首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identifying foot strike patterns in running is an important issue for sport clinicians, coaches and footwear industrials. Current methods allow the monitoring of either many steps in laboratory conditions or only a few steps in the field. Because measuring running biomechanics during actual practice is critical, our purpose is to validate a method aiming at identifying foot strike patterns during continuous field measurements. Based on heel and metatarsal accelerations, this method requires two uniaxial accelerometers. The time between heel and metatarsal acceleration peaks (THM) was compared to the foot strike angle in the sagittal plane (αfoot) obtained by 2D video analysis for various conditions of speed, slope, footwear, foot strike and state of fatigue. Acceleration and kinematic measurements were performed at 1000 Hz and 120 Hz, respectively, during 2-min treadmill running bouts. Significant correlations were observed between THM and αfoot for 14 out of 15 conditions. The overall correlation coefficient was r=0.916 (P<0.0001, n=288). The THM method is thus highly reliable for a wide range of speeds and slopes, and for all types of foot strike except for extreme forefoot strike during which the heel rarely or never strikes the ground, and for different footwears and states of fatigue. We proposed a classification based on THM: FFS<−5.49 ms<MFS<15.2 ms<RFS. With only a few precautions being necessary to ensure appropriate use of this method, it is reliable for distinguishing rearfoot and non-rearfoot strikers in situ.  相似文献   

2.
Forefoot strike is increasingly being adopted by runners because it can better attenuate impact than rearfoot strike. However, forefoot strike may overload the plantar fascia and alter the plantar fascia elasticity. This study aimed to use ultrasound elastography to investigate and compare shear wave elasticity of the plantar fascia between rearfoot strikers and forefoot strikers. A total of 35 participants (21 rearfoot strikers and 14 forefoot strikers), who were free of lower limb injuries and diseases, were recruited from a local running club. Individual foot strike patterns were identified through the measured plantar pressure during treadmill running. The B-Mode ultrasound images and shear wave elastographic images of the plantar fascia were collected from each runner. Two independent investigators reviewed the images and examined the plantar fascia qualitatively and quantitatively. The results demonstrated an overall good agreement between the investigators in the image review outcomes (ICC:0.96–0.98, κ: 0.89). There were no significant differences in the fascial thickness (p = 0.50) and hypoechogenicity on the gray-scale images (p = 0.54) between the two groups. Shear wave elastography showed that forefoot strikers exhibited reduced plantar fascia elasticity compared to rearfoot strikers (p = 0.01, Cohen’s d = 0.91). A less elastic fascial tissue was more easily strained under loading. Tissue overstrain is frequently related to the incidence of plantar fasciitis. While further study is needed for firm conclusions, runners using forefoot strike were encouraged to enhance their foot strength for better protection of the plantar fascia.  相似文献   

3.
Researchers conduct gait analyses utilizing both overground and treadmill modes of running. Previous studies comparing these modes analyzed discrete variables. Recently, techniques involving quantitative pattern analysis have assessed kinematic curve similarity in gait. Therefore, the purpose of this study was to compare hip, knee and rearfoot 3-D kinematics between overground and treadmill running using quantitative kinematic curve analysis. Twenty runners ran at 3.35 m/s ± 5% during treadmill and overground conditions while right lower extremity kinematics were recorded. Kinematics of the hip, knee and rearfoot at footstrike and peak were compared using intraclass correlation coefficients. Kinematic curves during stance phase were compared using the trend symmetry method within each subject. The overall average trend symmetry was high, 0.94 (1.0 is perfect symmetry) between running modes. The transverse plane and knee frontal plane exhibited lower similarity (0.86-0.90). Other than a 4.5 degree reduction in rearfoot dorsiflexion at footstrike during treadmill running, all differences were ≤1.5 degrees. 17/18 discrete variables exhibited modest correlations (>0.6) and 8/18 exhibited strong correlations (>0.8). In conclusion, overground and treadmill running kinematic curves were generally similar when averaged across subjects. Although some subjects exhibited differences in transverse plane curves, overall, treadmill running was representative of overground running for most subjects.  相似文献   

4.
As joint coupling variability has been associated with running-related lower extremity injury, the purpose of this study was to identify how variability within the foot may be different between forefoot (FFS) and rearfoot strike (RFS) runners. Identifying typical variability in uninjured runners may contribute to understanding of ideal coordination associated with running foot strike patterns.Fifteen FFS and 15 RFS runners performed a maximal-effort 5 km treadmill run. A 7-segment foot model identified 6 functional articulations (rearfoot, medial and lateral midfoot and forefoot, and 1st metatarsophalangeal) for analysis. Beginning and end of the run motion capture data were analyzed. Vector coding was used to calculate 6 joint couples. Standard deviations of the coupling angles were used to identify variability within subphases of stance (loading, mid-stance, terminal, and pre-swing). Mixed between-within subjects ANOVAs compared differences between the foot strikes, pre and post run.Increased variability was identified within medial foot coupling for FFS and within lateral foot coupling for RFS during loading and mid-stance. The exhaustive run increased variability during mid-stance for both groups.Interpretation. Joint coupling variability profiles for FFS and RFS runners suggest different foot regions have varying coordination needs which should be considered when comparing the strike patterns.  相似文献   

5.
The production of indole-3-acetic acid (IAA), by rhizobacteria, has been associated with plant growth promotion, especially root initiation and elongation. Isolate TO3 selected from 103 fluorescent pseudomonads, identified as Pseudomonas aeruginosa, showed maximum production of IAA. Isolate TO3 having biocontrol activity against Macrophomina phaseolina also showed production of siderophore and HCN was used to screen the role of bacterial IAA in reducing the level of charcoal rot disease occurrence in chickpea. Four IAA defective stable mutants of isolate TO3 having biocontrol activity against M. phaseolina were developed through 5-bromouracil mutagenesis. Mutant TO52 showed 76.47% reduction in production of IAA. Standard IAA was used in similar concentration as present in cell-free culture supernatant of wild isolate TO3 and its mutant TO52. The in vitro and in vivo study showed that IAA-defective mutant TO52 caused reduced biocontrol and plant growth promotory activity than wild isolate TO3. Standard IAA showed comparable biocontrol activity to the culture supernatant. To some extent better biocontrol and growth promotory activity in supernatant than standard IAA indicates the synergistic role of siderophore and HCN. The study clearly reports the role of bacterial IAA in suppression of charcoal rot disease of chickpea.  相似文献   

6.
We hypothesized that all-out running speeds for efforts lasting from a few seconds to several minutes could be accurately predicted from two measurements: the maximum respective speeds supported by the anaerobic and aerobic powers of the runner. To evaluate our hypothesis, we recruited seven competitive runners of different event specialties and tested them during treadmill and overground running on level surfaces. The maximum speed supported by anaerobic power was determined from the fastest speed that subjects could attain for a burst of eight steps (approximately 3 s or less). The maximum speed supported by aerobic power, or the velocity at maximal oxygen uptake, was determined from a progressive, discontinuous treadmill test to failure. All-out running speeds for trials of 3-240 s were measured during 10-13 constant-speed treadmill runs to failure and 4 track runs at specified distances. Measured values of the maximum speeds supported by anaerobic and aerobic power, in conjunction with an exponential constant, allowed us to predict the speeds of all-out treadmill trials to within an average of 2.5% (R2 = 0.94; n = 84) and track trials to within 3.4% (R2 = 0.86; n = 28). An algorithm using this exponent and only two of the all-out treadmill runs to predict the remaining treadmill trials was nearly as accurate (average = 3.7%; R2 = 0.93; n = 77). We conclude that our technique 1) provides accurate predictions of high-speed running performance in trained runners and 2) offers a performance assessment alternative to existing tests of anaerobic power and capacity.  相似文献   

7.
The interaction oflacoperator DNA withlacrepressor (LacI) is a classic example of a genetic regulatory switch. To dissect the role of stoichiometry, subunit association, and effects of DNA length in positioning this switch, we have determined binding isotherms for the interaction of LacI with a high affinity (Osym) operator on linearized plasmid (2500 bp) DNA over a wide range of macromolecular concentrations (10−14to 10−8M). Binding data were analyzed using a thermodynamic model involving four equilibria: dissociation of tetramers (T) into dimers (D), and binding of operator-containing plasmid DNA (O) to dimers and tetramers to form three distinct complexes, DO, TO, and TO2. Over the range of con- centrations of repressor, operator, and salt (0.075 M K+to 0.40 M K+) investigated, we find no evidence for any significant thermodynamic effect of LacI dimers. Instead, all isotherms can be interpreted in terms of just two equilibria, involving only T and the TO and TO2complexes. As a reference binding equilibrium, which we propose must approximate the DO binding interaction, we compare the plasmid Osymresults with our extensive studies of the binding of a 40 bp OsymDNA fragment to LacI. On this basis, we obtain a lower bound on the LacI dimer – tetramer equilibrium constant and values of the equilibrium constants for formation of TO and TO2complexes.At a salt concentration of 0.40 M, the Osymplasmid binding data are consistent with a model with two independent and identical binding sites for operator per LacI tetramer, in which the binding to a site on the tetramer is only slightly more favorable than the reference binding interaction. Increasingly large deviations from the independent-site model are observed as the salt concentration is reduced; binding of a second operator to form TO2becomes strongly disfavored relative to formation of TO at low salt concentrations (0.075 to 0.125 M). In addition, binding of both the first and second plasmid operator DNA molecules to the tetramer becomes increasingly more favorable than the reference binding interaction as [K+] is reduced from 0.40 M to 0.125 M. At 0.075 M K+, however, the strength of binding of the second plasmid operator DNA to the LacI tetramer is dramatically reduced; this interaction is much less favorable than binding the first plasmid operator DNA, and becomes much less favorable than the reference binding interaction. We propose that these differences arise from changes in the nature of the TO and TO2complexes with decreasing salt concentration. At low salt concentration, we suggest the hypothesis that flanking non-operator sequences bind non-specifically (coulombically) by local wrapping, and that distant regions of non-operator DNA occupy the second operator-binding site by looping. We propose that wrapping stabilizes both 1:1 and 2:1 complexes at low salt concentration, and that looping stabilizes the 1:1 complex but competitively destabilizes the 2:1 TO2complex at low salt concentration. These effects must play a role in adjusting the stability and structure of the LacI-lac operator repression complex as the cytoplasmic [K+] varies in response to changes in extracellular osmolarity.  相似文献   

8.
Effects of knockdown resistance (kdr) were investigated in three pyrethroid‐resistant (RR) strains of the Afrotropical mosquito Anopheles gambiae Giles (Diptera: Culicidae): Kou from Burkina Faso, Tola and Yao from Côte d'Ivoire; compared with a standard susceptible (SS) strain from Kisumu, Kenya. The kdr factor was incompletely recessive, conferring 43‐fold resistance ratio at LD50 level and 29‐fold at LD95 level, as determined by topical application tests with Kou strain. When adult mosquitoes were exposed to 0.25% permethrin‐impregnated papers, the 50% and 95% knockdown times (KdT) were 23 and 42 min for SS females, compared with 40 and 62 min for RS (F1 Kou × Kisumu) females. On 1% permethrin the KdT50 and KdT95 were 11 and 21 min for SS compared with 18 and 33 min for RS females. Following 1 h exposure to permethrin (0.25% or 1%), no significant knockdown of Kou RR females occurred within 24 h. Permethrin irritancy to An. gambiae was assessed by comparing ‘time to first take‐off’ (TO) for females. The standard TO50 and TO95 values for Kisumu SS on untreated paper were 58 and 1044 s, respectively, vs. 3.7 and 16.5 s on 1% permethrin. For Kou RR females the comparable values were 27.3 s for TO50 and 294 s for TO95, with intermediate RS values of 10.1 s for TO50 and 71.9 s for TO95. Thus, TO values for RS were 2.7–4.4 times more than for SS, and those for RR were 7–18 times longer than for SS. Experiments with pyrethroid‐impregnated nets were designed to induce hungry female mosquitoes to pass through holes cut in the netting. Laboratory ‘tunnel tests’ used a bait guinea‐pig to attract mosquitoes through circular holes (5 × 1 cm) in a net screen. With untreated netting, 75–83% of laboratory‐reared females passed through the holes overnight, 63–69% blood‐fed successfully and 9–17% died, with no significant differences between SS and RR genotypes. When the netting was treated with permethrin 250 mg ai/m2 the proportions that passed through the holes overnight were only 10% of SS vs. 40–46% of RR (Tola & Kou); mortality rates were 100% of SS compared with 59–82% of RR; bloodmeals were obtained by 9% of Kou RR and 17% of Tola RR, but none of the Kisumu SS females. When the net was treated with deltamethrin 25 mg ai/m2 the proportions of An. gambiae that went through the holes and blood‐fed successfully were 3.9% of Kisumu SS and 3.5% of Yaokoffikro field population (94% R). Mortality rates were 97% of Kisumu SS vs. 47% of Yaokoffikro R. Evidently this deltamethrin treatment was sufficient to kill nearly all SS and half of the Yaokoffikro R An. gambiae population despite its high kdr frequency. Experimental huts at Yaokoffikro were used for overnight evaluation of bednets against An. gambiae females. The huts were sealed to prevent egress of mosquitoes released at 20.00 hours and collected at 05.00 hours. Each net was perforated with 225 square holes (2 × 2 cm). A man slept under the net as bait. With untreated nets, only 4–6% of mosquitoes died overnight and bloodmeals were taken by 17% of SS vs. 29% of Yaokoffikro R (P < 0.05). Nets treated with permethrin 500 mg/m2 caused mortality rates of 95% Kisumu SS and 45% Yao R (P < 0.001) and blood‐feeding rates were reduced to 1.3% of SS vs. 8.1% of Yao R (P < 0.05). Nets treated with deltamethrin 25 mg/m2 caused mortality rates of 91% Kisumu SS and 54% Yao R (P < 0.001) and reduced blood‐feeding rates to zero for SS vs. 2.5% for Yao R (P > 0.05). Pyrethroid‐impregnated bednets in experimental huts and ‘tunnel tests’ gave equivalent results, showing that nets impregnated with permethrin or deltamethrin provided good levels of protection against kdr homozygous strains of An. gambiae (Kou and Tola), and against the field population at Yaokoffikro with 94% kdr frequency. The explanation seems to be that (a) high proportions of kdr females are killed by prolonged contact with pyrethroids through diminished sensitivity to the usual irritant and repellent effects, and (b) relatively few kdr females take advantage of this prolonged contact to ingest a bloodmeal.  相似文献   

9.
Hot film anemometry, x-configuration probes were used in two experiments to evaluate their effectiveness at measurement of limb velocity. Data from tests with a probe attached to the end of a pendulum establish that the hot films measure velocity in the swing phase within 0.098 ms−1. The kinetic energy per unit mass of the pendulum was predicted within ±0.005 m2 s−2, from the measured velocity. In gait experiments with one human subject at speeds greater than 0.25 ms−1, the hot film anemometer and a video system predicted speeds within 0.083 ms−1. The hot film data are electronic signals that are easily stored and processed. The results from these experiments demonstrate that hot film anemometry is an effective and efficient method for direct measurement and analysis of the limb velocity.  相似文献   

10.
Svalbard rock ptarmigans were walked and run upon a treadmill and their energy expenditure measured using respirometry. The ptarmigan used three different gaits: a walking gait at slow speeds (less than or equal to 0.75 m s(-1)), grounded running at intermediate speeds (0.75 m s(-1) < U < 1.67 m s(-1)) and aerial running at high speeds (greater than or equal to 1.67 m s(-1)). Changes of gait were associated with reductions in the gross cost of transport (COT; J kg(-1) m(-1)), providing the first evidence for energy savings with gait change in a small crouched-postured vertebrate. In addition, for the first time (excluding humans) a decrease in absolute metabolic energy expenditure (rate of O(2) consumption) in aerial running when compared with grounded running was identified. The COT versus U curve varies between species and the COT was cheaper during aerial running than grounded running, posing the question of why grounded running should be used at all. Existing explanations (e.g. stability during running over rocky terrain) amount to just so stories with no current evidence to support them. It may be that grounded running is just an artefact of treadmill studies. Research investigating the speeds used by animals in the field is sorely needed.  相似文献   

11.
The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature (T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures (T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.  相似文献   

12.
Abstract. Metabolic rates of adult Lophopilio palpinalis (Herbst, 1799) (Arachnida, Opiliones, Phalangioidea) and Paranemastoma quadripunctatum (Perty, 1833) (Arachnida, Opiliones, Troguloidea) are measured during rest and activity. Carbon dioxide release during rest is continuous in both species. Mean values at 20 °C are 4.2 µL min−1 g−1 for the males of P. quadripunctatum, 4.1 µL min−1 g−1 for the males of L. palpinalis and 4.7 µL min−1 g−1 for the females of L. palpinalis, thus being significantly higher in the egg-producing females. In L. palpinalis, respiratory quotient at rest is 0.84. Spontaneous walking activity with speeds of 15–30 cm min−1 raises the metabolic rate by up to three-fold in both species. Lophopilio palpinalis is made to undertake constant running on a treadmill with speeds of 60, 72 and 96 cm min−1. Enforced activity causes the animals to raise their metabolic rates by up to five-fold above resting rates. Animals reach a steady state of CO2 release on the treadmill and show a fast t1/2 on-response, indicating aerobic exercise. The minimum cost of locomotion is determined to be 2.5 × 10−3 J cm−1 g−1, thus fitting the predicted values for terrestrial locomotion.  相似文献   

13.
The aim of this study was to investigate the effect of time-of-day on Preferred Transition Speed (PTS) and spatiotemporal organization of walking and running movements. Twelve active male subjects participated in the study (age: 27.2?±?4.9 years; height: 177.9?±?5.4?cm; body mass: 75.9?±?5.86?kg). First, PTS was determined at 08:00?h and 18:00?h. The mean of the two PTS recorded at the two times-of-day tested was used as a reference (PTSm). Then, subjects were asked to walk and run on a treadmill at three imposed speeds (PTSm, PTSm?+?0.3?m.s?1, and PTSm???0.3?m.s?1) at 08:00?h and 18:00?h. Mean stride length, temporal stride, spatial stride variability, and temporal stride variability were used for gait analysis. The PTS observed at 08:00?h (2.10?±?0.17?m.s?1) tends to be lower (p?=?0.077) than that recorded at 18:00?h (2.14?±?0.19?m.s?1). Stride lengths recorded while walking (p?=?0.038) and running (p?=?0.041) were shorter at 08:00?h than 18:00?h. No time-of-day effect was observed for stride frequency during walking and running trials. When walking, spatial stride variability (p?=?0.020) and temporal stride variability (p?=?0.028) were lower at 08:00?h than at 18:00?h. When running, no diurnal variation of spatial stride variability or temporal stride variability was detected.  相似文献   

14.
Summary Seed from homozygous recessivems 1 genetic male-sterile soybean (Glycine max (L.) Merr.) plants was studied for frequencies of polyembryonic seedlings and different levels of polyploidy among abnormal seedlings from six different source populations: Amesms 1 (Ams), North Carolinams 1 (NCms), Tonicams 1 (Tms), Urbanams 1 (Ums), and F4 generation seed obtained from crosses ofms 1 to two chromosome interchange lines (Ams x Clark T/T and Ums x KS-172-11-3). Frequencies of polyembryony observed in Tms, Ums, Ams, NCms, F4 seed from Ams x Clark T/T, and F4 seed from Ums x KS-172-11-3 were 3.6%, 2.4%, 3.1%, 2.5%, 2.2% and 0.1%, respectively. Frequencies of abnormal seedlings from these six sources varied from 1.7% (Ums X KS-172-11-3) to 16.8% (Ams X Clark T/T). Frequencies of polyploids among the abnormal seedlings ranged from 6.8% in Ums x Ks-172-11-3 to 66.7% in Tms. On average, the frequency of polyploid individuals from monoembryonic seedlings was 1.22%. Chromosome number of these seedlings varied from 20 to 200. Variation of the frequencies of polyembryonic seedlings and polyploid progeny among abnormal seedlings suggested that the mechanism(s) controlling the characters of polyembryony and formation of polyploids was associated with thems 1 gene and was affected by other gene(s) or environmental factors.Joint contribution: Agricultural Research Service, US Department of Agriculture, and Journal Paper No. J-11255 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA 50011, USA. Project 2471  相似文献   

15.
A chamber design is described which permits isolation of villus or intervillus epithelium from proximal segments of Amphiuma intestine and measurement of the transepithelial potential difference (ψms) and short-circuit current (Isc) produced by each. In media containing Cl? and 10 mequiv./l HCO3? the villus generated a basal ψms of 0.8 mV (serosa negative) and Isc of 12 μA/cm2 while the intervillus ψms and Isc were not different from zero. Acetazolamide altered the villus ψms by 1.2 mV; the intervillus ψms by only 0.3 mV. Transepithelial gradients of HCO3? appeared to generate diffusion potentials across the intervillus but not the villus epithelium. The actively transported sugar galactose elevated ψms by 0.6 ± 0.1 mV in the intervillus epithelium and by 1.5 ± 0.2 mV in the villus epithelium for a response ratio (0.61.5) = 0.4. The response ratio for valine was 0.3. In contrast, the response ratios for theophylline (0.7) and cyclic AMP (0.7) were significantly higher. These observations indicate that the entire epithelium is responsive to theophylline and cyclic AMP while Na+-dependent solute transport and the basal electrogenic ion transport processes are primarily functions of the cells lining the intestinal villus.  相似文献   

16.
To establish safe levels for physical strain in occupational repetitive lifting, it is of interest to know the specific maximal working capacity. Power output, O2 consumption, heart rate and ventilation were measured in ten experienced forestry workers during maximal squat and stoop repetitive lifting. The two modes of repetitive lifting were also compared with maximal treadmill running. In addition, electromyogram (EMG) activity in four muscles was recorded and perceived central, local low-back and thigh exertion were assessed during the lifting modes. No significant difference was found in power output between the two lifting techniques. Despite this the mean O2 consumption was significantly greater during maximal squat lifting [38.7 (SD 5.8) ml·kg–1-·min–1] than maximal stoop lifting [32.9 (SD 5.7) ml·kg–1·min–1] (P<0.001). No significant correlation was found between O2 consumption (in millilitres per kilogram per minute) during maximal treadmill running and maximal stoop lifting, while O2 consumption during maximal squat lifting correlated highly with that of maximal treadmill running (r=0.928, P<0.001) and maximal stoop lifting (r=0.808, P<0.01). While maximal heart rates were significantly different among the three types of exercise, no such differences were found in the central rated perceived exertions. Perceived low-back exertion was rated significantly lower during squat lifting than during stoop lifting. The EMG recordings showed a higher activity for the vastus lateralis muscle and lower activity for the biceps femoris muscle during squat lifting than during stoop lifting. Related to the maximal voluntary contraction, the erector spinae muscle showed the highest activity irrespective of lifting technique.  相似文献   

17.
A neutral pH microclimate had been shown at the luminal surface of the large intestine. The aim was to estimate to what extent fluxes of propionic acid/propionate are affected by changes of the luminal pH when this microclimate is present, largely reduced or absent. Fluxes of propionic acid/propionate (J Pr) across epithelia from the caecum, the proximal and the distal colon of guinea pigs were measured in Ussing chambers with and without a filter at the luminal surface. With bicarbonate and with a neutral or an acid pH of mucosal solutions (pH 7.4 or 6.4), mucosal-to-serosal fluxes (J msPr) were 1.5 to 1.9-fold higher at the lower pH, in bicarbonate-free solutions and carbonic anhydrase (CA) inhibition 2.1 to 2.6-fold. With a filter at the mucosal surface and with bicarbonate containing solutions, J msPr was not or only little elevated at the lower pH. Without bicarbonate J msPr was clearly higher. We conclude that the higher J msPr after luminal acidification is due to vigorous mixing in Ussing chambers resulting in a markedly reduced unstirred layer. Therefore, an effective pH microclimate at the epithelial surface is missing. J msPr is not or is little affected by lowering of pH because in the presence of bicarbonate the filter maintains the pH microclimate. However, in bicarbonate-free solutions J msPr was higher at pH 6.4 because a pH microclimate does not develop. Findings confirm that 30–60% of J msPr results from non-ionic diffusion.  相似文献   

18.
Anaerobic energy capacity was evaluated by maximal oxygen deficit (MOD) as well as by blood gas and muscle biopsy variables during short exhausting running in six recreational (RR) and eight competitive sprint and middle distance runners (SMDR). On 3 days runs to exhaustion were executed. Two runs were performed at a treadmill gradient of 15% at speeds which resulted in exhaustion after approximately 1 (R15%, 1min) and 2–3 min (R15%, 2–3min), respectively. On the 3rd day, the subjects ran with the treadmill at a gradient of 1% at a speed which caused exhaustion after 2–3 min (R1%, 2–3min). The runner performance was assessed from 400 m [RR, median 64.8 (range 62.2–69.6) s; SMDR, median 49.4 (range 48.5–52.0) s] and 800 m [RR, median 158.8 (range 153.3–170.2) s; SMDR, median 115.2 (range 113.3–123.3) s] track times. Muscle biopsies from gastrocnemius muscle were obtained before and immediately after R15%, 2–3min, from which muscle lactate and creatine phosphate (CP) concentrations, fibre type distribution, capillaries per fibre, total lactate dehydrogenase (LDH) activity and the LDH isoenzyme pattern were determined. The MOD increased with the treadmill gradient and duration. During both treadmill and track runs, SMDR performance was superior to that of RR, but no significant differences were observed with respect to MOD, muscle fibre type distribution, total LDH activity, its iso-enzyme pattern, changes in muscle lactate or CP concentrations. However, after treadmill runs, peak venous lactate concentration and partial pressures of carbon dioxide were higher, and pH lower in SMDR. Also the number of capillaries per muscle fibre and the maximal oxygen uptake were larger in SMDR. These findings would suggest that the superior performance of SMDR depended more on their aerobic than on their anaerobic capacity.  相似文献   

19.
A large group of fluorescent hybridization probes, includes intercalating dyes for example thiazole orange (TO). Usually TO is coupled to nucleic acids post-synthetically which severely limits its use. Here, we have developed a phosphoramidite monomer, 10, and prepared a 2′-OMe-RNA probe, labeled with 5-(trans-N-hexen-1-yl-)-TO-2′-deoxy-uridine nucleoside, dUTO, (Nucleoside bearing an Inter-Calating moiety, NIC), for selective mRNA detection. We investigated a series of 15-mer 2′-OMe-RNA probes, targeting the cyclin D1 mRNA, containing one or several dUTO at various positions. dUTO-2′-OMe-RNA exhibited up to 7-fold enhancement of TO emission intensity upon hybridization with the complementary RNA versus that of the oligomer alone. This NIC-probe was applied for the specific detection of a very small amount of a breast cancer marker, cyclin D1 mRNA, in total RNA extract from cancerous cells (250 ng/μl). Furthermore, this NIC-probe was found to be superior to our related NIF (Nucleoside with Intrinsic Fluorescence)-probe which could detect cyclin D1 mRNA target only at high concentrations (1840 ng/μl). Additionally, dUT can be used as a monomer in solid-phase oligonucleotide synthesis, thus avoiding the need for post-synthetic modification of oligonucleotide probes. Hence, we propose dUTO oligonucleotides, as hybridization probes for the detection of specific RNA in homogeneous solutions and for the diagnosis of breast cancer.  相似文献   

20.
Thermal soaring birds reduce flight‐energy costs by alternatingly gaining altitude in thermals and gliding across the earth's surface. To find out how soaring migrants adjust their flight behaviour to dynamic atmospheric conditions across entire migration routes, we combined optimal soaring migration theory with high‐resolution GPS tracking data of migrating honey buzzards Pernis apivorus and wind data from a global numerical atmospheric model. We compared measurements of gliding air speeds to predictions based on two distinct behavioural benchmarks for thermal soaring flight. The first being a time‐optimal strategy whereby birds alter their gliding air speeds as a function of climb rates to maximize cross‐country air speed over a full climb– glide cycle (Vopt). The second a risk‐averse energy‐efficient strategy at which birds alter their gliding air speed in response to tailwinds/headwinds to maximize the distance travelled in the intended direction during each glide phase (Vbgw). Honey buzzards were gliding on average 2.05 ms– 1 slower than Vopt and 3.42 ms– 1 faster than Vbgw while they increased air speeds with climb rates and reduced air speeds in tailwinds. They adopted flexible flight strategies gliding mostly near Vbgw under poor soaring conditions and closer to Vopt in good soaring conditions. Honey buzzards most adopted a time‐optimal strategy when crossing the Sahara, and at the onset of spring migration, where and when they met with the best soaring conditions. The buzzards nevertheless glided slower than Vopt during most of their journeys, probably taking time to navigate, orientate and locate suitable thermals, especially in areas with poor thermal convection. Linking novel tracking techniques with optimal migration models clarifies the way birds balance different tradeoffs during migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号