首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
结核病(Tuberculosis, TB)至今仍是世界三大传染疾病之一。2014年,TB导致的死亡人数已经超过HIV。二线抗TB药物是临床治疗耐多药TB(Multidrug-resistant TB, MDR-TB)的主要药物,然而某些MDR-TB患者由于未及时诊断、治疗方案不合理、所处区域医疗条件差等原因,逐渐发展成为广泛耐药TB(Extensively drug-resistant TB, XDR-TB),使治疗更加困难,其死亡率甚至与肺癌接近。目前结核分枝杆菌(Mycobacterium tuberculosis)的耐药性机制研究已经转向非一线药物,如二线、三线和一些新研发的抗TB药物,揭示这些非一线药物的耐药机制对于耐药TB的治疗和新型抗TB药物的研发具有重要意义。本文对目前临床上使用的主要非一线药物的耐药机制研究进行了综述,并对目前常用的TB耐药性诊断方法的优缺点进行了归纳比较。  相似文献   

2.
New and better drugs are needed for tuberculosis (TB), particularly for the multi-drug resistant (MDR) disease. However, the highly infectious nature of MDR Mycobacterium tuberculosis restricts its use for large scale screening of probable drug candidates. We have evaluated the potential of a screen based on a 'fast grower' mycobacterium to shortlist compounds which could be active against MDR M. tuberculosis. Sensitivity profiles of M. smegmatis, M. phlei and M. fortuitum as well as MDR clinical isolates of M. tuberculosis were determined against anti-TB drugs isoniazid and rifampicin. Among the three fast growers, M. smegmatis was found to display a profile similar to MDR M. tuberculosis. Subsequently we evaluated the performance of M. smegmatis as a 'surrogate' screen for 120 compounds which were synthesized for anti-TB activity. Fifty of these molecules were active against M. tuberculosis H(37)Rv at a minimum inhibitory concentration (MIC) cutoff of 相似文献   

3.
Mycobacterium tuberculosis (Mtb), the pathogen of tuberculosis (TB), is one of the most infectious bacteria in the world. The traditional strategy to combat TB involves targeting the pathogen directly; however, the rapid evolution of drug resistance lessens the efficiency of this anti-TB method. Therefore, in recent years, some researchers have turned to an alternative anti-TB strategy, which hinders Mtb infection through targeting host genes. In this work, using a theoretical genetic analysis, we identified 170 Mtb infection-associated genes from human genetic variations related to Mtb infection. Then, the agents targeting these genes were identified to have high potential as anti-TB drugs. In particular, the agents that can target multiple Mtb infection-associated genes are more druggable than the single-target counterparts. These potential anti-TB agents were further screened by gene expression data derived from connectivity map. As a result, some agents were revealed to have high interest for experimental evaluation. This study not only has important implications for anti-TB drug discovery, but also provides inspirations for streamlining the pipeline of modern drug discovery.  相似文献   

4.
Tuberculosis (TB) remains one of the world's leading causes of death from infectious disease. It is caused by infection with Mycobacterium tuberculosis or sometimes, particularly in immune-compromised patients, Mycobacterium avium. The aim of this study was to create a tool that could be used in the search for new anti-TB drugs that inhibit branched-chain amino acid (BCAA) biosynthesis, as these are essential amino acids that are not available to a mycobacterium during growth in an infected organism. To this end, we cloned, overexpressed, purified and characterised for the first time an acetohydroxyacid synthase (AHAS), a key enzyme in the pathway to the biosynthesis of the BCAAs, from the genus Mycobacterium. Nine commercial herbicides of the sulfonylurea and imidazolinone classes were tested for their influence on this enzyme. Four of the sulfonylureas were potent inhibitors of the enzyme. The relative potency of the different inhibitors towards the M. avium enzyme was unlike their potency towards other AHASs whose inhibitor profile has been reported, emphasising the advantage of using a mycobacterial enzyme as a tool in the search for new anti-TB drugs.  相似文献   

5.
Drug resistant tuberculosis is a man made problem. While tuberculosis is hundred percent curable, multidrug resistant tuberculosis (MDR-TB) is difficult to treat. Inadequate and incomplete treatment and poor treatment adherence has led to a newer form of drug resistance known as extensively drug resistant tuberculosis (XDR-TB). XDR-TB is defined as tuberculosis caused by Mycobacterium tuberculosis strain, which is resistant to at least rifampicin and isoniazid among the first line anti tubercular drugs (MDR-TB) in addition to resistance to any fluroquinolones and at least one of three injectable second line anti tubercular drugs i.e. amikacin, kanamycin and/or capreomycin. Mismanagement of tuberculosis paves the way to drug resistant tuberculosis. Emergence of XDR-TB is reported world wide. Reported prevalence rates of XDR-TB of total MDR cases are; 6.6% overall worldwide, 6.5% in industrialized countries, 13.6% in Russia and Eastern Europe, 1.5% in Asia, 0.6% in Africa and Middle East and 15.4% in Republic of Korea. Better management and control of tuberculosis specially drug resistant TB by experienced and qualified doctors, access to standard microbiology laboratory, co-morbitidy of HIV and tuberculosis, new anti-TB drug regimens, better diagnostic tests, international standards for second line drugs (SLD)-susceptibility testing, invention of newer antitubercular molecules and vaccines and knowing the real magnitude of XDR-TB are some of the important issues to be addressed for effective prevention and management of XDR-TB.  相似文献   

6.
Out of the prominent global ailments, tuberculosis (TB) is still one of the leading causes of death worldwide due to infectious disease. Development of new drugs that shorten the current tuberculosis treatment time and have activity against drug resistant strains is of utmost importance. Towards these goals we have focused our efforts on developing novel anti-TB compounds with the general structure of 1-adamantyl-3-phenyl urea. This series is active against Mycobacteria and previous lead compounds were found to inhibit the membrane transporter MmpL3, the protein responsible for mycolic acid transport across the plasma membrane. However, these compounds suffered from poor in vitro pharmacokinetic (PK) profiles and they have a similar structure/SAR to inhibitors of human soluble epoxide hydrolase (sEH) enzymes. Therefore, in this study the further optimization of this compound class was driven by three factors: (1) to increase selectivity for anti-TB activity over human sEH activity, (2) to optimize PK profiles including solubility and (3) to maintain target inhibition. A new series of 1-adamantyl-3-heteroaryl ureas was designed and synthesized replacing the phenyl substituent of the original series with pyridines, pyrimidines, triazines, oxazoles, isoxazoles, oxadiazoles and pyrazoles. This study produced lead isoxazole, oxadiazole and pyrazole substituted adamantyl ureas with improved in vitro PK profiles, increased selectivity and good anti-TB potencies with sub μg/mL minimum inhibitory concentrations.  相似文献   

7.
目的:分析新疆喀什地区结核分枝杆菌(MTB)临床分离株对4种一线和7种二线抗结核药物的耐药情况,初步探讨本地区耐多药结核病(MDR-TB)和广泛耐药结核病(XDR-TB)的流行情况。方法:收集2008.11.1~2009.10.31日期间新疆喀什地区结核病患者痰液标本,进行分离培养及菌种鉴定,并应用比例法对所分离得到的菌株进行耐药性检测。结果:102株分枝杆菌中,88株(86.3%)属于结核分枝杆菌复合群,7株(6.9%)属于牛型分枝杆菌,7株(6.9%)属于非结核分枝杆菌。对一种以上的抗结核药物具有耐药性的有20株,总耐药率为22.7%(20/88),耐多药率为6.8%(6/88),pre-XDR为33.3%(2/6),无XDR-TB病例。结论:新疆喀什地区结核病患者耐药率较高,在结核病治疗工作中应给予重视,尤其应加强对Pre-XDR的重视,以免发展成XDR-TB。  相似文献   

8.
First-line antituberculosis (anti-TB) compounds have been considered as proven components of the Directly Observed Treatment-Short course (DOTS). Drug therapy against tuberculosis has been categorized as I, II, or III following the Revised National Tuberculosis Control Program guidelines. Anti-TB are drugs are quite common and show limited adverse effects. However, first-line anti-TB compounds mediated DOTS therapy and were found with several complications. Thus, those drugs have been discontinued. Therefore, the present study was designed to find out the possible impact of socioeconomic, income, and educational status on the adverse effects of drugs and their therapeutic episodes in patients targeted with a combination of tuberculosis intervention. This study found that an increased incidence of tuberculosis was found in patients who have finished high school, contributing to a high percentage of adverse effects. Notably, adverse events were shown maximally in poor patients compared with rich- or high-income patients. On the contrary, a high prevalence of adverse events was shown to be increased in partially skilled workers compared with full-skilled workers. Consequently, adversely considerable events were implicated to be raised in patients associated with minimal socioeconomic class. Such interesting factors would help in monitoring such events in experimental patients.  相似文献   

9.
Worldwide, tuberculosis (TB) remains the most frequent and important infectious disease causing morbidity and death. One-third of the world's population is infected with Mycobacterium tuberculosis (MTB), the etiologic agent of TB. Because of the global health problems of TB, the development of potent new anti-TB drugs without cross-resistance with known antimycobacterial agents is urgently needed. In this study, we have applied a Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process to identify a single aptamer (NK2) that binds to virulent strain M. tuberculosis (H37Rv) with high affinity and specificity. We have found that this aptamer improves CD4(+)T cells to produce IFN-gamma after binding to H37Rv. The different component between H37Rv and BCG was identified as some membrane protein. Moreover, the survival rates of mice challenged with i.v. H37Rv have been prolonged after treatment with single injection of aptamer NK2. The bacterial numbers were significantly lower in the spleen of mice treated with aptamer NK2. The histopathological examination of lung biopsy specimens showed lesser pulmonary alveolar fusion and swelling in the presence of the aptamer. These results suggest that aptamer NK2 has inhibitory effects on M. tuberculosis and can be used as antimycobacterial agent.  相似文献   

10.
Tuberculosis (TB) is a chronic infectious disease caused mainly by Mycobacterium tuberculosis. The worldwide emergence of drug-resistant strains, the increasing number of infected patients among immune compromised populations, and the large number of latent infected individuals that are reservoir to the disease have underscored the urgent need of new strategies to treat TB. The nucleotide metabolism pathways provide promising molecular targets for the development of novel drugs against active TB and may, hopefully, also be effective against latent forms of the pathogen. The orotate phosphoribosyltransferase (OPRT) enzyme of the de novo pyrimidine synthesis pathway catalyzes the reversible phosphoribosyl transfer from 5'-phospho-α-D-ribose 1'-diphosphate (PRPP) to orotic acid (OA), forming pyrophosphate and orotidine 5'-monophosphate (OMP). Here we describe cloning and characterization of pyrE-encoded protein of M. tuberculosis H37Rv strain as a homodimeric functional OPRT enzyme. The M. tuberculosis OPRT true kinetic constants for forward reaction and product inhibition results suggest a Mono-Iso Ordered Bi-Bi kinetic mechanism, which has not been previously described for this enzyme family. Absence of detection of half reaction and isothermal titration calorimetry (ITC) data support the proposed mechanism. ITC data also provided thermodynamic signatures of non-covalent interactions between substrate/product and M. tuberculosis OPRT. These data provide a solid foundation on which to base target-based rational design of anti-TB agents and should inform us how to better design inhibitors of M. tuberculosis OPRT.  相似文献   

11.
Molecular Biology Reports - Tuberculosis (TB) is a leading cause of mortality amongst infectious diseases. While the anti-TB drugs can cure TB, the non-compliance and rapidly increasing resistance...  相似文献   

12.
The emergence of multi-drug resistant (MDR) strains of Mycobacterium tuberculosis is the main reason why tuberculosis (TB) continues to be a major health problem worldwide. It is urgent to discover novel anti-mycobacterial agents based on new drug targets for the treatment of TB, especially MDR-TB. Tryptophan biosynthetic pathway, which is essential for the survival of M. tuberculosis and meanwhile absent in mammals, provides potential anti-TB drug targets. One of the promising drug targets in this pathway is anthranilate synthase component I (TrpE), whose role is to catalyze the conversion of chorismate to anthranilate using ammonia as amino source. In order to get a deep understanding of TrpE, a study on purification and characteristic identification of TrpE is required. In this work, the putative trpE gene of M. tuberculosis H37Rv was expressed as a fusion protein with a 6x His-tag on the N-terminal (His-TrpE) in Escherichia coli. The recombinant TrpE protein was successfully purified and then its enzymatic characteristics were analyzed. The native TrpE without His-tag was obtained by removal of the N-terminal fusion partner of His-TrpE using enterokinase. It was found that N-terminal fusion partner had little influence on TrpE catalytic activity. In addition, the key residues related to enzyme catalytic activity and that involved in l-tryptophan inhibition were predicted in the structure of M. tuberculosis H37Rv TrpE. These results would be beneficial to the designing of novel anti-TB drugs with high potency and selectivity.  相似文献   

13.
Tuberculosis (TB) is still the principal cause of death caused by a single infectious agent, and the balance between the bacillus and host defense mechanisms reflects the different manifestations of the pathology. The aim of this work was to study the role of myeloid-derived suppressor cells (MDSCs) during active pulmonary tuberculosis at the site of infection. We observed an expansion of MDSCs in the lung and blood of patients with active TB, which are correlated with an enhanced amount of nitric oxide in the plasma. We also found that these cells have the remarkable ability to suppress T-cell response, suggesting an important role in the modulation of the immune response against TB. Interestingly, a trend in the diminution of MDSCs was found after an efficacious anti-TB therapy, suggesting that these cells may be used as a potential biomarker for monitoring anti-TB therapy efficacy.  相似文献   

14.
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is one of the leading infectious disease causes of morbidity and mortality worldwide. Though current antibiotic regimens can cure the disease, treatment requires at least six months of drug therapy. One reason for the long duration of therapy is that the currently available TB drugs were selected for their ability to kill replicating organisms and are less effective against subpopulations of non-replicating persistent bacilli. Evidence from in vitro models of Mtb growth and mouse infection studies suggests that host immunity may provide some of the environmental cues that drive Mtb towards non-replicating persistence. We hypothesized that selective modulation of the host immune response to modify the environmental pressure on the bacilli may result in better bacterial clearance during TB treatment. For this proof of principal study, we compared bacillary clearance from the lungs of Mtb-infected mice treated with the anti-TB drug isoniazid (INH) in the presence and absence of an immunomodulatory phosphodiesterase 4 inhibitor (PDE4i), CC-3052. The effects of CC-3052 on host global gene expression, induction of cytokines, and T cell activation in the lungs of infected mice were evaluated. We show that CC-3052 modulates the innate immune response without causing generalized immune suppression. Immune modulation combined with INH treatment improved bacillary clearance and resulted in smaller granulomas and less lung pathology, compared to treatment with INH alone. This novel strategy of combining anti-TB drugs with an immune modulating molecule, if applied appropriately to patients, may shorten the duration of TB treatment and improve clinical outcome.  相似文献   

15.
Isoniazid (INH), one of the most important drugs used in antituberculosis (anti-TB) treatment, is also the major drug involved in hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, such as NAT2, CYP2E1, GSTM1 and GSTT1, that code for drug-metabolising enzymes. Our goal was to examine the polymorphisms in these enzymes as susceptibility factors to anti-TB drug-induced hepatitis in Brazilian individuals. In a case-control design, 167 unrelated active tuberculosis patients from the University Hospital of the Federal University of Rio de Janeiro, Brazil, were enrolled in this study. Patients with a history of anti-TB drug-induced acute hepatitis (cases with an increase to 3 times the upper limit of normal serum transaminases and symptoms of hepatitis) and patients with no evidence of anti-TB hepatic side effects (controls) were genotyped for NAT2, CYP2E1, GSTM1 and GSTT1 polymorphisms. Slow acetylators had a higher incidence of hepatitis than intermediate/rapid acetylators [22% (18/82) vs. 9.8% (6/61), odds ratio (OR), 2.86, 95% confidence interval (CI), 1.06-7.68, p = 0.04). Logistic regression showed that slow acetylation status was the only independent risk factor (OR 3.59, 95% CI, 2.53-4.64, p = 0.02) for the occurrence of anti-TB drug-induced hepatitis during anti-TB treatment with INH-containing schemes in Brazilian individuals.  相似文献   

16.
The recent increase in the incidence of tuberculosis with the emergence of multidrug-resistant (MDR) cases has lead to the search for new drugs that are effective against MDR strains of Mycobacterium tuberculosis and can augment the potential of existing drugs against tuberculosis. In the present study, we investigated the activities of a naphthoquinone, 7-methyljuglone, isolated from the roots of Euclea natalensis alone and in combination with other antituberculous drugs against extracellular and intracellular M. tuberculosis. Combinations of 7-methyljuglone with isoniazid or rifampicin resulted in a four to six-fold reduction in the minimum inhibitory concentration of each compound. Fractional inhibitory concentration (FIC) indexes obtained were 0.2 and 0.5, respectively, for rifampicin and isoniazid, suggesting a synergistic interaction between 7-methyljuglone and these anti-TB drugs. The ability of 7-methyljuglone to enhance the activity of isoniazid and rifampicin against both extracellular and intracellular organisms suggests that 7-methyljuglone may serve as a promising compound for development as an anti-tuberculous agent.  相似文献   

17.
With the increasing number of cases of latent and drug resistant tuberculosis, there is an urgent need to develop new, potent molecules capable of combating this deadly disease. Molecules containing oxadiazoles are one such class that could be considered to fulfil this need. Oxadiazole regioisomers have been explored in drug discovery programs for their ability to act as effective linkers and also as pharmacophoric features. Oxadiazoles can act as bioisosteric replacements for the hydrazide moiety which can be found in first line anti-TB drugs, and some have been also reported to interact with newer anti-TB targets. In this context, the present review describes the potential of oxadiazoles as antituberculosis agents.  相似文献   

18.
为建立基于酶水平和细胞水平的新型抗结核分枝杆菌(Mycobacterium tuberculosis)药物的筛选模型,以M.tuberculosis H37Rv基因组DNA为模板,PCR特异性扩增异柠檬酸裂解酶(ICL)基因,构建表达载体,在E.coli BL21(DE3)中高效表达,使用N i2+亲和层析柱纯化重组ICL,检测其活性。优化ICL酶反应条件,考察待筛选样品溶剂对酶活性的影响,建立ICL抑制剂酶水平筛选模型;考察与优化耻垢分枝杆菌(Mycobacterium smegma)在以乙酸盐为唯一碳源的培养基中的生长状况,建立基于M.sm egma的乙醛酸代谢途径抑制剂的细胞水平筛选模型;利用上述2种筛选模型对1 060种可能具有拮抗活性的微生物代谢样品进行初筛和复筛,两者筛选结果正相关性较好。  相似文献   

19.
Multidrug-resistant tuberculosis (MDR-TB) and TB–HIV co-infection have become a great threat to global health. However, the last truly novel drug that was approved for the treatment of TB was discovered 40?years ago. The search for new effective drugs against TB has never been more intensive. Natural products derived from microbes and medicinal plants have been an important source of TB therapeutics. Recent advances have been made to accelerate the discovery rate of novel TB drugs including diversifying strategies for environmental strains, high-throughput screening (HTS) assays, and chemical diversity. This review will discuss the challenges of finding novel natural products with anti-TB activity from marine microbes and plant medicines, including biodiversity- and taxonomy-guided microbial natural products library construction, target- and cell-based HTS, and bioassay-directed isolation of anti-TB substances from traditional medicines.  相似文献   

20.
Tuberculosis (TB) is one of the deadliest infectious diseases of human civilization. Approximately one-third of global population is latently infected with the TB pathogen Mycobacterium tuberculosis (M.tb). The discovery of anti-TB antibiotics leads to decline in death rate of TB. However, the evolution of antibiotic-resistant M.tb-strain and the resurgence of different immune-compromised diseases re-escalated the death rate of TB. WHO has already cautioned about the chances of pandemic situation in TB endemic countries until the discovery of new anti-tubercular drugs, that is, the need of the hour. Analysing the pathogenesis of TB, it was found that M.tb evades the host by altering the balance of immune response and affects either by killing the cells or by creating inflammation. In the pre-antibiotic era, traditional medicines were only therapeutic measures for different infectious diseases including tuberculosis. The ancient literatures of India or ample Indian traditional knowledge and ethnomedicinal practices are evidence for the treatment of TB using different indigenous plants. However, in the light of modern scientific approach, anti-TB effects of those plants and their bioactive molecules were not established thoroughly. In this review, focus has been given on five bioactive molecules of different traditionally used Indian ethnomedicinal plants for treatment of TB or TB-like symptom. These compounds are also validated with proper identification and their mode of action with modern scientific approaches. The effectiveness of these molecules for sensitive or drug-resistant TB pathogen in clinical or preclinical studies was also evaluated. Thus, our specific aim is to highlight such scientifically validated bioactive compounds having anti-mycobacterial and immunomodulatory activity for future use as medicine or adjunct-therapeutic molecule for TB management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号