首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Discrimination and quantification of intracellular biothiols, such as cysteine (Cys), homocysteine (Hcy), glutathione (GSH) under physiological conditions is significant for academic research and disease diagnosis. A new fluorescent probe (complex 1-Cu2+) for discriminate detection of GSH was prepared by copper ions coordinate with coumarin carbohydrazide Schiff base derivative 1. In suitable buffer solution (CH3CN: HEPES = 3:2, v/v) and under appropriate pH condition (pH = 7.2–7.4), the UV–vis spectroscopy experiments showed that compound 1 and copper ion exhibited a 1:1 ratio binding mode and moderate binding ability. Fluorescence quenching of compound 1 was observed when it complexed with Cu2+ ions. An obviously fluorescence restoration appeared after addition of GSH to the solution of probe, which also exhibited a highly selectivity relative to cysteine (Cys) and homocysteine (Hcy) in the amino acid competitive experiments. The minimum detection limit was calculated to 0.12 μM by fluorescent method, which was distinctly below the physiological concentration of GSH in live cells. Its biological application to detect the endogenous GSH was further proved by the HepG2 cell fluorescence image test.  相似文献   

2.
Two fluorescent probes, 1 and 2, derived from borondipyrromethene (BODIPY) modified with macrocyclic polyamine [12]aneN3, were synthesized and applied in the discrimination of cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) with absorption and fluorescent spectroscopy in comparison. It was found that Boc-protected 1 showed highly sensitive and selective recognition of GSH over Cys and Hcy; while probe 2 was able to distinguish the three different thiols due to their different reactivities. With its water-solubility, rapid responsiveness, high sensitivity and low cytotoxicity, probe 2 was successfully applied in the fast detection of three biothiols in living cells.  相似文献   

3.
A novel fluorescent probe (CA‐N) was designed and synthesized for detection of biothiols. CA‐N displayed a strong fluorescence in the presence of biothiols with high sensitivity, and the mechanism for detection biothiols was based on the Michael addition reaction of a thiol group to α,β‐unsaturated ketones. CA‐N showed low detection limit for cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), which were calculated as 3.16, 0.19 and 5.15 μM, respectively. At the same time, CA‐N exhibited high selectivity toward biothiols compared with other biological amino acids. In vitro cell experiments proved that CA‐N had no cytotoxicity, high cell permeability and could be employed in living cell imaging for biothiols. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Fluorescent bovine serum albumin‐confined silver nanoclusters (BSA–AgNCs) were demonstrated to be a novel and environmentally friendly probe for the rapid detection of biothiols such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH). The sensing was ascribed to the strong affinity between the mercapto group of the biothiols and the silver nanoclusters. The fluorescence intensity of BSA–AgNCs was quenched efficiently on increasing the concentration of biothiol, corresponding with a red‐shift in emission wavelength. However, the fluorescence of the silver nanoclusters was almost unchanged in the presence of other α‐amino acids at 10‐fold higher concentrations. By virtue of this specific response, a new, simple and rapid fluorescent method for detecting biothiols has been developed. The linear ranges for Cys, Hcy and GSH were 2.0 × 10‐6 to 9.0 × 10‐5 M (R2 = 0.994), 2.0 × 10‐6 to 1.2 × 10‐4 M (R2 = 0.996) and 1.0 × 10‐5 to 8.0 × 10‐5 M (R2 = 0.980), respectively. The detection limits were 8.1 × 10‐7 M for Cys, 1.0 × 10‐6 M for Hcy and 1.1 × 10‐6 M for GSH. Our proposed method was successfully applied to the determination of thiols in human plasma and the recovery was 94.83–105.24%. It is potentially applicable to protein‐stabilized silver nanoclusters in a chemical or biochemical sensing system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In this work, we reported a simple and sensitive method to detect biothiols, such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), using fluorescent silver nanoclusters (Ag NCs) stabilized by single-stranded DNA (DNA-Ag NCs) as probes. The photoluminescence intensity of DNA-Ag NCs was found to be quenched effectively with the increase of biothiols concentration due to the formed nonfluorescent coordination complex between DNA-Ag NCs and biothiols, resulting in the shift-to-red of emission wavelength. But the fluorescence of DNA-Ag NCs was not changed in the presence of other amino acids at 10-fold higher concentration. Satisfactory detection limits and linear relationships of Cys, GSH and Hcy were obtained, respectively. The resulted plots exhibited good linear relationships in the range from 8.0×10(-9) to 1.0×10(-7) mol L(-1) (R(2)=0.984) for Cys, 8.0×10(-9) to 1.0×10(-7) mol L(-1) (R(2)=0.983) for GSH, and 2.0×10(-6) to 6.0×10(-7) mol L(-1) (R(2)=0.999) for Hcy, respectively; the detection limits of Cys, GSH and Hcy were 4.0 nmol L(-1), 4.0 nmol L(-1), and 0.2 μmol L(-1), respectively. The method was successfully used for the detection of biothiols in human plasma samples.  相似文献   

6.
The simultaneous discrimination of cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) is of great importance due to their roles in biology and close link to many diseases, especially via the development of a far‐red fluorescent probe that could be used for rapid, selective, and sensitive detection of all three. Herein, we report the characterization of a far‐red fluorescent probe with turn‐on fluorescence properties and visible color changes that could be used for the detection of cysteine and homocysteine over glutathione. In this study we found that the sensor could discriminate cysteine and homocysteine over glutathione within 20 min. Function of this probe was based on the conjugate addition–cyclization reaction and showed a low detection limit to cysteine and homocysteine. Upon the addition of cysteine and homocysteine, the absorption band at 592 nm rose gradually and fluorescence was detected at 645 nm. The color changed from colorless to blue and fluorescence changed from absent to strong red fluorescence, which could be differentiated by the naked eye. All these unique features make this probe particularly potentially favorable for use in cysteine/homocysteine sensing and bioimaging applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A new ceramide analog, 1, containing two fluorescent dyes, NBD in the N-acyl part and KFL5 in the alkyl part, was synthesized. The fluorescence from both NBD and KFL5 was detected in living cells in a time-dependent manner. A multi-wavelength fluorescence detector was used to detect ceramide metabolites including sphingosine, sphingosine-1-phosphate, glucosylceramide, and sphingomyelin, which are connected to the fluorescent dyes, simultaneously in a single TLC plate.  相似文献   

8.
A 1,8-naphthalimide–Cu(II) ensemble was rationally designed and synthesized as a new turn-on fluorescent probe utilizing the ‘chemosensing ensemble’ method for detections of thiols (Cys, Hcy and GSH) with high selectivity over other α-amino acids at pH 7.4 in organic aqueous media (EtOH/HEPES, v/v = 9:1). The recognition mechanism was attributed to the remove Cu(II) from the 1,8-naphthalimide–Cu(II) ensemble by thiols and the release of flurescence of ligand 1. Remarkable fluorescence enhancements were therefore observed in the sensing process of thiols by the 1,8-naphthalimide–Cu(II) ensemble. Furthermore, the 1,8-naphthalimide–Cu(II) ensemble was successfully applied to the fluorescence imaging of thiols in CHO cells with high sensitivity and selectivity.  相似文献   

9.
The synthesis of a series of conjugated spermine derivatives with benzoxadiazole, phenylxanthene or bodipy fluorophores is described. These fluorescent probes were used to identify the activity of the polyamine transport system (PTS). N1-Methylspermine NBD conjugate 5 proved to have the optimal fluorescence characteristics and was used to show a selectivity for PTS-proficient CHO versus PTS-deficient CHO-MG cells. It can therefore be used as a tool for the selection of cells sensitive to cytotoxic compounds vectored through the PTS.  相似文献   

10.
A sensitive fluorogenic probe 1 for biothiols was developed based on the Michael addition reaction. The probe 1 was readily synthesized via the reaction of 2‐(4′‐hydroxyphenyl) benzimidazole (HPBI) with acryloyl chloride and shows weak fluorescence emission. Upon mixing with biothiols, the fluorescence of 1 is significantly enhanced due to the conjugate addition of thiols to the α,β‐unsaturated carbonyl moiety, thus eliminating the photoinduced electron transfer (PET) quenching of the fluorophore by the intramolecular carbon–carbon double bond. Cysteine (Cys) was selected as the representative thiol in the spectral experiment. A good linear relationship was obtained from 1.0 to 30.0 µmol L?1 for Cys and the detection limit was 0.17 µmol L?1. Furthermore, probe 1 was highly selective for biothiols without the interference of some biologically relevant analytes and has been applied to detecting biothiols in human urine samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Small-molecule fluorescent sensors that allow specific measurement of nuclear pH in living cells will be valuable for biological research. Here we report that Hoechst-tagged fluorescein (hoeFL), which we previously developed as a green fluorescent DNA-staining probe, can be used for this purpose. Upon excitation at 405 nm, the hoeFL–DNA complex displayed two fluorescence bands around 460 nm and 520 nm corresponding to the Hoechst and fluorescein fluorescence, respectively. When pH was changed from 8.3 to 5.5, the fluorescence intensity ratio (F520/F460) significantly decreased, which allowed reliable pH measurement. Moreover, because hoeFL binds specifically to the genomic DNA in cells, it was applicable to visualize the intranuclear pH of nigericin-treated and intact living human cells by ratiometric fluorescence imaging.  相似文献   

12.
13.
The expression levels and the subcellular localization of adenosine receptors (ARs) are affected in several pathological conditions as a consequence of changes in adenosine release and metabolism. In this respect, labelled probes able to monitor the AR expression could be a useful tool to investigate different pathological conditions. Herein, novel ligands for ARs, bearing the fluorescent 7-nitrobenzofurazan (NBD) group linked to the N1 (1,2) or N10 (3,4) nitrogen of a triazinobenzimidazole scaffold, were synthesized. The compounds were biologically evaluated as fluorescent probes for labelling A1 and A2B AR subtypes in bone marrow-derived mesenchymal stem cells (BM-MSCs) that express both receptor subtypes. The binding affinity of the synthetized compounds towards the different AR subtypes was determined. The probe 3 revealed a higher affinity to A1 and A2B ARs, showing interesting spectroscopic properties, and it was selected as the most suitable candidate to label both AR subtypes in undifferentiated MSCs.Fluorescence confocal microscopy showed that compound 3 significantly labelled ARs on cell membranes and the fluorescence signal was decreased by the cell pre-incubation with the A1 AR and A2B AR selective agonists, R-PIA and BAY 60-6583, respectively, thus confirming the specificity of the obtained signal. In conclusion, compound 3 could represent a useful tool to investigate the expression pattern of both A1 and A2B ARs in different pathological and physiological processes. Furthermore, these results provide an important basis for the design of new and more selective derivatives able to monitor the expression and localization of each different ARs in several tissues and living cells.  相似文献   

14.
A new Methylene blue–based 7-nitro-1,2,3-benzoxadiazole NIR fluorescent probe 3, 7-bis-dimethylamino-10-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-10H-phenothiazine (leuco-MB-NBD) was designed and synthesized. Leuco-MB-NBD showed high sensitivity and selectivity for H2S as a fluorescent probe in C2H5OH-PBS (9:1, v/v, pH = 7.4) solution, this fluorescent assay showed a linear range of 0–50.0 μM and a LOD (limit of detection) of 0.43 μM. Moreover, the probe leuco-MB-NBD has lower toxicity at low concentrations to HCT-116 cells and can be used for cell imaging. Additionally, Leuco-MB-NBD is triggered by hydrogen sulfide to generate methylene blue, methylene blue which has potential rescuing effects on the mitochondrial activity can act as an antidote against sulfide intoxication.  相似文献   

15.
A new “turn-on” fluorescent probe, RDMBM, based on the rhodamine B dye and the 2,5-pyrrolidinedione moiety was synthesized and characterized. Its sensing behavior toward various amino acids was evaluated via UV–vis and fluorescence spectroscopic techniques. The observed spectral changes showed that RDMBM displays high selectivity and sensitivity toward GSH in MeOH/H2O (1:2, v/v, pH 7.40, Tris-HCl buffer, 1?mM) solution and that it undergoes 1:1 covalent binding with GSH. More importantly, the hydrogenation and ring-opening of the nitrogen atom in the spirane structure of rhodamine B derivatives were tightly bound to the induction effects of different groups. Furthermore, fluorescence imaging applications demonstrated that RDMBM can be successfully used for the detection of GSH in human breast cancer cells MCF-7.  相似文献   

16.
We synthesized a fluorogenic probe with a high-mannose type heptasaccharide structure to detect the hydrolytic activity of endo-β-N-acetylglucosaminidase from Streptomyces plicatus (Endo-H). The heptasaccharide derivative (1) was labeled with an N-methylanthraniloyl group as a reporter dye at the branching point of the β-mannoside residue and 2,4-dinitrophenyl group as a quencher molecule at the reducing end, which was hydrolyzed by Endo-H, resulting in increased fluorescence intensity. Thus, Endo-H activities could be evaluated easily and quantitatively by measuring the fluorescence signal. Using both this probe (1) and a previously synthesized pentasaccharide probe, the hydrolysis activity of Endo-H and Endo-M were investigated. The results clearly showed a correlation with the substrate specificity of each enzyme.  相似文献   

17.
Background Hyperhomocysteinaemia (HHC) is thought to be a risk factor for cardiovascular disease including heart failure. While numerous studies have analyzed the role of homocysteine (Hcy) in the vasculature, only a few studies investigated the role of Hcy in the heart. Therefore we have analyzed the effects of Hcy on isolated cardiomyocytes. Methods H9c2 cells (rat cardiomyoblast cells) and adult rat cardiomyocytes were incubated with Hcy and were analyzed for cell viability. Furthermore, we determined the effects of Hcy on intracellular mediators related to cell viability in cardiomyocytes, namely NOX2, reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨ m) and ATP concentrations. Results We found that incubation of H9c2 cells with 0.1 mM D,L-Hcy (= 60 μM l-Hcy) resulted in an increase of ΔΨ m as well as ATP concentrations. 1.1 mM d,l-Hcy (= 460 μM l-Hcy) induced reversible flip-flop of the plasma membrane phospholipids, but not apoptosis. Incubation with 2.73 mM d,l-Hcy (= 1.18 mM l-Hcy) induced apoptosis and necrosis. This loss of cell viability was accompanied by a thread-to-grain transition of the mitochondrial reticulum, ATP depletion and nuclear NOX2 expression coinciding with ROS production as evident from the presence of nitrotyrosin residues. Notably, only at this concentration we found a significant increase in S-adenosylhomocysteine which is considered the primary culprit in HHC. Conclusion We found concentration-dependent effects of Hcy in cardiomyocytes, varying from induction of reversible flip-flop of the plasma membrane phospholipids, to apoptosis and necrosis.  相似文献   

18.
Fourteen monocyclic analogues of trypsin inhibitor SFTI-1 isolated from sunflower seeds were synthesized by the solid-phase method. The purpose of this work was to establish the role of a disulfide bridge present in inhibitor’s side chains of Cys3 and Cys11 in association with serine proteinases. This cyclic fragment was replaced by the disulfide bridges formed by l-pencillamine (Pen), homo-l-cysteine (Hcy), N-sulfanylethylglycine (Nhcy) or combination of the three with Cys. As in the substrate specificity the P1 position of the synthesized analogues Lys, Nlys [N-(4-aminobutyl)glycine], Phe or Nphe (N-benzylglycine) were present, and they were checked for trypsin and chymotrypsin inhibitory activity. The results clearly indicated that Pen and Nhcy were not acceptable at the position 3, yielding inactive analogues, whereas another residue (Cys11) could be substituted without any significant impact on the affinity towards proteinase. On the other hand, elongation of the Cys3 side chain by introduction of Hcy did not affect inhibitory activity, and an analogue with the Hcy–Hcy disulfide bridge was more than twice as effective as the reference compound ([Phe5] SFTI-1) in inhibition of bovine α-chymotrypsin.  相似文献   

19.
The loop following helix α2 in glutathione transferase P1-1 has two conserved residues, Cys48 and Tyr50, important for glutathione (GSH) binding and catalytic activity. Chemical modification of Cys48 thwarts the catalytic activity of the enzyme, and mutation of Tyr50 generally decreases the kcat value and the affinity for GSH in a differential manner. Cys48 and Tyr50 were targeted by site-specific mutations and chemical modifications in order to investigate how the α2 loop modulates GSH binding and catalysis. Mutation of Cys48 into Ala increased KMGSH 24-fold and decreased the binding energy of GSH by 1.5 kcal/mol. Furthermore, the protein stability against thermal inactivation and chemical denaturation decreased. The crystal structure of the Cys-free variant was determined, and its similarity to the wild-type structure suggests that the mutation of Cys48 increases the flexibility of the α2 loop rather than dislocating the GSH-interacting residues. On the other hand, replacement of Tyr50 with Cys, producing mutant Y50C, increased the Gibbs free energy of the catalyzed reaction by 4.8 kcal/mol, lowered the affinity for S-hexyl glutathione by 2.2 kcal/mol, and decreased the thermal stability. The targeted alkylation of Cys50 in Y50C increased the affinity for GSH and protein stability. Characterization of the most active alkylated variants, S-n-butyl-, S-n-pentyl-, and S-cyclobutylmethyl-Y50C, indicated that the affinity for GSH is restored by stabilizing the α2 loop through positioning of the key residue into the lock structure of the neighboring subunit. In addition, kcat can be further modulated by varying the structure of the key residue side chain, which impinges on the rate-limiting step of catalysis.  相似文献   

20.
Plants are subjected to fluctuations in light intensity, and this might cause unbalanced photosynthetic electron fluxes and overproduction of reactive oxygen species (ROS). Electrons needed for ROS detoxification are drawn, at least partially, from the cellular glutathione (GSH) pool via the ascorbate–glutathione cycle. Here, we explore the dynamics of the chloroplastic glutathione redox potential (chl-EGSH) using high-temporal-resolution monitoring of Arabidopsis (Arabidopsis thaliana) lines expressing the reduction–oxidation sensitive green fluorescent protein 2 (roGFP2) in chloroplasts. This was carried out over several days under dynamic environmental conditions and in correlation with PSII operating efficiency. Peaks in chl-EGSH oxidation during dark-to-light and light-to-dark transitions were observed. Increasing light intensities triggered a binary oxidation response, with a threshold around the light saturating point, suggesting two regulated oxidative states of the chl-EGSH. These patterns were not affected in npq1 plants, which are impaired in non-photochemical quenching. Oscillations between the two oxidation states were observed under fluctuating light in WT and npq1 plants, but not in pgr5 plants, suggesting a role for PSI photoinhibition in regulating the chl-EGSH dynamics. Remarkably, pgr5 plants showed an increase in chl-EGSH oxidation during the nights following light stresses, linking daytime photoinhibition and nighttime GSH metabolism. This work provides a systematic view of the dynamics of the in vivo chloroplastic glutathione redox state during varying light conditions.

Monitoring the daily in vivo dynamics of the chloroplastic GSH redox state in light-stressed wild-type plants versus photoprotective mutants provides insight into the photosynthesis-dependent production of oxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号