首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty three fused carbazole–imidazoles 6a–w were designed, synthesized, and screened as new α-glucosidase inhibitors. All the synthesized fused carbazole-imidazoles 6a-w were found to be more active than acarbose (IC50?=?750.0?±?1.5?µM) against yeast α-glucosidase with IC50 values in the range of 74.0?±?0.7–298.3?±?0.9?µM. Kinetic study of the most potent compound 6v demonstrated that this compound is a competitive inhibitor for α-glucosidase (Ki value?=?75?µM). Furthermore, the in silico studies of the most potent compounds 6v and 6o confirmed that these compounds interacted with the key residues in the active site of α-glucosidase.  相似文献   

2.
Novel isothiocyanate derivatives were synthesized starting from noscapine, bile acids, amino acids, and some aromatic compounds. Antiparasitic activities of the synthesized derivatives were tested against four unicellular protozoa, i.e., Trypanosoma brucei rhodesiense, T. cruzi, Leishmania donovani, and Plasmodium falciparum. Interestingly, seven isothiocyanate analogues displayed promising antiparasitic activity against Leishmania donovani with IC50 values between 0.4 and 1.0 µM and selectivity index (SI) ranged from 7.8 to 18.4, comparable to the standard drug miltefosine (IC50 = 0.7 μM). Compound 7h demonstrated the best antileishmanial activity with an IC50 value of 0.4 µM. Seven products exhibited inhibition activity against T. brucei rhodesiense with IC50s below 2.0 μM and SI between 2.7 and 29.3. Four primary amine derivatives of noscapine and five isothiocyanate derivatives exhibited antiplasmodial activity with IC50s in the range of 1.1–2.7 µM and SI values between 1.1 and 14.5. The isothiocyanate derivative 7c showed against T. cruzi with an IC50 value of 1.9 µM and SI 4. Molecular docking and ADMET studies were performed to investigate the interaction between active ligands and T. brucei trypanothione reductase active site. The docking studies showed significant binding affinity of noscapine derivatives to enzyme active site and good compatibility with experimental data.  相似文献   

3.
Thirteen new polyamine derivatives coupled to hydroxybenzotriazole have been synthesized and evaluated for their in vitro antikinetoplastid activity. Trypanosoma Trypanothione reductase (TryR) was envisioned as a potential target. Among all tested molecules, only one compound, a N3-spermidine–benzotriazole derivative, displayed relevant inhibitory activity on this enzyme but was not active on parasites. The corresponding Boc-protected spermidine–benzotriazole was however trypanocidal against Trypanosoma brucei gambiense with an IC50 value of 1 μM and was completely devoid of cytotoxicity. On the intramacrophage amastigotes of Leishmania donovani, a N2-spermidine conjugate of this series, exhibited an interesting IC50 value of 3 μM associated with both low cytotoxicity against axenic Leishmania donovani. These new compounds are promising leads for the development of antikinetoplastid agents and their targets have to be deciphered.  相似文献   

4.
Arginase performs the first enzymatic step in polyamine biosynthesis in Leishmania and represents a promising target for drug development. Polyamines in Leishmania are involved in trypanothione synthesis, which neutralize the oxidative burst of reactive oxygen species (ROS) and nitric oxide (NO) that are produced by host macrophages to kill the parasite. In an attempt to synthesize arginase inhibitors, six 1-phenyl-1H-pyrazolo[3,4-d]pyrimidine derivatives with different substituents at the 4-position of the phenyl group were synthesized. All compounds were initially tested at 100 µM concentration against Leishmania amazonensis ARG (LaARG), showing inhibitory activity ranging from 36 to 74%. Two compounds, 1 (R=H) and 6 (R=CF3), showed arginase inhibition >70% and IC50 values of 12 µM and 47 µM, respectively. Thus, the kinetics of LaARG inhibition were analyzed for compounds 1 and 6 and revealed that these compounds inhibit the enzyme by an uncompetitive mechanism, showing Kis values, and dissociation constants for ternary complex enzyme-substrate-inhibitor, of 8.5 ± 0.9 µM and 29 ± 5 µM, respectively. Additionally, the molecular docking studies proposed that these two uncompetitive inhibitors interact with different LaARG binding sites, where compound 1 forms more H-bond interactions with the enzyme than compound 6. These compounds showed low activity against L. amazonensis free amastigotes obtained from mice lesions when assayed with as much as 30 µM. The maximum growth inhibition reached was between 20 and 30% after 48 h of incubation. These results suggest that this system can be promising for the design of potential antileishmanial compounds.  相似文献   

5.
A new series of sulfonate derivatives 1azk were synthesized and evaluated as inhibitors of nucleotide pyrophosphatases. Most of the compounds exhibited good to moderate inhibition towards NPP1, NPP2, and NPP3 isozymes. Compound 1m was a potent and selective inhibitor of NPP1 with an IC50 value of 0.387 ± 0.007 µM. However, the most potent inhibitor of NPP3 was found as 1x with an IC50 value of 0.214 ± 0.012 µM. In addition, compound 1e was the most active inhibitor of NPP2 with an IC50 value of 0.659 ± 0.007 µM. Docking studies of the most potent compounds were carried out, and the computational results supported the in vitro results.  相似文献   

6.
A new series of 5-(1-aryl-3-methyl-1H-pyrazol-4-yl)-1H-tetrazole derivatives (4am) and their precursor 1-aryl-3-methyl-1H-pyrazole-4-carbonitriles (3am) were synthesized and evaluated as antileishmanials against Leishmania braziliensis and Leishmania amazonensis promastigotes in vitro. In parallel, the cytotoxicity of these compounds was evaluated on the RAW 264.7 cell line. The results showed that among the assayed compounds the substituted 3-chlorophenyl (4a) (IC50/24 h = 15 ± 0.14 μM) and 3,4-dichlorophenyl tetrazoles (4d) (IC50/24 h = 26 ± 0.09 μM) were the most potent against L. braziliensis promastigotes, as compared the reference drug pentamidine, which presented IC50 = 13 ± 0.04 μM. In addition, 4a and 4d derivatives were less cytotoxic than pentamidine. However, these tetrazole derivatives (4) and pyrazole-4-carbonitriles precursors (3) differ against each of the tested species and were more effective against L.braziliensis than on L. amazonensis.  相似文献   

7.
Four series of N-methylpicolinamide moiety and thienopyrimidine moiety bearing pyridazinone were designed and synthesized and evaluated for the IC50 values against three cancer cell lines (A549, HepG2 and MCF-7) and some selected compounds were further evaluated for the activity against c-Met, Flt-3, VEGFR-2, c-Kit and EGFR kinases. Three compounds (35, 39 and 43) showed more active than positive control Foretinib against A549, HepG2 and MCF-7 cell lines. The most promising compound 43 showed superior activity against A549, HepG2 and MCF-7, with the IC50 values of 0.58?±?0.15?µM, 0.47?±?0.06?µM and 0.74?±?0.12?µM, which were 3.73–5.39-fold more activity than Foretinib, respectively. The experiments of enzyme-based showed that 43 restrain the c-Met selectively, with the IC50 values of 16?nM, which showed equal activity to Foretinib (14?nM) and better than the compound 5 (90?nM). Moreover, AO and Annexin V/PI staining and docking studies were carried out.  相似文献   

8.
Anticancer therapeutics with profiles of high potency, low toxicity, and low resistance is of considerable interest. A new series of functionalized spirooxindole linked with 3-acylindole scaffold is reported, starting from chalcones derived from 3-acetyl indole with isatin, and l-4-thiazolidinecarboxylic acid. The reactions proceeded regioselectivity, stereoselectivity, without side products in high yield (71–89%). The new spirooxindole hybrids have been evaluated in vitro for their antiproliferative effects against colon cancer (HCT-116), hepatocellular carcinoma (HepG2) and prostate cancer (PC-3). The selectivity of their activity was evaluated. Some of the synthesized compounds showed considerable anticancer activities. Compound 4k proved to retain a high cytotoxic activity and selectivity against colon cancer cells HCT-116 (IC50 = 7 ± 0.27 µM, SI: 3.7), and HepG2 (IC50 = 5.5 ± 0.2 µM, SI: 4.7) in comparison to (IC50 = 12.6 ± 0.5, SI: 0.4 and 5.5 ± 0.3 µM, SI: 0.9, respectively). Compound 4k was less active (IC50 = 6 ± 0.3 µM, SI: 4.3) than cisplatin (IC50 = 5 ± 0.56 µM, SI: 1.0) but showed greater selectivity towards prostate cancer cells PC-3 in comparison to cisplatin. The details of the binding mode of the active compounds were clarified by molecular docking. Ligand Efficiency (LE) and Ligand Lipophilic Efficiency (LLE) were evaluated and revealed that compound 4k had acceptable value.  相似文献   

9.
A series of amino acid prodrugs of NVR3-778, a potent anti-HBV candidate currently under phase II clinical trial, were designed and synthesized as new anti-HBV agents. Except for 1e, all of them displayed roughly comparable anti-HBV activity (IC50, 0.28–0.56 µM) to NVR3-778 (IC50, 0.26 µM). Compound 1a, a l-valine ester prodrug of NVR3-778, was found to show significantly improved water solubility (0.7 mg/mL, pH 2) as we expected, and lower cytotoxicity (CC50 > 10 µM) than NVR3-778 (CC50, 4.81 µM). Moreover, 1a also exhibited acceptable PK properties and comparable in vivo efficacy in HBV DNA hydrodynamic mouse model to that of NVR3-778, suggesting it may serve as a promising lead compound for further anti-HBV drug discovery.  相似文献   

10.
Five series of N-methylpicolinamide moiety and thienopyrimidine moiety bearing triazole (21–26, 27–34, 35–41, 42–47 and 48–54) were designed and synthesized. And all the target compounds were evaluated for the IC50 values against three cancer cell lines (A549, HepG2 and MCF-7) and some selected compounds (43, 49 and 52) were further evaluated for the activity against c-Met, Flt-3, VEGFR-2, c-Kit and EGFR kinases. Moreover, SARs and docking studies indicated that thieno[3,2-d]pyrimidine bearing triazole moiety was privileged structure for the activity. Especially, the Cl atom on the 4-C position of aryl group showed the best activity. The most promising compound 49 showed 3.7–5.4-fold more activity than the lead drug Foretinib against A549, HepG2 and MCF-7 cell lines, with the IC50 values of 0.9 ± 0.1 µM, 0.5 ± 0.1 µM and 1.1 ± 0.2 µM, respectively. And The experiments of enzyme-based showed that 49 inhibitor the c-Met selectively, with the IC50 values of 16 nM, which showed equal activity to Foretinib (14 nM). What’s more, According to the result of AO single staining and Annexin V/PI staining, it's claimed that the 49 could induce late apoptosis of HepG2 cells and by a concentration-dependent manner.  相似文献   

11.
Cratoxylum cochinchinense displayed significant inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase, both of which are key target enzymes to attenuate diabetes and obesity. The compounds responsible for both enzymes inhibition were identified as twelve xanthones (112) among which compounds 1 and 2 were found to be new ones. All of them simultaneously inhibited PTP1B with IC50s of (2.4–52.5?µM), and α-glucosidase with IC50 values of (1.7–72.7?µM), respectively. Cratoxanthone A (3) and γ-mangostin (7) were estimated to be most active inhibitors against both PTP1B (IC50?=?2.4?µM for 3, 2.8?µM for 7) and α-glucosidase (IC50?=?4.8?µM for 3, 1.7?µM for 7). In kinetic studies, all isolated xanthones emerged to be mixed inhibitors of α-glucosidase, whereas they behaved as competitive inhibitors of PTP1B. In time dependent experiments, compound 3 showed isomerization inhibitory behavior with following kinetic parameters: Kiapp?=?2.4?µM; k5?=?0.05001?µM?1?S?1 and k6?=?0.02076?µM?1?S?1.  相似文献   

12.
Novel derivatives of flurbiprofen 118 including flurbiprofen hydrazide 1, substituted aroyl hydrazides 29, 2-mercapto oxadiazole derivative 10, phenacyl substituted 2-mercapto oxadiazole derivatives 1115, and benzyl substituted 2-mercapto oxadiazole derivatives 1618 were synthesized and characterized by EI-MS, 1H and 13C NMR spectroscopic techniques. All derivatives 118 were screened for α-amylase inhibitory activity and demonstrated a varying degree of potential ranging from IC50 = 1.04 ± 0.3 to 2.41 ± 0.09 µM as compared to the standard acarbose (IC50 = 0.9 ± 0.04 µM). Out of eighteen compounds, derivatives 2 (IC50 = 1.69 ± 0.1 µM), 3 (IC50 = 1.04 ± 0.3 µM), 9 (IC50 = 1.25 ± 1.05 µM), and 13 (IC50 = 1.6 ± 0.18 µM) found to be excellent inhibitors while rest of the compounds demonstrated comparable inhibition potential. A limited structure-activity relationship (SAR) was established by looking at the varying structural features of the library. In addition to that, in silico study was conducted to understand the binding interactions of the compounds (ligands) with the active site of α-amylase enzyme.  相似文献   

13.
Two new glycoalkaloids, erianosides A (1) and B (2) along with five known compounds (37) were isolated from the leaves of Solanum erianthum. Their structures were elucidated from analyses of spectroscopic data and all isolates were tested for in vitro cytotoxic activity against human breast cancer cell lines (BT-549, MDA-MB-231, T74D, and MCF-7). Solasonine (5) and solamargine (6) were active against the aforementioned four cancer cell lines with IC50 values of 27.26–35.89 and 5.84–10.13 μM, respectively. Erianoside A (1) (T74D: IC50, 56.39 µM) and solasodine (3) (BT-549 and MDA-MB-231: IC50, 59.15 and 75.63 µM, respectively) had moderate cytotoxic effects towards some cell lines in the panel.  相似文献   

14.
Current study deals with the evaluation of indane-1,3-dione based compounds as new class of urease inhibitors. For that purpose, benzylidine indane-1,3-diones (130) were synthesized and fully characterized by different spectroscopic techniques including EI-MS, HREI-MS, 1H, and 13C NMR. All synthetic molecules 130 were evaluated for urease inhibitory activity and showed good to moderate inhibitory potential within the range of (IC50 = 11.60 ± 0.3–257.05 ± 0.7 µM) as compared to the standard acetohydroxamic acid (IC50 = 27.0 ± 0.5 µM). Compound 1 (IC50 = 11.60 ± 0.3 µM) was found to be most potent inhibitor amongst all derivatives. The key binding interactions of most active compounds within the enzyme pocket were evaluated through in silico studies.  相似文献   

15.
Bioactivity-guided fractionation of antileishmanial active CH2Cl2 phase of MeOH extract from leaves of Calea pinnatifida led to isolation of two sesquiterpene lactones calein C (1) and calealactone C (2), which structures were stablished on the basis of spectroscopic analysis. Compounds 1 and 2 displayed potent activity against Leishmania amazonensis promastigotes with EC50 of 1.7 and 4.6 µg mL−1, respectively. Compound 2 presented low cytotoxicity for J774 macrophages and displayed activity against amastigote forms of L. amazonensis similar to miltefosine with CC50 values of 31.73 and 27.18 µg mL−1, respectively. Additionally, compounds 1 and 2 caused ultrastructural changes in promastigotes leading to a loss of their classical structural morphology, as evidenced by electron microscopy. Also compound 2 decreased the mitochondria membrane potential. To the best of our knowledge, this is the first occurrence of 1 and 2 in C. pinnatifida. The results obtained highlighted the importance of studying sesquiterpene lactones isolated from Calea pinnatifida in terms of antileishmanial activity, in order to understand the mechanism of action of the isolated compounds in promastigotes forms of L. amazonensis.  相似文献   

16.
Two new series of 5-subtituted and 5,6-disubstituted pyrrolo[2,3-d]pyrimidine octamides (4ao and 6ag) and their corresponding free amines 5am and 7ag have been synthesized and biologically evaluated for their antiproliferative activity against three human cancer cell lines. The 5,6-disubstituted octamides 6dg as well as the amine derivative 7b have shown the best anticancer activity with single digit micromolar GI50 values over the tested cancer cells, and low cytotoxic effects (GI50?>?10.0?µM) against HFF-1 normal cell. A structure activity relationship (SAR) study has been established and disclosed that terminal octamide moiety at C2 as well as disubstitution with fluorobenzyl piperazines at C5 and C6 of pyrrolo[2,3-d]pyrimidine are the key structural features prerequisite for best antiproliferative activity. Moreover, the most active member 6f was tested for its antiproliferative activity over a panel of 60 cancer cell lines at NCI, and exhibited distinct broad spectrum anticancer activity with submicromolar GI50 and TGI values over multiple cancer cells. Kinase profile of compound 6f over 53 oncogenic kinases at 10?µM concentration showed its highly selective inhibitory activity towards FGFR4, Tie2 and TrkA kinases. The observed activity of 6f against TrkA (IC50?=?2.25?µM), FGFR4 (IC50?=?6.71?µM) and Tie2 (IC50?=?6.84?µM) was explained by molecular docking study, which also proposed that 6f may be a type III kinase inhibitor, binding to an allosteric site rather than kinase hinge region. Overall, compound 6f may serve as a promising anticancer lead compound that could be further optimized for development of potent anticancer agents.  相似文献   

17.
Leishmaniasis is one of the most important neglected tropical diseases (NTDs) that are especially common among low-income populations in developing regions of Africa, Asia, and the Americas. Many natural products, particularly alkaloids, have been reported to have inhibitory activity against arginase, the key enzyme in the pathology caused by Leishmania sp. In this way, piperidine alkaloids (–)-cassine (1), (–)-spectaline (2), (–)-3-O-acetylcassine (3), and (–)-3-O-acetylspectaline (4) were isolated from Senna spectabilis flowers. These compounds (1/2 and 3/4) initially present as homologous mixtures were separated by high performance liquid chromatography and evaluated against the promastigote phase of Leishmania amazonensis. In addition, molecular docking simulations were implemented in order to probe the binding modes of the ligands 14 to the amino acids in the active site of L. amazonensis arginase. Alkaloid 2 (IC50 15.81?μg?mL?1) was the most effective against L. amazonensis. Compounds 2 and 4, with larger side chain, were more effective against the parasite than compounds 1 and 3. The cell viability test on Vero cells revealed that compound 2 (CC50 66.67?μg?mL?1) was the most toxic. The acetyl group in the 3-O position of the parent structures reduced the leishmanicidal activity and the toxicity of the alkaloids. Further, molecular docking suggested that Asn143 is essential for arginase to interact with (–)-spectaline-derived compounds, which agreed with the IC50 measurements. Our findings revealed that S. spectabilis is an important source of piperidine alkaloids with leishmanicidal activity. Moreover, the natural compound 3 has been isolated for the first time. Experimental investigation combined with theoretical study advances knowledge about the enzyme binding site mode of interaction and contributes to the design of new bioactive drugs against Leishmania infection.  相似文献   

18.
Three new compounds, including a prenylated tryptophan derivative, luteoride E (1), a butenolide derivative, versicolactone G (2), and a linear aliphatic alcohol, (3E,7E)-4,8-dimethyl-undecane-3,7-diene-1,11-diol (3), together with nine known compounds (412), were isolated and identified from a coral-associated fungus Aspergillus terreus. Their structures were elucidated by HRESIMS, one- and two-dimensional NMR analysis, and the absolute configuration of 2 was determined by comparison of its electronic circular dichroism (ECD) spectrum with the literature. Structurally, compound 1 featured an unusual (E)-oxime group, which occurred rarely in natural products. Compounds 13 were evaluated for the α-glucosidase inhibitory activity, and compound 2 showed potent inhibitory potency with IC50 value of 104.8 ± 9.5 μM, which was lower than the positive control acarbose (IC50 = 154.7 ± 8.1 µM). Additionally, all the isolated compounds were evaluated for the anti-inflammatory activity against NO production, and compounds 13, 57, and 10 showed significant inhibitory potency with IC50 values ranging from 5.48 to 29.34 μM.  相似文献   

19.
A novel series of acridine linked to thioacetamides 9a–o were synthesized and evaluated for their α-glucosidase inhibitory and cytotoxic activities. All the synthesized compounds exhibited excellent α-glucosidase inhibitory activity in the range of IC50 = 80.0 ± 2.0–383.1 ± 2.0 µM against yeast α-glucosidase, when compared to the standard drug acarbose (IC50 = 750.0 ± 1.5 µM). Among the synthesized compounds, 2-((6-chloro-2-methoxyacridin-9-yl)thio)-N-(p-tolyl) acetamide 9b displayed the highest α-glucosidase inhibitory activity (IC50 = 80.0 ± 2.0 μM). The in vitro cytotoxic assay of compounds 9a–o against MCF-7 cell line revealed that only the compounds 9d, 9c, and 9n exhibited cytotoxic activity. Cytotoxic compounds 9d, 9c, and 9n did not show cytotoxic activity against the normal human cell lines HDF. Kinetic study revealed that the most potent compound 9b is a competitive inhibitor with a Ki of 85 μM. Furthermore, the interaction modes of the most potent compounds 9b and 9f with α-glucosidase were evaluated through the molecular docking studies.  相似文献   

20.
We designed and synthesized five new 5-nitrothiazole-NSAID chimeras as analogues of nitazoxanide, using a DCC-activated amidation. Compounds 15 were tested in vitro against a panel of five protozoa: 2 amitochondriates (Giardia intestinalis, Trichomonas vaginalis) and 3 kinetoplastids (Leishmania mexicana, Leishmania amazonensis and Trypanosoma cruzi). All chimeras showed broad spectrum and potent antiprotozoal activities, with IC50 values ranging from the low micromolar to nanomolar order. Compounds 15 were even more active than metronidazole and nitazoxanide, two marketed first-line drugs against giardiasis. In particular, compound 4 (an indomethacin hybrid) was one of the most potent of the series, inhibiting G. intestinalis growth in vitro with an IC50 of 0.145 μM. Compound 4 was 38-times more potent than metronidazole and 8-times more active than nitazoxanide. The in vivo giardicidal effect of 4 was evaluated in a CD-1 mouse model obtaining a median effective dose of 1.709 μg/kg (3.53 nmol/kg), a 321-fold and 1015-fold increase in effectiveness after intragastric administration over metronidazole and nitazoxanide, respectively. Compounds 1 and 3 (hybrids of ibuprofen and clofibric acid), showed potent giardicidal activities in the in vitro as well as in the in vivo assays after oral administration. Therefore, compounds 15 constitute promising drug candidates for further testing in experimental chemotherapy against giardiasis, trichomoniasis, leishmaniasis and even trypanosomiasis infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号