首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Delivering charged antibiotics to the intervertebral disc is challenging because of the avascular, negatively charged extracellular matrix (ECM) of the tissue. The purpose of this study was to measure the apparent diffusion coefficient of two clinically relevant, charged antibiotics, vancomycin (positively charged) and oxacillin (negatively charged) in IVD. A one-dimensional steady state diffusion experiment was employed to measure the apparent diffusion coefficient of the two antibiotics in bovine coccygeal annulus fibrosus (AF) tissue. The averaged apparent diffusion coefficient for vancomycin under 20% compressive strain was 7.94 ± 2.00 × 10−12 m2/s (n = 10), while that of oxacillin was 2.26 ± 0.68 × 10−10 m2/s (n = 10). A student’s t-test showed that the diffusivity of vancomycin was significantly lower than that of oxacillin. This finding may be attributed to two factors: solute size and possible binding effects. Vancomycin is approximately 3 times larger in molecular weight than oxacillin, meaning that steric hindrance likely plays a role in the slower transport. Reversible binding between positive vancomycin and the negative ECM could also slow down the rate of diffusion. Therefore, more investigation is necessary to determine the specific relationship between net charge on antibiotic and diffusion coefficients in IVD. This study provides essential quantitative information regarding the transport rates of antibiotics in the IVD, which is critical in using computational modeling to design effective strategies to treat disc infection.  相似文献   

2.
Yao H  Gu WY 《Journal of biomechanics》2007,40(9):2071-2077
A 3D inhomogeneous finite-element model for charged hydrated soft tissues containing charged/uncharged solutes was developed and applied to analyze the mechanical, chemical, and electrical signals within the human intervertebral disc during an axial unconfined compression. The effects of tissue properties and boundary conditions on the physical signals and the transport of fluid and solute were investigated. The numerical simulation showed that, during disc compression, the fluid pressurization and the effective (von Misses) solid stress were more pronounced in the annulus fibrosus (AF) region near the interface between AF and nucleus pulposus (NP). In NP, the distributions of the fluid pressure, effective stress, and electrical potential were more uniform than those in AF. The electrical signals were very sensitive to fixed charge density. Changes in material properties of NP (water content, fixed charge density, and modulus) affected fluid pressure, electrical potential, effective stress, and solute transport in the disc. This study is important for understanding disc biomechanics, disc nutrition, and disc mechanobiology.  相似文献   

3.
The intervertebral disc is formed by the nucleus pulposus (NP) and annulus fibrosus (AF), and intervertebral tissue contains a large amount of negatively charged proteoglycan. When this tissue becomes deformed, a streaming potential is induced by liquid flow with positive ions. The anisotropic property of the AF tissue is caused by the structural anisotropy of the solid phase and the liquid phase flowing into the tissue with the streaming potential. This study investigated the relationship between the streaming potential and applied stress in bovine intervertebral tissue while focusing on the anisotropy and loading location. Column-shaped specimens, 5.5 mm in diameter and 3 mm thick, were prepared from the tissue of the AF, NP and the annulus–nucleus transition region (AN). The loading direction of each specimen was oriented in the spinal axial direction, as well as in the circumferential and radial directions of the spine considering the anisotropic properties of the AF tissue. The streaming potential changed linearly with stress in all specimens. The linear coefficients ke of the relationship between stress and streaming potential depended on the extracted positions. These coefficients were not affected by the anisotropy of the AF tissue. In addition, these coefficients were lower in AF than in NP specimens. Except in the NP specimen, the ke values were higher under faster compression rate conditions. In cyclic compression loading the streaming potential changed linearly with compressive stress, regardless of differences in the tissue and load frequency.  相似文献   

4.
Finite element (FE) models are advantageous in the study of intervertebral disc mechanics as the stress–strain distributions can be determined throughout the tissue and the applied loading and material properties can be controlled and modified. However, the complicated nature of the disc presents a challenge in developing an accurate and predictive disc model, which has led to limitations in FE geometry, material constitutive models and properties, and model validation. The objective of this study was to develop a new FE model of the intervertebral disc, to validate the model?s nonlinear and time-dependent responses without tuning or calibration, and to evaluate the effect of changes in nucleus pulposus (NP), cartilaginous endplate (CEP), and annulus fibrosus (AF) material properties on the disc mechanical response. The new FE disc model utilized an analytically-based geometry. The model was created from the mean shape of human L4/L5 discs, measured from high-resolution 3D MR images and averaged using signed distance functions. Structural hyperelastic constitutive models were used in conjunction with biphasic-swelling theory to obtain material properties from recent tissue tests in confined compression and uniaxial tension. The FE disc model predictions fit within the experimental range (mean±95% confidence interval) of the disc?s nonlinear response for compressive slow loading ramp, creep, and stress-relaxation simulations. Changes in NP and CEP properties affected the neutral-zone displacement but had little effect on the final stiffness during slow-ramp compression loading. These results highlight the need to validate FE models using the disc?s full nonlinear response in multiple loading scenarios.  相似文献   

5.
Cells isolated from intervertebral disc (IVD) tissues of human surgical samples are one of potential sources for the IVD cellular therapy. The purpose of this study was to develop a new non-enzymatic method, “tissue incubation”, for isolating human IVD cells. The IVD tissues of annulus fibrosus (AF) and nucleus pulposus (NP) were incubated separately in tissue culture flasks with culture medium. After 7–10 days incubation, cells were able to migrate out of IVD tissues and proliferate in vitro. After 3–4 weeks culture, expanded cells were harvested by trypsinization, and the remaining tissues were transferred to a new flask for another round of incubation. The molecular phenotype of IVD cells from juvenile and adult human samples was evaluated by both flow cytometry analysis and immunocytochemical staining for the expression of protein markers of NP cells (CD24, CD54, CD239, integrin α6 and laminin α5). Flow cytometry confirmed that both AF and NP cells of all ages positively expressed CD54 and integrin α6, with higher expression levels in NP cells than in AF cells for the juvenile group sample. However, CD24 expression was only found in juvenile NP cells, and not in AF or older disc cells. Similar expression patterns for NP markers were also confirmed by immunocytochemistry. In summary, this new non-enzymatic tissue incubation method for cell isolation preserves molecular phenotypic markers of NP cells and may provide a valuable cell source for the study of NP regeneration strategies.  相似文献   

6.
The hydraulic conductivity of pulmonary interstitium was measured in a short isolated segment of interstitium surrounding a large pulmonary artery (1-3 mm diam) of the rabbit. The flow rate of the following solutions was measured sequentially: normal saline, polycation protamine sulfate (0.08 mg/ml), cationic dextran (0.1 or 1.5%) or anionic dextran (0.1 or 1.5%), and hyaluronidase (testes, 0.02%) solution. The pH of all solutions was adjusted to 7.35-7.40. The ratios of the flow of protamine sulfate and cationic dextran to that of saline averaged 2.3 +/- 0.92 (SD, n = 7) and 3.0 +/- 1.2 (n = 6), respectively. The anionic dextran-to-saline flow ratio averaged 0.72 +/- 0.28 (n = 13). Flow increased in the presence of positively charged molecules and decreased in the presence of negatively charged molecules. At a lower pH of 5.0-6.0, only 0.1% cationic dextran had an effect on interstitial conductivity. Thus pulmonary interstitium at physiological pH has the properties of a negatively charged membrane. The increased interstitial conductivity caused by the positively charged molecules was not observed after treatment with hyaluronidase. These effects of electric charge on interstitial conductivity were partly attributed to the presence in the interstitium of negatively charged hyaluronan.  相似文献   

7.
The spine is routinely subjected to repetitive complex loading consisting of axial compression, torsion, flexion and extension. Mechanical loading is one of the important causes of spinal diseases, including disc herniation and disc degeneration. It is known that static and dynamic compression can lead to progressive disc degeneration, but little is known about the mechanobiology of the disc subjected to combined dynamic compression and torsion. Therefore, the purpose of this study was to compare the mechanobiology of the intervertebral disc when subjected to combined dynamic compression and axial torsion or pure dynamic compression or axial torsion using organ culture. We applied four different loading modalities [1. control: no loading (NL), 2. cyclic compression (CC), 3. cyclic torsion (CT), and 4. combined cyclic compression and torsion (CCT)] on bovine caudal disc explants using our custom made dynamic loading bioreactor for disc organ culture. Loads were applied for 8 h/day and continued for 14 days, all at a physiological magnitude and frequency. Our results provided strong evidence that complex loading induced a stronger degree of disc degeneration compared to one degree of freedom loading. In the CCT group, less than 10% nucleus pulposus (NP) cells survived the 14 days of loading, while cell viabilities were maintained above 70% in the NP of all the other three groups and in the annulus fibrosus (AF) of all the groups. Gene expression analysis revealed a strong up-regulation in matrix genes and matrix remodeling genes in the AF of the CCT group. Cell apoptotic activity and glycosaminoglycan content were also quantified but there were no statistically significant differences found. Cell morphology in the NP of the CCT was changed, as shown by histological evaluation. Our results stress the importance of complex loading on the initiation and progression of disc degeneration.  相似文献   

8.
Growth in volume of the anulus fibrosus (AF) and nucleus pulposus (NP) was quantified using serial histological sections of human and kitten fetuses. Fetal intervertebral discs were studied that had clearly outlined AF and NP. Regression equations were calculated and graphs plotted by microcomputer. An increase in surface areas of these intervertebral structures was also recorded; however, volume was a better indicator of relative growth than was surface area. The AF volume of the fetal human increased more in proportion to the intervertebral disc than it did for the fetal kittens. There was significantly slower growth of the human NP compared to the kitten NP when related to the total intervertebral disc. The analysis for each species was done separately. Comparisons of the growth relationships of humans and kittens for the AF and NP were related to crown-rump length as the independent variable, and were different at the p less than or equal to 0.01 level of significance. The thoracic intervertebral discs were emphasized due to species-specific differential growth of the AF. The intercapital ligament (IC) was separated from mesenchyme over the dorsal surface of the kitten AF, and this affected the relationships of AF and NP volumes when compared to humans. Use of human histological sections is essential in the study of differential growth of the human vertebral column because fetal kittens have an IC that affects relative growth of both AF and NP.  相似文献   

9.
The aim of functional tissue engineering is to repair and replace tissues that have a biomechanical function, i.e., connective orthopaedic tissues. To do this, it is necessary to have accurate benchmarks for the elastic, permeability, and swelling (i.e., biphasic-swelling) properties of native tissues. However, in the case of the intervertebral disc, the biphasic-swelling properties of individual tissues reported in the literature exhibit great variation and even span several orders of magnitude. This variation is probably caused by differences in the testing protocols and the constitutive models used to analyze the data. Therefore, the objective of this study was to measure the human lumbar disc annulus fibrosus (AF), nucleus pulposus (NP), and cartilaginous endplates (CEP) biphasic-swelling properties using a consistent experimental protocol and analyses. The testing protocol was composed of a swelling period followed by multiple confined compression ramps. To analyze the confined compression data, the tissues were modeled using a biphasic-swelling model, which augments the standard biphasic model through the addition of a deformation-dependent osmotic pressure term. This model allows considering the swelling deformations and the contribution of osmotic pressure in the analysis of the experimental data. The swelling stretch was not different between the disc regions (AF: 1.28±0.16; NP: 1.73±0.74; CEP: 1.29±0.26), with a total average of 1.42. The aggregate modulus (Ha) of the extra-fibrillar matrix was higher in the CEP (390 kPa) compared to the NP (100 kPa) or AF (30 kPa). The permeability was very different across tissue regions, with the AF permeability (64 E−16 m4/N s) higher than the NP and CEP (~5.5 E−16 m4/N s). Additionally, a normalized time-constant (3000 s) for the stress relaxation was similar for all the disc tissues. The properties measured in this study are important as benchmarks for tissue engineering and for modeling the disc's mechanical behavior and transport.  相似文献   

10.
Nucleus replacement was deemed to have therapeutic potential for patients with intervertebral disc herniation. However, whether a patient would benefit from nucleus replacement is technically unclear. This study aimed to investigate the influence of nucleus pulposus (NP) removal on the biomechanical behavior of a lumbar motion segment and to further explore a computational method of biomechanical characteristics of NP removal, which can evaluate the mechanical stability of pulposus replacement. We, respectively, reconstructed three types of models for a mildly herniated disc and three types of models for a severely herniated disc based on a L4–L5 segment finite element model with computed tomography image data from a healthy adult. First, the NP was removed from the herniated disc models, and the biomechanical behavior of NP removal was simulated. Second, the NP cavities were filled with an experimental material (Poisson's ratio = 0.3; elastic modulus = 3 MPa), and the biomechanical behavior of pulposus replacement was simulated. The simulations were carried out under the five loadings of axial compression, flexion, lateral bending, extension, and axial rotation. The changes of the four biomechanical characteristics, i.e. the rotation degree, the maximum stress in the annulus fibrosus (AF), joint facet contact forces, and the maximum disc deformation, were computed for all models. Experimental results showed that the rotation range, the maximum AF stress, and joint facet contact forces increased, and the maximum disc deformation decreased after NP removal, while they changed in the opposite way after the nucleus cavities were filled with the experimental material.  相似文献   

11.
12.
A study was conducted to determine the reliability and repeatability of antibiotic resistance analysis as a method of identifying the sources of fecal pollution in surface water and groundwater. Four large sets of isolates of fecal streptococci (from 2,635 to 5,990 isolates per set) were obtained from 236 samples of human sewage and septage, cattle and poultry feces, and pristine waters. The patterns of resistance of the isolates to each of four concentrations of up to nine antibiotics were analyzed by discriminant analysis. When isolates were classified individually, the average rate of correct classification (ARCC) into four possible types (human, cattle, poultry, and wild) ranged from 64 to 78%. When the resistance patterns of all isolates from each sample were averaged and the resulting sample-level resistance patterns were classified, the ARCCs were much higher (96 to 100%). These data confirm that there are measurable and consistent differences in the antibiotic resistance patterns of fecal streptococci isolated from various sources of fecal pollution and that antibiotic resistance analysis can be used to classify and identify these sources.  相似文献   

13.
The paper presents experimental investigations of diffusion of antibiotics (ciprofloxacin or ampicillin) into the water phase from mixtures of neutral or negatively charged liposomes, and antibiotic–liposome interactions. Using the laser interferometry technique, the amounts and fluxes of released antibiotics, concentration field evolution, and the velocity of the concentration boundary layer’s “growth” were determined. To avoid the limitations of membranes, a measurement system without the artificial boundary of phases with a free water–solution interface has been proposed. It was found that the diffusion of anionic and neutral liposomes into the water phase was insignificant and mainly the diffusion of antibiotics was measured. Differences in the diffusion kinetics of ciprofloxacin and ampicillin from liposomal solutions to the water phase were observed. Ampicillin diffused more efficiently than ciprofloxacin regardless of the liposomal solution type. Moreover, the amount of ampicillin and ciprofloxacin released from the anionic liposomal phase was higher than that from the neutral one. Our results confirm that ciprofloxacin at neutral pH shows little tendency to bind neutral liposomes. Additionally, it was also observed that ciprofloxacin disrupts negatively charged liposomes as a final effect of antibiotic–lipid interactions.  相似文献   

14.
A modified adsorption-elution method for the concentration of seeded rotavirus from water samples was used to determine various factors which affected the virus recovery. An enzyme-linked immunosorbent assay was used to detect the rotavirus antigen after concentration. Of the various eluents compared, 0.05M glycine, pH 11.5 gave the highest rotavirus antigen recovery using negatively charged membrane filtration whereas 2.9% tryptose phosphate broth containing 6% glycine; pH 9.0 was found to give the greatest elution efficiency when a positively charged membrane was used. Reconcentration of water samples by a speedVac concentrator showed significantly higher rotavirus recovery than polyethylene glycol precipitation through both negatively and positively charged filters (p-value <0.001). In addition, speedVac concentration using negatively charged filtration resulted in greater rotavirus recovery than that using positively charged filtration (p-value = 0.004). Thirty eight environmental water samples were collected from river, domestic sewage, canals receiving raw sewage drains, and tap water collected in containers for domestic use, all from congested areas of Bangkok. In addition, several samples of commercial drinking water were analyzed. All samples were concentrated and examined for rotavirus antigen. Coliforms and fecal coliforms (0->1,800 MPN/100 ml) were observed but rotavirus was not detected in any sample. This study suggests that the speedVac reconcentration method gives the most efficient rotavirus recovery from water samples.  相似文献   

15.
Increased numbers of mast cells are affiliated with a broad spectrum of pathologic skin conditions, including ulcers, atopic dermatitis, neurofibromatosis, hemangiomas, keloids, and hypertrophic scars. It has been proposed that mast cells play a primary pathophysiologic role in these disorders and that their presence represents not merely a secondary event. While investigating their recent hypothesis that positively charged cross-linked diethylaminoethyl dextran (CLDD) beads potentiate cutaneous wound healing, the authors serendipitously observed increased numbers of mast cells in the deep dermis of wounds treated with CLDD beads. The authors propose that mast cells may play an important role in the modulation of healing seen with CLDD beads. Incisional wounds were studied in 30 Sprague-Dawley rats partitioned into two groups that were killed 7 or 14 days after wounding. The wounds were treated with positively, negatively, or neutrally charged CLDD beads. Physiologic saline served as a control. At the designated times after incisional wounding, biopsy specimens were tested for wound breaking strength or processed for histologic testing, fixed in 4% paraformaldehyde, and stained with Giemsa and Goldner-Masson trichrome. Mast cells were counted under light microscopy in a blinded fashion and were expressed as the number of cells per millimeter squared. Significant increases in the number of mast cells were observed in the deep dermis of incisional wounds after implantation with positively or negatively charged CLDD beads. In contrast, neutrally charged beads had no effect on mast cell numbers. At 7 days, the incisions treated with positively charged beads averaged 2.1 times more mast cells compared with those treated with physiologic saline or neutrally charged beads, whereas the incisions treated with negatively charged beads displayed 3.2 times more mast cells. By day 14, the incisions treated with positively charged beads averaged 2.5 times more mast cells than those wounds treated with saline or neutrally charged beads; the incisions treated with negatively charged CLDD beads had 3.4 times more mast cells. The 7-day tensiometric data indicated that wounds treated with negatively charged CLDD beads had increased breaking strength compared with wounds treated with neutrally charged beads or saline (1.8 and 1.7 times, respectively; p = 0.01 and p = 0.02). Wounds treated with positively charged beads also showed increased breaking strength compared with wounds treated with neutrally charged beads or saline (1.5 and 1.4 times greater); however, this did not reach statistical significance. There was no apparent difference in breaking strength when neutrally charged beads were compared with those treated with saline. At 14 days, there was no statistically significant difference in wound breaking strength between different treatments. These findings are clinically germane to the assessment of proposed therapeutic applications of CLDD beads for a variety of impaired wound-healing states. Furthermore, if increased mast cell populations are intimately linked to hypertrophic scar and keloid formation, the results of the authors' study suggest that CLDD bead therapy of cutaneous wounds may lead to pathologic wound healing in humans.  相似文献   

16.
目的:分析我院的抗生素的使用频率以及细菌耐药率的变化,为规范临床用药提供参考资料。方法:采用回顾性分析的方法对我院2009年3月-2013年3月收治的8000例住院患者的抗生素使用情况进行调查,并对我院临床上常见革兰阴性菌和阳性菌的耐药率变化进行比较,分析抗生素的使用频率与细菌耐药率变化之间的关系。结果:临床上抗生素的使用频率最大的是β-内酰胺酶抑制剂以及头孢菌素类。金葡菌对环丙沙星的耐药率与青霉素类抗生素的DDDs呈正相关,大肠埃希菌对亚胺培南的耐药率与头孢菌素类抗生素的DDDs呈负相关。结论:抗生素的用药频率与病原菌对抗生素的耐药率有相关性,并且,单一的抗生素并不能引起病原菌的耐药性,而会同时影响其他类型的抗生素的耐药情况。  相似文献   

17.
Four 14C-labelled amphotericin B (Am B) derivatives with different net electric charges were examined: zwitterionic N-fructosyl Am B, positively charged N-fructosyl Am B methyl ester, negatively charged N-acetyl Am B and neutral N-acetyl Am B methyl ester. The binding of these four derivatives to human red cells and their octanol-water partition coefficients were measured. Simple partitioning between red cells and buffer was found for the four compounds, regardless of concentration, within a range of 10(-8) and 10(-4) M. This indicates the absence of cooperativity and saturability of binding at least in this concentration range. The constant partition coefficients were found to be three to five times higher for the two methyl ester derivatives than for the two non-esterified compounds. All partition coefficients were proportional to those found for the octanol-water system. Efficiency in inducing K+ leak from red cells was measured during the binding experiments. Despite the higher partition coefficients of the two methyl ester derivatives, they were found to have much lower ionophoric efficiency than the two non-esterified compounds. These results are discussed in terms of the mechanism of permeability pathway formation by polyene antibiotics.  相似文献   

18.
Elucidation of the load-bearing mechanism of the nucleus pulposus (NP) facilitates understanding of the mechanical and metabolic functioning of the intervertebral disc and provides key data for mathematical models. Negatively charged proteoglycans in the NP generate an ionic osmotic pressure, pi(i), which contributes to the tissue's resistance to load and, moreover, is the main mechanism by which the unloaded disc rehydrates. Functionally important, pi(i) has seldom been investigated in situ and, crucially, its variation with strain has not been reported. In a confined compression apparatus, we aimed to apportion the strain-dependent load-bearing mechanism of the NP at equilibrium to the tissue matrix and ionic osmotic pressure; and to determine whether any proteoglycan loss occurs during confined compression testing. Forty-eight confined compression experiments were conducted in isotonic (0.15M NaCl) and hypertonic (3.0 and 6.1M NaCl) external solutions in single and multiple step-strain protocols. The 6.1M NaCl external solution was needed to eliminate as much of the ionic effects as possible. The ionic osmotic pressure was well described by pi(i)=19.1lambda(-1.58) (R(2)=0.992), and was approximately 70% of the applied load at equilibrium, independent of lambda. The effective aggregate modulus, H(A)(eff), also increased with strain: H(A)(eff)=59.0lambda(-2.18). Concentrations of sulphated glycosaminoglycans were obtained for the samples tested in isotonic NaCl with no proteoglycan loss detected from the confined compression tests. These results highlight the non-linearity of the stress-strain response of NP tissue and the necessity to include a non-linear function for osmotic pressure in mathematical models of this tissue.  相似文献   

19.
Due to the intrinsic resistance of Burkholderia cepacia complex (Bcc) to many antibiotics and the production of a broad range of virulence factors, lung infections by these bacteria, primarily occurring in cystic fibrosis (CF) patients, are very difficult to treat. In addition, the ability of Bcc organisms to form biofilms contributes to their persistence in the CF lung. As Bcc infections are associated with poor clinical outcome, there is an urgent need for new effective therapies to treat these infections. In the present study, we investigated whether liposomal tobramycin displayed an increased anti-biofilm effect against Bcc bacteria compared to free tobramycin. Single particle tracking (SPT) was used to study the transport of positively and negatively charged nanospheres in Bcc biofilms as a model for the transport of liposomes. Negatively charged nanospheres became immobilized in close proximity of biofilm cell clusters, while positively charged nanospheres interacted with fiber-like structures, probably eDNA. Based on these data, encapsulation of tobramycin in negatively charged liposomes appeared promising for targeted drug delivery. However, the anti-biofilm effect of tobramycin encapsulated into neutral or anionic liposomes did not increase compared to that of free tobramycin. Probably, the fusion of the anionic liposomes with the negatively charged bacterial surface of Bcc bacteria was limited by electrostatic repulsive forces. The lack of a substantial anti-biofilm effect of tobramycin encapsulated in neutral liposomes could be further investigated by increasing the liposomal tobramycin concentration. However, this was hampered by the low encapsulation efficiency of tobramycin in these liposomes.  相似文献   

20.
The penetration of anionic beta-lactam antibiotics through porins was evaluated as a mechanism of drug resistance. The major proteins with porin activity were purified from the outer membranes of six bacteria. Three of the six porins were oligomeric porins. The molecular weights of their monomers were 37 kDa from Photobacterium damsela, 42 kDa from Serratia liquefaciens, and 36 kDa from E. coli B. The other three porins were heat-modifiable monomeric porins with molecular weights of 43 kDa from Porphyromonas asaccharolytica and Acinetobacter baumannii, and 37 kDa from Escherichia coli K12.Comparison of the six porin proteins revealed that, independent of their aggregation state, their amino acid content is similar but not identical. All have double the amount of negatively charged amino acids compared with positively charged amino acids. They have a similar polarity and polarity index. Two of the six tested bacteria do not produce beta-lactamase. These two bacteria were sensitive to the different beta-lactams tested. The other four bacteria were resistant to all or to several beta-lactams.A modified liposome swelling method was used for determining the rate of penetration of charged beta-lactam antibiotics. Zwitterionic beta-lactams were found to penetrate into liposomes at a rate that more or less fits their molecular weight, whether the porins are monomeric or oligomeric. The penetration rates of negatively charged beta-lactams are different for oligomeric and monomeric porins. Negatively charged beta-lactams penetrate through oligomeric porins better than estimated by their molecular weight, whereas monomeric porins are less penetrable to negatively charged beta-lactams than estimated by their molecular weight. The contribution of all types of porins to the susceptibility of bacteria to beta-lactam antibiotics (zwitterionic or negatively charged) is apparently doubtful. The porins may decrease or increase bacterial penetration rates to beta-lactams, and only the existence of a potential beta-lactamase that can destroy the penetrating drug will cause resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号