-fluorophenyl at position 6 of imidazo[2,1-b]thiazole and pyrimidine ring at position 5. The pyrimidine ring containing either amide or sulphonamide moiety attached to a linker (ethyl or propyl) at position 2 of the pyrimidine ring. The final compounds were selected by NCI for in vitro cytotoxicity screening. Most derivatives showed cytotoxic activity against colon cancer and melanoma cell lines. In addition, IC50s of the target compounds were determined over A375 and SK-MEL-28 cell lines using sorafenib as positive control. Compounds12b, 12c, 12e, 12f, 15a, 15d, 15f, 14g and 15h exhibited superior activity when compared to sorafenib. The most potent compounds were tested against wild type BRAF, v600e BRAF, and CRAF. Compound 15h exhibited a potential inhibitory effect againstV600EBRAF (IC50?=?9.3?nM).  相似文献   

14.
A series of 2,4-disubstituted phthalazinones were synthesized and their biological activities, including antiproliferation, inhibition against Aurora kinases and cell cycle effects were evaluated. Among them, N-cyclohexyl-4-((4-(1-methyl-1H-pyrazol-4-yl)-1-oxophthalazin-2(1H)-yl) methyl) benzamide (12c) exhibited the most potent antiproliferation against five carcinoma cell lines (HeLa, A549, HepG2, LoVo and HCT116 cells) with IC50 values in range of 2.2–4.6?μM, while the IC50 value of reference compound VX-680 was 8.5–15.3?μM. Moreover, Aurora kinase assays exhibited that compound 12c was potent inhibitor of AurA and AurB kinase with the IC50 values were 118?±?8.1 and 80?±?4.2?nM, respectively. Molecular docking studies indicated that compound 12c forms better interaction with both AurA and AurB. Furthermore, compound 12c induced G2/M cell cycle arrest in HeLa cells by regulating protein levels of cyclinB1 and cdc2. These results suggested that 12c is a promising pan-Aurora kinase inhibitor for the potential treatment of cancer.  相似文献   

15.
Multitargeted therapy is considered a successful approach to cancer treatment. The development of small molecule multikinase inhibitors through hybridization strategy can provide highly potent and selective anticancer agents. A library of N-alkyl-2-[(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydroquinazolin-2-yl)thio]acetamide derivatives 518 was designed and synthesized. The synthesized compounds were screened for cytotoxic activity against MDA-MB-231 breast cancer cell line and showed IC50 in the range of 0.34–149.10 µM. The inhibition percentage of VEGFR-2 was measured for all the compounds and found to be in the range of 90.09–20.44%. The promising compounds 8, 12, 13, 16 and 17 were selected to measure their possible multikinase inhibitory activity against VEGFR-2 and EGFR. IC50 of the promising compounds were in the range of 247–793 nM for VEGFR-2 in reference to sunitinib (IC50 320 nM), and 369–725 nM for EGFR in reference to erlotinib (IC50 568 nM). Compounds 12 and 13 showed the most potent activity towards VEGFR-2 & EGFR, respectively. Measuring the cytotoxicity of 12 and 13 against MCF-10 normal breast cell line indicates their relative safety to normal breast cells (IC50 37 & 97 µM, respectively). As radiotherapy is considered the primary treatment for some types of solid tumors, the radiosensitizing ability of 12 and 13 was measured by subjecting the MDA-MB-231 cells to a single dose of 8 Gy of gamma radiation. IC50 of 12 and 13 decreased from 1.91 & 0.51 µM to 0.79 & 0.43 µM, respectively. Molecular docking was performed to gain insights into the ligand-binding interactions of 12 inside VEGFR-2 and EGFR binding sites in comparison to their co-crystallized ligands.  相似文献   

16.
PI3Kα/mTOR ATP-competitive inhibitors are considered as one of the promising molecularly targeted cancer therapeutics. Based on lead compound A from the literature, two similar series of 2-substituted-4-morpholino-pyrido[3,2-d]pyrimidine and pyrido[2,3-d]pyrimidine analogs were designed and synthesized as PI3Kα/mTOR dual inhibitors. Interestingly, most of the series gave excellent inhibition for both enzymes with IC50 values ranging from single to double digit nM. Unlike many PI3Kα/mTOR dual inhibitors, our compounds displayed selectivity for PI3Kα. Based on its potent enzyme inhibitory activity, selectivity for PI3Kα and good therapeutic index in 2D cell culture viability assays, compound 4h was chosen to be evaluated in 3D culture for its IC50 against MCF7 breast cancer cells as well as for docking studies with both enzymes.  相似文献   

17.
Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a critical role in cancer angiogenesis. Inhibition of VEGFR-2 activity proved effective suppression of tumour propagation. Accordingly, two series of new 3-methylquinoxaline derivatives have been designed and synthesised as VEGFR-2 inhibitors. The synthesised derivatives were evaluated in vitro for their cytotoxic activities against MCF-7and HepG2 cell lines. In addition, the VEGFR-2 inhibitory activities of the target compounds were estimated to indicate the potential mechanism of their cytotoxicity. To a great extent, the results of VEGFR-2 inhibition were highly correlated with that of cytotoxicity. Compound 27a was the most potent VEGFR-2 inhibitor with IC50 of 3.2 nM very close to positive control sorafenib (IC50 = 3.12 nM). Such compound exhibited a strong cytotoxic effect against MCF-7 and HepG2, respectively with IC50 of 7.7 and 4.5 µM in comparison to sorafenib (IC50 = 3.51 and 2.17 µM). In addition, compounds 28, 30f, 30i, and 31b exhibited excellent VEGFR-2 inhibition activities (IC50 range from 4.2 to 6.1 nM) with promising cytotoxic activity. Cell cycle progression and apoptosis induction were investigated for the most active member 27a. Also, the effect of 27a on the level of caspase-3, caspase-9, and BAX/Bcl-2 ratio was determined. Molecular docking studies were implemented to interpret the binding mode of the target compounds with the VEGFR-2 pocket. Furthermore, toxicity and ADMET calculations were performed for the synthesised compounds to study their pharmacokinetic profiles  相似文献   

18.
A novel series of 2-(3,6-dimethyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yloxy)-N-(4-substitutedbenzylidene)acetohydrazide (12ag) was prepared and their structures were confirmed by spectral and elemental analyses. The cytotoxic activity of the newly synthesized compounds was evaluated against breast carcinoma (MCF-7), non-small cell lung cancer (A549) and human colorectal adenocarcinoma (HT-29) cell lines using MTT and colony formation assays. The tested compounds showed a marked anticancer activity against all the tested cell lines, especially compound 12g, which was the most potent anticancer agent with half maximal inhibitory concentrations (IC50) between 5.36 and 9.09 μM. Docking studies into ATP binding site of EGFR protein tyrosine kinase were performed to predict their scores and mode of binding to amino acids, In addition, the inhibitory activity of the target compounds against epidermal growth factor receptor tyrosine kinase (EGFR-TK) was evaluated. Results indicated the ability of the target compounds to inhibit EGFR-TK with half maximal inhibitory concentrations (IC50) in the range of 4.18–35.88 μM. Furthermore, The most active compounds 12g, 12c and 12d were assayed against Fibroblast Growth Factor Receptor (FGFR), Insulin Receptor (IR) and Vascular Endothelial Growth Factor Receptor (VEGFR). The activity of the reported compounds warrants further optimization as novel members in cancer treatment protocols.  相似文献   

19.
A series of novel tacrine-isatin Schiff base hybrid derivatives (7a-p) were designed, synthesized and evaluated as multi-target candidates against Alzheimer’s disease (AD). The biological assays indicated that most of these compounds displayed potent inhibitory activity toward acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) and specific selectivity for AChE over BuChE. It was also found that they act as excellent metal chelators. The compounds 7k and 7m were found to be good inhibitors of AChE-induced amyloid-beta (Aβ) aggregation. Most of the compounds inhibited AChE with the IC50 values, ranging from 0.42 nM to 79.66 nM. Amongst them, 7k, 7m and 7p, all with a 6 carbon linker between tacrine and isatin Schiff base exhibited the strongest inhibitory activity against AChE with IC50 values of 0.42 nM, 0.62 nM and 0.95 nM, respectively. They were 92-, 62- and 41-fold more active than tacrine (IC50 = 38.72 nM) toward AChE. Most of the compounds also showed a potent BuChE inhibition among which 7d with an IC50 value of 0.11 nM for BuChE is the most potent one (56-fold more potent than that of tacrine (IC50 = 6.21 nM)). In addition, most compounds exhibited the highest metal chelating property. Kinetic and molecular modeling studies revealed that 7k is a mixed-type inhibitor, capable of binding to catalytic and peripheral site of AChE. Our findings make this hybrid scaffold an excellent candidate to modify current drugs in treating Alzheimer’s disease (AD).  相似文献   

20.
Six new (16) and nine known (715) staurosporine derivatives were isolated from the rice solid fermentation of the marine-derived Streptomyces sp. NB-A13. The structures of the new staurosporine derivatives were established by extensive spectroscopic data interpretation. The absolute configurations of 1 and 2 were assigned by quantum chemical calculations of the electronic circular dichroism (ECD) spectra. All of these compounds were screened for their cytotoxic activities against PC-3 and SW-620 cell lines. Compound 7 exhibited stronger inhibitory activity against SW-620 cell lines than the positive control staurosporine (25.10 nM), with IC50 values of 9.99 nM. Moreover, compounds 15, 813 and 15 also showed significant cytotoxicities with IC50 values ranging from 0.02 to 16.60 μM, while 6 exhibited no cytotoxic potency. Additionally, compounds 17 were also tested for enzyme inhibition activities of Protein kinase C theta (PKC-θ), and showed activity with IC50 values ranging from 0.06 to 9.43 μM except for compound 6, which has no inhibition activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号