首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The nonlinearity of plantar soft tissue is seldom examined because of the small extent of deformation induced during indentation for measurement purposes. Furthermore, in most indentation experiments, the metatarsophalangeal joint (MTPJ) angle is not well controlled, although it has been proven to have a significant stiffening effect on sub-metatarsal head (MTH) pads. Hence, the study aims to quantify changes in the mechanical properties of plantar soft tissue due to aging under an experimental condition which is similar to walking. This is done by subjecting the tissue to an appropriate level of deformation at various MTPJ angles. A custom-made in vivo tissue indenter was used to measure directly the force-indentation response of the plantar tissue of two healthy groups: “Young” (n=25, mean age 22) and “Elderly” (n=25, mean age 67) subjects. Tests were performed on the 2nd sub-MTH pad at angles of 0°, 20°, 40° MTPJ dorsiflexion, as well as at the hallux and heel pad at 0° MTPJ angle. At all three plantar sites tested, elderly subjects showed significantly higher tissue stiffness than the young (p<0.05). However, the stiffening effect of MTPJ angle was not notably influenced by aging. In this work, tissue stiffness is quantified in stiffness constant (K) based on the proposed indentation technique. It is hypothesized that the increase in stiffness with age observed is probably due to compositional change in the plantar soft tissue.  相似文献   

2.
This study examined the effect of hip flexion angle on the stiffness of the adductor longus (AL) muscle during isometric hip flexion. Seventeen men were recruited. Ten participants performed submaximal voluntary contraction at 0%, 25%, 50%, and 75% of maximal voluntary contraction (MVC) during isometric hip flexion after performing MVC at 0°, 40°, and 80° of hip flexion. Seven participants performed submaximal voluntary tasks during isometric hip extension in addition to hip flexion task. The shear modulus of the AL muscle was used as the index of muscle stiffness, and was measured using ultrasound shear-wave elastography during the tasks at each contraction intensity for each hip flexion angle. During hip flexion, the shear modulus of the AL muscle was higher at 0° than at 40° and 80° of hip flexion at each contraction intensity (p < 0.016). Conversely, a significant effect was not found among hip flexion angle during hip extension at 75% of MVC (p = 0.867). These results suggest that mechanical stress of the AL muscle may be higher at 0° of hip flexion during isometric hip flexion.  相似文献   

3.
An increased knee abduction angle during jump-landing has been identified as a risk factor for anterior cruciate ligament injuries. Activation of the hip abductors may decrease the knee abduction angle during jump-landing. The purpose of this study was to examine the effects of a resistance band on the internal hip abduction moment and gluteus medius activation during the pre-landing (100 ms before initial contact) and early-landing (100 ms after initial contact) phases of a jump–landing–jump task. Thirteen male and 15 female recreational athletes (age: 21.1±2.4 yr; mass: 73.8±14.6 kg; height: 1.76±0.1 m) participated in the study. Subjects performed jump–landing–jump tasks with or without a resistance band applied to their lower shanks. During the with-band condition, subjects were instructed to maintain their movement patterns as performing the jump-landing task without a resistance band. Lower extremity kinematics, kinetics, and gluteus medius electromyography (EMG) were collected. Applying the band increased the average hip abduction moment during pre-landing (p<0.001, Cohen?s d (d)=2.8) and early-landing (p<0.001, d=1.5), and the average gluteus medius EMG during pre-landing (p<0.001, d=1.0) and early-landing (p=0.003, d=0.55). Applying the band decreased the initial hip flexion angle (p=0.028, d=0.25), initial hip abduction angle (p<0.001, d=0.91), maximum knee flexion angle (p=0.046, d=0.17), and jump height (p=0.004, d=0.16). Applying a resistance band provides a potential strategy to train the strength and muscle activation for the gluteus medius during jump-landing. Additional instructions and feedback regarding hip abduction, hip flexion, and knee flexion may be required to minimize negative changes to other kinematic variables.  相似文献   

4.
To examine functional differences in total hip replacement patients (THR) when stratified either by age or by functional ability as defined by self-selected walking speed. THR patients and a control group underwent three-dimensional motion analysis under self-selected normal and fast walking conditions. Patients were stratified into five age groups for comparison with existing literature. The THR cohort was also stratified into three functional groups determined by their self-selected gait speed (low function <1SD of total cohort’s mean walking speed; high function >1SD; normal function within 1SD). Hip kinematics, ground reaction forces, joint moments and joint powers in all three planes (x-y-z) were analysed. 137 THR and 27 healthy control patients participated. When stratified by age, during normal walking the youngest two age groups walked quicker than the oldest two groups (p < 0.0001) but between-group differences were not consistent across age strata. The differences were diminished under the fast walking condition. When stratified by function, under normal walking conditions, the low function and normal function THR groups had a reduced extension angle (mean = 1.75°, SD = ±7.75, 1.26° ± 7.42, respectively) compared to the control group (−6.07° ± 6.43; p < 0.0001). The low function group had a reduced sagittal plane hip power (0.75 W/kg ± 0.24), reduced flexor (0.60 Nm/kg ± 0.85) and extensor moment (0.51 Nm/kg ± 0.17) compared to controls (p < 0.0001). These differences persisted under the fast walking condition. There were systematic differences between patients when stratified by function, in both walking conditions. Age-related differences were less systematic. Stratifying by biomechanical factors such as gait speed, rather than age, might be more robust for investigating functional differences.  相似文献   

5.
Prematurity affects 11% of the births and is the main cause of infant mortality. On the opposite case, the failure of induction of parturition in the case of delayed spontaneous birth is associated with fetal suffering. Both conditions are associated with precocious and/or delayed cervical ripening. Quantitative and objective information about the temporal evolution of the cervical ripening may provide a complementary method to identify cases at risk of preterm delivery and to assess the likelihood of successful induction of labour. In this study, the cervical stiffness was measured in vivo in pregnant sheep by using Shear Wave Elastography (SWE). This technique assesses the stiffness of tissue through the measurement of shear waves speed (SWS). In the present study, 9 pregnant ewes were used. Cervical ripening was induced at 127 days of pregnancy (term: 145 days) by dexamethasone injection in 5 animals, while 4 animals were used as control. Elastographic images of the cervix were obtained by two independent operators every 4 hours during 24 hours after injection to monitor the cervical maturation induced by the dexamethasone. Based on the measurements of SWS during vaginal ultrasound examination, the stiffness in the second ring of the cervix was quantified over a circular region of interest of 5 mm diameter. SWS was found to decrease significantly in the first 4–8 hours after dexamethasone compared to controls, which was associated with cervical ripening induced by dexamethasone (from 1.779 m/s ± 0.548 m/s, p < 0.0005, to 1.291 m/s ± 0.516 m/s, p < 0.000). Consequently a drop in the cervical elasticity was quantified too (from 9.5 kPa ± 0.9 kPa, p < 0.0005, to 5.0 kPa ± 0.8 kPa, p < 0.000). Moreover, SWE measurements were highly reproducible between both operators at all times. Cervical ripening induced by dexamethasone was confirmed by the significant increase in maternal plasma Prostaglandin E2 (PGE2), as evidenced by the assay of its metabolite PGEM. Histological analyses and two-photon excitation microscopy, combining both Second Harmonic Generation (SHG) and Two-photon Fluorescence microscopy (2PF) contrasts, were used to investigate, at the microscopic scale, the structure of cervical tissue. Results show that both collagen and 2PF-active fibrillar structures could be closely related to the mechanical properties of cervical tissue that are perceptible in elastography. In conclusion, SWE may be a valuable method to objectively quantify the cervical stiffness and as a complementary diagnostic tool for preterm birth and for labour induction success.  相似文献   

6.
The foot progression angle (FPA) influences knee loading during gait, but its determinants are unclear. The purpose of this study was to compare FPA between males and females and also examine the association between lower extremity kinematics during gait, hip strength, and the FPA. 25 males and 25 females completed 5 gait trials while FPA and frontal and transverse plane hip and knee angles were calculated from the dominant limb during the foot flat portion of stance. Hip extensor/flexor, abductor/adductor, and internal/external rotator strength were evaluated using maximum voluntary isometric contractions. One-way MANOVAs compared gait and strength outcomes. Stepwise regression assessed the association between FPA, and MVIC and kinematics after accounting for speed in males and females. There was no difference in FPA between sexes (p > 0.05), but females had greater frontal and transverse plane hip angles compared with males (all p < 0.05). Greater hip abduction (p = 0.02) strength was associated with greater FPA, but only in males. In males, greater hip abductor strength may contribute to a more neutral position of the foot during gait, which could help maintain an equal knee loading distribution. Our results suggest that there are sex specific control strategies to achieve a similar FPA during gait.  相似文献   

7.
BackgroundChanges in activation patterns of hip extensors and pelvic stabilizing muscles are recognized as factors that cause low back disorders and these disturbances could have an impact on the physiological loading and alter the direction and magnitude of joint reaction forces.ObjectiveTo investigate activation patterns of the gluteus maximus, semitendinosus and erector spinae muscles with healthy young individuals during four different modalities of therapeutic exercise.MethodsThirty-one volunteers were selected: (16 men and 15 women), age (24.5 ± 3.47 years), body mass of 66.89 ± 11.89 kg and a height of 1.70 ± 0.09 m). They performed four modalities of therapeutic exercise while the electromyographic activity of the investigated muscles was recorded to determine muscle pattern activation for each exercise.ResultsRepeated measure ANOVA revealed that muscle activation patterns were similar for the four analyzed exercises, starting with the semitendinosus, followed by the erector spinae, and then, the gluteus maximus. The gluteus maximus was the last activated muscle during hip extension associated with knee flexion (p < 0.0001), knee extension (p < 0.0001), and with lateral rotation and knee flexion (p < 0.05).ConclusionFindings of the present study suggested that despite individual variability, the muscle firing order was similar for the four therapeutic exercises.  相似文献   

8.
The aim of this study was to investigate the effects of additional isometric hip adduction during the plank exercise on the abdominal muscles. Twenty healthy young men participated in this study. Surface electromyography (EMG) was used to monitor the activity of the bilateral rectus abdominis (RA), the internal oblique (IO), and the external oblique (EO) muscles. The participants performed three types of plank exercise; the standard plank exercise, the plank exercise with bilateral isometric hip adduction, and the plank exercise with unilateral isometric hip adduction. All abdominal muscle activity was significantly increased during the plank exercise combined with the bilateral and unilateral isometric hip adduction compared with the standard plank exercise (p < 0.05). Bilateral IO, EO, and left RA muscle activity was significantly increased during the unilateral isometric hip adduction compared with the bilateral isometric hip adduction (p < 0.05). These findings suggest that additional isometric hip adduction during the plank exercise could be a useful method to enhance abdominal muscle activity. In particular, the unilateral isometric hip adduction is a more beneficial exercise than the bilateral isometric hip adduction.  相似文献   

9.
Two experiments tested whether city commuter and pedestrian groups conformed with ecological predictions of adaptive group size, age, and sex composition. It was predicted that individuals with the greatest reproductive potential would optimize mating contacts and minimize competitive interference by segregating into small, mixed-sex groups, whereas more vulnerable individuals, too young or old for optimum fertility, would tend to aggregate independently of gender in larger groups, which may offer advantages for foraging and predator avoidance. To maximize reproductive potential, mature males should prefer grouping with young women of high fertility, whereas older women should prefer younger men. In Experiment 1, 2,432 persons in three cities were observed on buses, automobiles, and sidewalks, in yoked observations. As predicted, reproductively immature preschool and grade-school children formed larger groups than mature adults (p < 0.0001) and showed no sex differences in grouping. Elderly adults (with decreased reproductive potential) were also found in larger groups than younger adults (p < 0.01) and also showed no sex differences. Sexually mature men and women grouped more with the opposite sex than in all-male or all-female groups (p < 0.00001). Mature adult men were the least aggregative category (p < 0.01): they tended to be alone or in pairs with women, and all-male groups were conspicuously absent (p < 0.005). These findings were consistent across different socioeconomic levels, ethnicities, and subcultures in our samples (p = NS). In Experiment 2, 475 bus passengers in three cities were observed selecting seatmates in a naturalistic choice paradigm. Only sexually mature adults exhibited a significant preference for the sex of their seatmates (p < 0.0005): Young women chose most often to sit with other women, whereas young adult men more frequently chose seatmates of the opposite sex. Young women were chosen more often as seat partners than all age/sex categories combined (p < 0.0005). Young women chose older partners (p < 0.05), while middle-aged women preferred younger women and men (p < 0.0005) as companions. Results are explained in the context of canalized behaviors arising early in human evolution.  相似文献   

10.
11.

Objectives

The purpose of this study was to explore the relationship between left ventricular (LV) dysfunction and arterial wall stiffening.

Methods

A total of 218 patients over the age of 45 diagnosed with hypertension in Jinan City and hospitalised between 2010 and 2011 were included in this study. LV function was evaluated using echocardiography (ECHO). Blood pressure was monitored with an automated tonometric device, and the parameters of arterial wall stiffness were measured. In addition, the metabolic parameters of blood samples, such as glucose and lipids, were also determined using the Cobas E601 analyser.

Results

Stiffness parameter beta positively correlated with LV diastolic function (E/Em ratio) (r?=?0.255, p?<?0.001). LV end-diastolic diameter not only related to the E/Em ratio (r?=?0.196, p?=?0.009) but also with beta (r?=?0.220, p?=?0.002). The stiffness parameter beta was an early indicator of E/Em ratio as determined by multiple regression analysis (R 2?=?0.381, p?<?0.01). Age, blood pressure and fasting blood glucose contributed to stiffness parameter beta (p?<?0.05), as well as the E/Em ratio (p?<?0.01).

Conclusions

Our findings suggested that LV dysfunction may have a direct relationship to arterial stiffening, independently of having similar risk factors. In addition, arterial stiffness can be an independent predictor of LV diastolic function, suggesting that the severity of arterial stiffness directly correlates with the severity of LV dysfunction.  相似文献   

12.
Trace element involvement in wounds left to heal by secondary intention needs clarification. We have previously reported faster healing of wounds following acute surgery compared with elective excision of pilonidal sinus disease. The effect of topical zinc on the closure of the excisional wounds was mediocre compared with placebo. In contrast, parenteral zinc, copper, and selenium combined appear effective for wound healing in humans. We have investigated zinc, copper, and selenium with respect to (a) impact of acute versus chronic pilonidal sinus and (b) regional concentrations within granulating wounds treated topically with placebo or zinc in 42 (33 males) pilonidal disease patients. Baseline serum and skin concentrations of copper correlated (r S?=?0.351, p?=?0.033, n?=?37), but not of zinc or selenium. Patients with abscesses had elevated serum C-reactive protein (CRP) and copper levels (+29 %; p?<?0.001) compared with the elective patients consistent with the strong correlation between serum copper and CRP (r S?=?0.715, p?<?0.0005, n?=?41). Seven days after elective surgery, serum CRP and copper levels were elevated (p?=?0.010) versus preoperative values. The copper concentration in wound edges was higher than in periwound skin (p?<?0.0005) and wound base (p?=?0.010). Selenium levels were increased in wound edge compared to wound base (p?=?0.003). Topical zinc oxide treatment doubled (p?<?0.050) zinc concentrations in the three tissue localizations without concomitant significant changes of copper or selenium levels. In conclusion, copper and selenium are mobilized to injured sites possibly to enhance host defense and early wound healing mechanisms that are complementary to the necessity of zinc for matrix metalloproteinase activity.  相似文献   

13.
Improved understanding is required of how the mechanics of the fall affect hip fracture risk. We used a hip impact simulator to determine how peak stresses at the femoral neck were affected by pelvis impact angle, hip abductor muscle force, and use of a wearable hip protector.We simulated falls from standing (2 m/s impact velocity) involving initial hip abductor muscle forces of 700 or 300 N. Trials were acquired for impact to the lateral aspect of the greater trochanter, and impact to the pelvis rotated 5°, 10° and 15° anteriorly (positive) or posteriorly (negative). Measures were acquired with and without a commercially available hip protector. During trials, we measured three-dimensional forces with a load cell at the femoral neck, and derived peak compressive and tensile stresses.Peak compressive stress increased 37% (5.91 versus 4.31 MPa; p < 0.0005) and peak tensile stress increased 209% (2.31 versus 0.75 MPa; p < 0.0005) when the pelvis impact angle changed from 15° anterior to −15° posterior. For lateral impacts, the peak tensile and compressive stresses averaged 73% and 8% lower, respectively, in the 700 N than 300 N muscle force condition, but the effect was reversed for anteriolateral or posteriolateral impacts. The attenuation in peak compressive stress from the hip protector was greatest for posteriolateral impacts (−15 to −5°; 36–41%), and least for anteriolateral (+15°; 10%).These results clarify the effects on hip fracture risk during a fall of pelvis impact angle and muscle forces, and should inform the design of improved hip protectors.  相似文献   

14.
Prediction of femoral impact forces in falls on the hip.   总被引:7,自引:0,他引:7  
A major determinant of the risk of hip fracture in a fall from standing height is the force applied to the femur at impact. This force is determined by the impact velocity of the hip and the effective mass, stiffness, and damping of the body at the moment of contact. We have developed a simple experiment (the pelvis release experiment) to measure the effective stiffness and damping of the body when a step change in force is applied to the lateral aspect of the hip. Results from pelvis release experiments with 14 human subjects suggest that both increased soft tissue thickness over the hip and impacting the ground in a relaxed state can decrease the effective stiffness of the body, and subsequently reduce peak impact forces. Comparison between our fall impact force predictions and in-vitro measures of femoral fracture strength suggest that any fall from standing height producing direct, lateral impact on the greater trochanter can fracture the elderly hip.  相似文献   

15.

Background/aim

In a previous study we showed that mandibular alveolar (trabecular) bone appears to be less sensitive to estrogen deficiency than the proximal tibia spongiosa. We hypothesized that the mechanical loading of the alveolar process during mastication may protect the alveolar bone from the detrimental effects observed in other skeletal sites. To test this hypothesis we compared the effect of ovariectomy on the mandibular alveolar bone and the proximal tibia spongiosa of rats fed either a normal (hard) or a soft diet.

Methods

Forty six-month-old female Sprague–Dawley rats underwent trans-abdominal ovariectomy (OVX) or sham operation (SHAM). Half of the animals received their food in the usual form of pellets (hard consistency), while the other half received a soft, porridge-like, isocaloric diet of identical composition (soft consistency). Micro-computed tomographic histomorphometry was used to evaluate the trabecular micro-architecture. A two-factor analysis of variance was used to test for effects and interaction of ovariectomy and/or soft diet.

Results

OVX had a significantly negative effect on the proximal tibia spongiosa (all parameters under study except trabecular thickness; p<0.001) and on the mandibular alveolar bone (trabecular number and spacing; p<0.05). Soft diet led to a further decrease of mandibular BV/TV (p<0.01), trabecular thickness (p<0.05) and number (p<0.05), as well as increase of separation (p<0.001). A significant interaction was observed between OVX and soft diet concerning the mandibular BV/TV, as well as trabecular thickness and spacing (p<0.05).

Conclusion

Normal (hard) diet limited significantly the negative effects of estrogen deficiency on mandibular alveolar bone micro-architecture four months after ovariectomy.  相似文献   

16.

Background

Diabetes and hypertension increase arterial stiffness and cardiovascular events in all societies studied so far; sub-Saharan African studies are sparse. We investigated factors affecting arterial function in Ghanaians with diabetes, hypertension, both or neither.

Method

Testing the hypothesis that arterial stiffness would progressively increase from controls to multiply affected patients, 270 participants were stratified into those with diabetes or hypertension only, with both, or without either. Cardio-ankle vascular index (CAVI), heart–ankle pulse wave velocity (haPWV), aortic PWV (PWVao) by Arteriograph, aortic and brachial blood pressures (BP), were measured.

Results

In patients with both diabetes and hypertension compared with either alone, values were higher of CAVI (mean?±?SD, 8.3?±?1.2 vs 7.5?±?1.1 and 7.4?±?1.1 units; p?<?0.05), PWVao (9.1?±?1.4 vs 8.7?±?1.9 and 8.1?±?0.9 m/s; p?<?0.05) and haPWV (8.5?±?1 vs 7.9?±?1 and 7.2?±?0.7 m/s; p?<?0.05) respectively. In multivariate analysis, age, having diabetes or hypertension and BMI were independently associated with CAVI in all participants (β?=?0.49, 0.2, 0.17 and -0.2 units; p?<?0.01, respectively). Independent determinants of PWVao were heart rate, systolic BP and age (β?=?0.42, 0.27 and 0.22; p?<?0.01), and for haPWV were systolic BP, age, BMI, diabetes and hypertension status (β?=?0.46, 0.32, -0.2, 0.2 and 0.11; p?<?0.01).

Conclusion

In this sub-Saharan setting with lesser atherosclerosis than the western world, arterial stiffness is significantly greater in patients with coexistent diabetes and hypertension but did not differ between those with either diabetes or hypertension only. Simple, reproducibly measured PWV/CAVI may offer effective and efficient targets for intervention.
  相似文献   

17.
It has been shown that cellular migration, persistence, and associated cytoskeletal arrangement are highly dependent on substrate stiffness (modulus: N/m2 and independent of geometry), but little is known on how cells respond to subtle changes in local geometry and structural stiffness (N/m). Here, using fibers of varying diameter (400, 700, and 1200 nm) and length (1 and 2 mm) deposited over hollow substrates, we demonstrate that single mouse C2C12 cells attached to single suspended fibers form spindle morphologies that are sensitive to fiber mechanical properties. Over a wide range of increasing structural stiffness (2 to 100+ mN/m), cells exhibited decreases in migration speed and average nucleus shape index of ∼57% (from 58 to 25 μm/h) and ∼26% (from 0.78 to 0.58), respectively, whereas the average paxillin focal-adhesion-cluster (FAC, formed at poles) length increased by ∼38% (from 8 to 11 μm). Furthermore, the increase in structural stiffness directly correlates with cellular persistence, with 60% of cells moving in the direction of increasing structural stiffness. At similar average structural stiffness (25 ± 5 mN/m), cells put out longer FAC lengths on smaller diameters, suggesting a conservation of FAC area, and also exhibited higher nucleus shape index and migration speeds on larger-diameter fibers. Interestingly, cells were observed to deform fibers locally or globally through forces applied through the FAC sites and cells undergoing mitosis were found to be attached to the FAC sites by single filamentous tethers. These varied reactions have implications in developmental and disease biology models as they describe a strong dependence of cellular behavior on the cell’s immediate mechanistic environment arising from alignment and geometry of fibers.  相似文献   

18.
19.
The reduction in mechanical loading associated with space travel results in dramatic decreases in the bone mineral density (BMD) and mechanical strength of skeletal tissue resulting in increased fracture risk during spaceflight missions. Previous rodent studies have highlighted distinct bone healing differences in animals in gravitational environments versus those during spaceflight. While these data have demonstrated that microgravity has deleterious effects on fracture healing, the direct translation of these results to human skeletal repair remains problematic due to substantial differences between rodent and human bone. Thus, the objective of this study was to investigate the effects of partial gravitational unloading on long-bone fracture healing in a previously-developed large animal Haversian bone model. In vivo measurements demonstrated significantly higher orthopedic plate strains (i.e. load burden) in the Partial Unloading (PU) Group as compared to the Full Loading (FL) Group following the 28-day healing period due to inhibited healing in the reduced loading environment. DEXA BMD in the metatarsus of the PU Group decreased 17.6% (p<0.01) at the time of the ostectomy surgery. Four-point bending stiffness of the PU Group was 4.4 times lower than that of the FL Group (p<0.01), while µCT and histomorphometry demonstrated reduced periosteal callus area (p<0.05), mineralizing surface (p<0.05), mineral apposition rate (p<0.001), bone formation rate (p<0.001), and periosteal/endosteal osteoblast numbers (p<0.001/p<0.01, respectively) as well as increased periosteal osteoclast number (p<0.05). These data provide strong evidence that the mechanical environment dramatically affects the fracture healing cascade, and likely has a negative impact on Haversian system healing during spaceflight.  相似文献   

20.
Relaxation studies were conducted on specimens of bovine cancellous bone at post-yield strains. Stress and strain were measured for 1000 s and the relaxation modulus was determined. Fifteen cylindrical, cancellous bone specimens were removed from one bovine femur in the anterior–posterior direction. The relaxation modulus was found to be a function of strain. Therefore cancellous bone is non-linearly viscoelastic/viscoplastic in the plastic region. A power law regression was fit to the relaxation modulus data. The multiplicative constant was found to be statistically related through a power law relationship to both strain (p<0.0005) and apparent density (p<0.0005) while the power coefficient was found to be related through a power law relationship, E(t, ε)=A(ε)t?n(ε), to strain (p<0.0005), but not apparent density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号