首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Locomotor adaptation is commonly studied using split-belt treadmill walking, in which each foot is placed on a belt moving at a different speed. As subjects adapt to split-belt walking, they reduce metabolic power, but the biomechanical mechanism behind this improved efficiency is unknown. Analyzing mechanical work performed by the legs and joints during split-belt adaptation could reveal this mechanism. Because ankle work in the step-to-step transition is more efficient than hip work, we hypothesized that control subjects would reduce hip work on the fast belt and increase ankle work during the step-to-step transition as they adapted. We further hypothesized that subjects with unilateral, trans-tibial amputation would instead increase propulsive work from their intact leg on the slow belt. Control subjects reduced hip work and shifted more ankle work to the step-to-step transition, supporting our hypothesis. Contrary to our second hypothesis, intact leg work, ankle work and hip work in amputees were unchanged during adaptation. Furthermore, all subjects increased collisional energy loss on the fast belt, but did not increase propulsive work. This was possible because subjects moved further backward during fast leg single support in late adaptation than in early adaptation, compensating by reducing backward movement in slow leg single support. In summary, subjects used two strategies to improve mechanical efficiency in split-belt walking adaptation: a CoM displacement strategy that allows for less forward propulsion on the fast belt; and, an ankle timing strategy that allows efficient ankle work in the step-to-step transition to increase while reducing inefficient hip work.  相似文献   

2.
A simple spring mechanics model can capture the dynamics of the center of mass (CoM) during human walking, which is coordinated by multiple joints. This simple spring model, however, only describes the CoM during the stance phase, and the mechanics involved in the bipedality of the human gait are limited. In this study, a bipedal spring walking model was proposed to demonstrate the dynamics of bipedal walking, including swing dynamics followed by the step-to-step transition. The model consists of two springs with different stiffnesses and rest lengths representing the stance leg and swing leg. One end of each spring has a foot mass, and the other end is attached to the body mass. To induce a forward swing that matches the gait phase, a torsional hip joint spring was introduced at each leg. To reflect the active knee flexion for foot clearance, the rest length of the swing leg was set shorter than that of the stance leg, generating a discrete elastic restoring force. The number of model parameters was reduced by introducing dependencies among stiffness parameters. The proposed model generates periodic gaits with dynamics-driven step-to-step transitions and realistic swing dynamics. While preserving the mimicry of the CoM and ground reaction force (GRF) data at various gait speeds, the proposed model emulated the kinematics of the swing leg. This result implies that the dynamics of human walking generated by the actuations of multiple body segments is describable by a simple spring mechanics.  相似文献   

3.
Humans use equal push-off and heel strike work during the double support phase to minimize the mechanical work done on the center of mass (CoM) during the gait. Recently, a step-to-step transition was reported to occur over a period of time greater than that of the double support phase, which brings into question whether the energetic optimality is sensitive to the definition of the step-to-step transition. To answer this question, the ground reaction forces (GRFs) of seven normal human subjects walking at four different speeds (1.1-2.4 m/s) were measured, and the push-off and heel strike work for three differently defined step-to-step transitions were computed based on the force, work, and velocity. To examine the optimality of the work and the impulse data, a hybrid theoretical-empirical analysis is presented using a dynamic walking model that allows finite time for step-to-step transitions and incorporates the effects of gravity within this period. The changes in the work and impulse were examined parametrically across a range of speeds. The results showed that the push-off work on the CoM was well balanced by the heel strike work for all three definitions of the step-to-step transition. The impulse data were well matched by the optimal impulse predictions (R(2)>0.7) that minimized the mechanical work done on the CoM during the gait. The results suggest that the balance of push-off and heel strike energy is a consistent property arising from the overall gait dynamics, which implies an inherited oscillatory behavior of the CoM, possibly by spring-like leg mechanics.  相似文献   

4.
Kim S  Park S 《Journal of biomechanics》2011,44(7):1253-1258
Bipedal walking models with compliant legs have been employed to represent the ground reaction forces (GRFs) observed in human subjects. Quantification of the leg stiffness at varying gait speeds, therefore, would improve our understanding of the contributions of spring-like leg behavior to gait dynamics. In this study, we tuned a model of bipedal walking with damped compliant legs to match human GRFs at different gait speeds. Eight subjects walked at four different gait speeds, ranging from their self-selected speed to their maximum speed, in a random order. To examine the correlation between leg stiffness and the oscillatory behavior of the center of mass (CoM) during the single support phase, the damped natural frequency of the single compliant leg was compared with the duration of the single support phase. We observed that leg stiffness increased with speed and that the damping ratio was low and increased slightly with speed. The duration of the single support phase correlated well with the oscillation period of the damped complaint walking model, suggesting that CoM oscillations during single support may take advantage of resonance characteristics of the spring-like leg. The theoretical leg stiffness that maximizes the elastic energy stored in the compliant leg at the end of the single support phase is approximated by the empirical leg stiffness used to match model GRFs to human GRFs. This result implies that the CoM momentum change during the double support phase requires maximum forward propulsion and that an increase in leg stiffness with speed would beneficially increase the propulsion energy. Our results suggest that humans emulate, and may benefit from, spring-like leg mechanics.  相似文献   

5.
Although the compliant bipedal model could reproduce qualitative ground reaction force (GRF) of human walking, the model with a fixed pivot showed overestimations in stance leg rotation and the ratio of horizontal to vertical GRF. The human walking data showed a continuous forward progression of the center of pressure (CoP) during the stance phase and the suspension of the CoP near the forefoot before the onset of step transition. To better describe human gait dynamics with a minimal expense of model complexity, we proposed a compliant bipedal model with the accelerated pivot which associated the CoP excursion with the oscillatory behavior of the center of mass (CoM) with the existing simulation parameter and leg stiffness. Owing to the pivot acceleration defined to emulate human CoP profile, the arrival of the CoP at the limit of the stance foot over the single stance duration initiated the step-to-step transition. The proposed model showed an improved match of walking data. As the forward motion of CoM during single stance was partly accounted by forward pivot translation, the previously overestimated rotation of the stance leg was reduced and the corresponding horizontal GRF became closer to human data. The walking solutions of the model ranged over higher speed ranges (~1.7 m/s) than those of the fixed pivoted compliant bipedal model (~1.5 m/s) and exhibited other gait parameters, such as touchdown angle, step length and step frequency, comparable to the experimental observations. The good matches between the model and experimental GRF data imply that the continuous pivot acceleration associated with CoM oscillatory behavior could serve as a useful framework of bipedal model.  相似文献   

6.
Previous studies of the mechanical work performed during uphill and downhill walking have neglected the simultaneous negative and positive work performed by the leading and trailing legs during double support. Our goal was to quantify the mechanical work performed by the individual legs across a range of uphill and downhill grades. We hypothesized that during double support, (1) with steeper uphill grade, the negative work performed by the leading leg would become negligible and the trailing leg would perform progressively greater positive work to raise the center of mass (CoM), and (2) with steeper downhill grade, the leading leg would perform progressively greater negative work to lower the CoM and the positive work performed by the trailing leg would become negligible. 11 healthy young adults (6 M/5 F, 71.0±12.3 kg) walked at 1.25 m/s on a dual-belt force-measuring treadmill at seven grades (0, ±3, ±6, ±9°). We collected three-dimensional ground reaction forces (GRFs) and used the individual limbs method to calculate the mechanical work performed by each leg. As hypothesized, the trailing leg performed progressively greater positive work with steeper uphill grade, and the leading leg performed progressively greater negative work with steeper downhill grade (p<0.005). To our surprise, unlike level-ground walking, during double support the leading leg performed considerable positive work when walking uphill and the trailing leg performed considerable negative work when walking downhill (p<0.005). To understand how humans walk uphill and downhill, it is important to consider these revealing biomechanical aspects of individual leg function and interaction during double support.  相似文献   

7.
To investigate the metabolic cost and muscular actions required for the initiation and propagation of leg swing, we applied a novel combination of external forces to subjects walking on a treadmill. We applied a forward pulling force at each foot to assist leg swing, a constant forward pulling force at the waist to provide center of mass propulsion, and a combination of these foot and waist forces to evaluate leg swing. When the metabolic cost and muscle actions were at a minimum, the condition was considered optimal. We reasoned that the difference in energy consumption between the optimal combined waist and foot force trial and the optimal waist force-only trial would reflect the metabolic cost of initiating and propagating leg swing during normal walking. We also reasoned that a lower muscle activity with these assisting forces would indicate which muscles are normally responsible for initiating and propagating leg swing. With a propulsive force at the waist of 10% body weight (BW), the net metabolic cost of walking decreased to 58% of normal walking. With the optimal combination, a propulsive force at the waist of 10% BW plus a pulling force at the feet of 3% BW the net metabolic cost of walking further decreased to 48% of normal walking. With the same combination, the muscle activity of the iliopsoas and rectus femoris muscles during the swing phase was 27 and 60% lower, respectively, but the activity of the medial gastrocnemius and soleus before swing did not change. Thus our data indicate that approximately 10% of the net metabolic cost of walking is required to initiate and propagate leg swing. Additionally, the hip flexor muscles contribute to the initiation and propagation leg swing.  相似文献   

8.
Center of mass (CoM) oscillations were documented for 81 bipedal walking strides of three chimpanzees. Full‐stride ground reaction forces were recorded as well as kinematic data to synchronize force to gait events and to determine speed. Despite being a bent‐hip, bent‐knee (BHBK) gait, chimpanzee walking uses pendulum‐like motion with vertical oscillations of the CoM that are similar in pattern and relative magnitude to those of humans. Maximum height is achieved during single support and minimum height during double support. The mediolateral oscillations of the CoM are more pronounced relative to stature than in human walking when compared at the same Froude speed. Despite the pendular nature of chimpanzee bipedalism, energy recoveries from exchanges of kinetic and potential energies are low on average and highly variable. This variability is probably related to the poor phasic coordination of energy fluctuations in these facultatively bipedal animals. The work on the CoM per unit mass and distance (mechanical cost of transport) is higher than that in humans, but lower than that in bipedally walking monkeys and gibbons. The pronounced side sway is not passive, but constitutes 10% of the total work of lifting and accelerating the CoM. CoM oscillations of bipedally walking chimpanzees are distinctly different from those of BHBK gait of humans with a flat trajectory, but this is often described as “chimpanzee‐like” walking. Human BHBK gait is a poor model for chimpanzee bipedal walking and offers limited insights for reconstructing early hominin gait evolution. Am J Phys Anthropol 156:422–433, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
We studied the selection of preferred step width in human walking by measuring mechanical and metabolic costs as a function of experimentally manipulated step width (0.00-0.45L, as a fraction of leg length L). We estimated mechanical costs from individual limb external mechanical work and metabolic costs using open circuit respirometry. The mechanical and metabolic costs both increased substantially (54 and 45%, respectively) for widths greater than the preferred value (0.15-0.45L) and with step width squared (R(2) = 0.91 and 0.83, respectively). As predicted by a three-dimensional model of walking mechanics, the increases in these costs appear to be a result of the mechanical work required for redirecting the centre of mass velocity during the transition between single stance phases (step-to-step transition costs). The metabolic cost for steps narrower than preferred (0.10-0.00L) increased by 8%, which was probably as a result of the added cost of moving the swing leg laterally in order to avoid the stance leg (lateral limb swing cost). Trade-offs between the step-to-step transition and lateral limb swing costs resulted in a minimum metabolic cost at a step width of 0.12L, which is not significantly different from foot width (0.11L) or the preferred step width (0.13L). Humans appear to prefer a step width that minimizes metabolic cost.  相似文献   

10.
During prosthetic gait initiation, transfemoral (TF) amputees control the spatial and temporal parameters that modulate the propulsive forces, the positions of the center of pressure (CoP), and the center of mass (CoM). Whether their sound leg or the prosthetic leg is leading, the TF amputees reach the same end velocity. We wondered how the CoM velocity build up is influenced by the differences in propulsive components in the legs and how the trajectory of the CoP differs from the CoP trajectory in able bodied (AB) subjects. Seven TF subjects and eight AB subjects were tested on a force plate and on an 8 m long walkway. On the force plate, they initiated gait two times with their sound leg and two times with their prosthetic leg. Force measurement data were used to calculate the CoM velocity curves in horizontal and vertical directions. Gait initiated on the walkway was used to determine the leg preference. We hypothesized that because of the differences in propulsive components, the motions of the CoP and the CoM have to be different, as ankle muscles are used to help generate horizontal ground reaction force components. Also, due to the absence of an active ankle function in the prosthetic leg, the vertical CoM velocity during gait initiation may be different when leading with the prosthetic leg compared to when leading with the sound leg. The data showed that whether the TF subjects initiated a gait with their prosthetic leg or with their sound leg, their horizontal end velocity was equal. The subjects compensated the loss of propulsive force under the prosthesis with the sound leg, both when the prosthetic leg was leading and when the sound leg was leading. In the vertical CoM velocity, a tendency for differences between the two conditions was found. When initiating gait with the sound leg, the downward vertical CoM velocity at the end of the gait initiation was higher compared to when leading with the prosthetic leg. Our subjects used a gait initiation strategy that depended mainly on the active ankle function of the sound leg; therefore, they changed the relative durations of the gait initiation anticipatory postural adjustment phase and the step execution phase. Both legs were controlled in one single system of gait propulsion. The shape of the CoP trajectories, the applied forces, and the CoM velocity curves are described in this paper.  相似文献   

11.
The simplest walking model, which assumes an instantaneous collision with negligible gravity effect, is limited in its representation of the collision mechanics of human gaits because the actual step-to-step transition occurs over a finite duration of time with finite impulsive ground reaction forces (GRFs) that have the same order of magnitude as the gravitational force. In this study, we propose a new collision model that includes the contribution of the gravitational impulse to the momentum change of the center of mass (COM) during a step-to-step transition. To validate the model, we measured the GRFs of six subjects' over-ground walking at five different gait speeds and calculated the collision impulses and mechanical work. The data showed a significant contribution of the gravitational impulse to the momentum change during collision. To compensate for the gravity, the magnitudes of collision impulse and COM work were estimated to be much greater than in previous predictions. Consistent with the model prediction, push-off propulsion fully compensated for the collision loss, implying the step-to-step transition occurred in an energetically optimal manner. The new model predicted a moderate change in the collision mechanics with gait speed, which seems to be physiologically achievable. The gravitational collision model enables us to better understand collision dynamics during a step-to-step transition.  相似文献   

12.
Inverted pendulum models of walking predict that little muscle work is required for the exchange of body potential and kinetic energy in single-limb support. External power during walking (product of the measured ground reaction force and body center-of-mass (COM) velocity) is often analyzed to deduce net work output or mechanical energetic cost by muscles. Based on external power analyses and inverted pendulum theory, it has been suggested that a primary mechanical energetic cost may be associated with the mechanical work required to redirect the COM motion at the step-to-step transition. However, these models do not capture the multi-muscle, multi-segmental properties of walking, co-excitation of muscles to coordinate segmental energetic flow, and simultaneous production of positive and negative muscle work. In this study, a muscle-actuated forward dynamic simulation of walking was used to assess whether: (1). potential and kinetic energy of the body are exchanged with little muscle work; (2). external mechanical power can estimate the mechanical energetic cost for muscles; and (3.) the net work output and the mechanical energetic cost for muscles occurs mostly in double support. We found that the net work output by muscles cannot be estimated from external power and was the highest when the COM moved upward in early single-limb support even though kinetic and potential energy were exchanged, and muscle mechanical (and most likely metabolic) energetic cost is dominated not only by the need to redirect the COM in double support but also by the need to raise the COM in single support.  相似文献   

13.
Energetics of actively powered locomotion using the simplest walking model   总被引:1,自引:0,他引:1  
We modified an irreducibly simple model of passive dynamic walking to walk on level ground, and used it to study the energetics of walking and the preferred relationship between speed and step length in humans. Powered walking was explored using an impulse applied at toe-off immediately before heel strike, and a torque applied on the stance leg. Although both methods can supply energy through mechanical work on the center of mass, the toe-off impulse is four times less costly because it decreases the collision loss at heel strike. We also studied the use of a hip torque on the swing leg that tunes its frequency but adds no propulsive energy to gait. This spring-like actuation can further reduce the collision loss at heel strike, improving walking energetics. An idealized model yields a set of simple power laws relating the toe-off impulses and effective spring constant to the speed and step length of the corresponding gait. Simulations incorporating nonlinear equations of motion and more realistic inertial parameters show that these power laws apply to more complex models as well.  相似文献   

14.
In 1984, Helene (Am. J. Physics 52:656) and Alexander (Am. Scientist 72:348–354) presented equations which purported to explain how lower limb length limited maximum walking speed in humans. The equations were based on a simplified model of human walking in which the center of mass (CoM) “vaults” over the supporting leg. Increasing walking speed by increasing stride frequency or stride length would increase the upward acceleration of the CoM in the first half of stance phase, to the point that it would be greater than the downward pull of gravity, and the individual would become airborne. This constitutes running by most definitions. While these models ignored various mechanical factors, such as knee flexion during midstance, that reduce the vertical movement of the CoM, the general idea is plausible inasmuch as the CoM of the body does oscillate vertically with each step. One hypothesis tested here is whether it is indeed the interaction between the pull of gravity and the individual's own upward acceleration that determines at what speed (or cadence) he changes from walking to running. Another hypothesis considered is that increased lower limb length (L) was selected for in early hominids, because of the locomotor advantages of longer lower limbs. Results indicate, however, that while L was clearly related to maximum possible walking speed, it was not an important factor in determining maximum “comfortable” walking speed. These and other results from the recent literature suggest that increased lower limb length provided no selective advantage in locomotion, and other explanations should be sought. © 1996 Wiley-Liss, Inc.  相似文献   

15.
The oscillatory behavior of the center of mass (CoM) and the corresponding ground reaction force (GRF) of human gait for various gait speeds can be accurately described in terms of resonance using a spring–mass bipedal model. Resonance is a mechanical phenomenon that reflects the maximum responsiveness and energetic efficiency of a system. To use resonance to describe human gait, we need to investigate whether resonant mechanics is a common property under multiple walking conditions. Body mass and leg stiffness are determinants of resonance; thus, in this study, we investigated the following questions: (1) whether the estimated leg stiffness increased with inertia, (2) whether a resonance-based CoM oscillation could be sustained during a change in the stiffness, and (3) whether these relationships were consistently observed for different walking speeds. Seven healthy young subjects participated in over-ground walking trials at three different gait speeds with and without a 25-kg backpack. We measured the GRFs and the joint kinematics using three force platforms and a motion capture system. The leg stiffness was incorporated using a stiffness parameter in a compliant bipedal model that best fitted the empirical GRF data. The results showed that the leg stiffness increased with the load such that the resonance-based oscillatory behavior of the CoM was maintained for a given gait speed. The results imply that the resonance-based oscillation of the CoM is a consistent gait property and that resonant mechanics may be useful for modeling human gait.  相似文献   

16.
Kinematic and center of mass (CoM) mechanical variables used to define terrestrial gaits are compared for various tetrapod species. Kinematic variables (limb phase, duty factor) provide important timing information regarding the neural control and limb coordination of various gaits. Whereas, mechanical variables (potential and kinetic energy relative phase, %Recovery, %Congruity) provide insight into the underlying mechanisms that minimize muscle work and the metabolic cost of locomotion, and also influence neural control strategies. Two basic mechanisms identified by Cavagna et al. (1977. Am J Physiol 233:R243-R261) are used broadly by various bipedal and quadrupedal species. During walking, animals exchange CoM potential energy (PE) with kinetic energy (KE) via an inverted pendulum mechanism to reduce muscle work. During the stance period of running (including trotting, hopping and galloping) gaits, animals convert PE and KE into elastic strain energy in spring elements of the limbs and trunk and regain this energy later during limb support. The bouncing motion of the body on the support limb(s) is well represented by a simple mass-spring system. Limb spring compliance allows the storage and return of elastic energy to reduce muscle work. These two distinct patterns of CoM mechanical energy exchange are fairly well correlated with kinematic distinctions of limb movement patterns associated with gait change. However, in some cases such correlations can be misleading. When running (or trotting) at low speeds many animals lack an aerial period and have limb duty factors that exceed 0.5. Rather than interpreting this as a change of gait, the underlying mechanics of the body's CoM motion indicate no fundamental change in limb movement pattern or CoM dynamics has occurred. Nevertheless, the idealized, distinctive patterns of CoM energy fluctuation predicted by an inverted pendulum for walking and a bouncing mass spring for running are often not clear cut, especially for less cursorial species. When the kinematic and mechanical patterns of a broader diversity of quadrupeds and bipeds are compared, more complex patterns emerge, indicating that some animals may combine walking and running mechanics at intermediate speeds or at very large size. These models also ignore energy costs that are likely associated with the opposing action of limbs that have overlapping support times during walking. A recent model of terrestrial gait (Ruina et al., 2005. J Theor Biol, in press) that treats limb contact with the ground in terms of collisional energy loss indicates that considerable CoM energy can be conserved simply by matching the path of CoM motion perpendicular to limb ground force. This model, coupled with the earlier ones of pendular exchange during walking and mass-spring elastic energy savings during running, provides compelling argument for the view that the legged locomotion of quadrupeds and other terrestrial animals has generally evolved to minimize muscle work during steady level movement.  相似文献   

17.
Locomotion on complex substrata can be expressed in a plane by two geometric components of body movement: linear locomotion and rotational locomotion. This study examined pure rotation by analysing the geometry of leg movements and stepping patterns during the courtship turns of male Blattella germanica. Strict rotation or translation by an insect requires that each side of the body cover equal distance with respect to the substrate. There are three mechanisms by which the legs can maintain this equality: frequency of stepping, magnitude of the leg arcs relative to the body and the degree to which legs flex and extend during locomotion. During the courtship behaviour of Blattella germanica selected males executed turns involving body rotation along with leg movements in which the legs on the outside of the turn swung through greater average arcs than those on the inside of the turn. This difference should have resulted in a translation component. However, legs on the inside of the turn compensated by flexion and extension movements which were greater than those of opposing legs. The net effect was that both sides of the body covered equal average ground. These cockroaches used a wide variety of stepping combinations to effect rotation. The frequency of these combinations was compared to an expected frequency distribution of stepping combinations and further to an expected frequency of these stepping combinations used for straight walking. These comparisons demonstrated a similarity between interleg coordination during straight walking and that during turning in place.  相似文献   

18.
A self-excited biped walking mechanism consisting of two legs that are connected in series at the hip joint through a servomotor is studied as a cyclic system with collisions. A torque proportional to angle between the shank of the swinging leg and the vertical is seen to sustain a gait. Each leg has a thigh and a shank connected at a passive knee joint that has a knee stopper restricting hyperextension similar to the human knee. A mathematical model for the dynamics of the system including the impact equations is used to analyse the stability of the system through examination of phase plane plots. Attractor lines along which the system approaches stability have been identified. A leg length for optimal stability has been identified. The biological basis for the proposed system has been identified by comparison with human gait.  相似文献   

19.
Hip contact forces and gait patterns from routine activities.   总被引:35,自引:0,他引:35  
In vivo loads acting at the hip joint have so far only been measured in few patients and without detailed documentation of gait data. Such information is required to test and improve wear, strength and fixation stability of hip implants. Measurements of hip contact forces with instrumented implants and synchronous analyses of gait patterns and ground reaction forces were performed in four patients during the most frequent activities of daily living. From the individual data sets an average was calculated. The paper focuses on the loading of the femoral implant component but complete data are additionally stored on an associated compact disc. It contains complete gait and hip contact force data as well as calculated muscle activities during walking and stair climbing and the frequencies of daily activities observed in hip patients. The mechanical loading and function of the hip joint and proximal femur is thereby completely documented. The average patient loaded his hip joint with 238% BW (percent of body weight) when walking at about 4 km/h and with slightly less when standing on one leg. This is below the levels previously reported for two other patients (Bergmann et al., Clinical Biomechanics 26 (1993) 969-990). When climbing upstairs the joint contact force is 251% BW which is less than 260% BW when going downstairs. Inwards torsion of the implant is probably critical for the stem fixation. On average it is 23% larger when going upstairs than during normal level walking. The inter- and intra-individual variations during stair climbing are large and the highest torque values are 83% larger than during normal walking. Because the hip joint loading during all other common activities of most hip patients are comparably small (except during stumbling), implants should mainly be tested with loading conditions that mimic walking and stair climbing.  相似文献   

20.
Muscles coordinate multijoint motion by generating forces that cause reaction forces throughout the body. Thus, a muscle can redistribute existing segmental energy by accelerating some segments and decelerating others. In the process, a muscle may also produce or absorb energy, in which case its summed energetic effect on the segments is positive or negative, respectively. This Borelli Lecture shows how dynamical simulations derived from musculoskeletal models reveal muscle-induced segmental energy redistribution and muscle co-functions and synergies. Synergy occurs when co-excited muscles distribute segmental energy differently to execute the motor task. In maximum height jumping, high vertical velocity at lift-off occurs desirably at full body extension because biarticular leg muscles redistribute the energy produced by the uniarticular leg muscles. In pedaling, synergistic ankle plantarflexor force generation during leg extension allows the high energy produced by the uniarticular hip and knee extensors to be delivered to the crank. An analogous less-powerful flexor synergy exists during leg flexion. Hamstrings reduce crank deceleration during the leg extension-to-flexion transition by not only producing energy but delivering it to the crank through its contribution to the tangential (accelerating) crank force, though this hamstrings function occurs at the opposite (flexion-extension) transition when pedaling backwards. In walking, the eccentric quadriceps activity in early stance not only decelerates the leg but also accelerates the trunk. In mid-stance, the uni- and biarticular plantarflexors, by having opposite segmental energetic effects, act in synergy to support the whole body, so segmental potential and kinetic energy exchange can occur. To conclude, the extraction of unmeasurable variables from dynamical simulations emulating task kinematics, kinetics, and EMGs shows how the production of force and energy by individual muscles contribute to the energy flow among the individual segments during task execution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号