首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This study evaluated the feasibility of using insole pressure sensors together with whole body dynamics to analyse joint kinetics while running. Local affine transformations of shoe kinematics were first used to track the position of insole sensors during locomotion. Centre of pressure estimates derived from the insoles were within 10 mm of forceplate measures through much of stance, while vertical force estimates were within 15% of peak forceplate recordings. Insole data were then coupled with a least squares whole body dynamic model to obtain shear force estimates that were comparable to forceplate records during running. We demonstrated that these techniques provide a viable approach for analysing joint kinetics when running on uninstrumented surfaces.  相似文献   

2.
Plantar heel pain is a common condition that is often exacerbated by the repetitive stresses of walking. Treatment usually includes an in-shoe intervention designed to reduce plantar pressure under the heel by using insoles and a variety of off-the-shelf products. The design process for these products is often intuitive in nature and does not always rely on scientifically derived guidelines. Finite element analysis provides an efficient computational framework to investigate the performance of a large number of designs for optimal plantar pressure reduction. In this study, we used two-dimensional plane strain finite element modeling to investigate 27 insole designs. Combinations of three insole conformity levels (flat, half conforming, full conforming), three insole thickness values (6.3, 9.5 and 12.7 mm) and three insole materials (Poron Cushioning, Microcel Puff Lite and Microcel Puff) were simulated during the early support phase of gait. Plantar pressures predicted by the model were validated by experimental trials conducted in the same subject whose heel was modeled by loading the bare foot on a rigid surface and on foam mats. Conformity of the insole was the most important design variable, whereas peak pressures were relatively insensitive to insole material selection. The model predicted a 24% relief in pressure compared to barefoot conditions when using flat insoles; the reduction increased up to 44% for full conforming insoles.  相似文献   

3.
The purpose of this study was to investigate the effects of insoles and additional shock absorption foam on the cushioning properties of various sport shoes with an impact testing method. Three commercial sport shoes were used in this study, and shock absorption foam (TPE5020; Vers Tech Science Co. Ltd., Taiwan) with 2-mm thickness was placed below the insole in the heel region for each shoe. Eight total impacts with potential energy ranged from 1.82 to 6.08 J were performed onto the heel region of the shoe. The order of testing conditions was first without insole, then with insole, and finally interposing the shock absorption foam for each shoe. Peak deceleration of the striker was measured with an accelerometer attached to the striker during impact. The results of this study seemed to show that the insole or additional shock absorption foam could perform its shock absorption effect well for the shoes with limited midsole cushioning. Further, our findings showed that insoles absorbed more, even up to 24-32% of impact energy under low impact energy. It seemed to indicate that insoles play a more important role in cushioning properties of sport shoes under a low impact energy condition.  相似文献   

4.
To enhance the wearability of portable motion-monitoring devices, the size and number of sensors are minimized, but at the expense of quality and quantity of data collected. For example, owing to the size and weight of low-frequency force transducers, most currently available wearable gait measurement systems provide only limited, if any, elements of ground reaction force (GRF) data. To obtain the most GRF information possible with a minimal use of sensors, we propose a GRF estimation method based on biomechanical knowledge of human walking. This includes the dynamics of the center of mass (CoM) during steady human gait resembling the oscillatory behaviors of a mass-spring system. Available measurement data were incorporated into a spring-loaded inverted pendulum with translating pivot. The spring stiffness and simulation parameters were tuned to match, as accurately as possible, the available data and oscillatory characteristics of walking. Our results showed that the model simulation estimated reasonably well the unmeasured GRF. Using the vertical GRF and CoP profile for gait speeds ranging from 0.93 to 1.89 m/s, the anterior-posterior (A-P) GRF was estimated and resulted in an average correlation coefficient of R = 0.982 ± 0.009. Even when the ground contact timing and gait speed information were alone available, our method estimated GRFs resulting in R = 0.969 ± 0.022 for the A-P and R = 0.891 ± 0.101 for the vertical GRFs. This research demonstrates that the biomechanical knowledge of human walking, such as inherited oscillatory characteristics of the CoM, can be used to gain unmeasured information regarding human gait dynamics.  相似文献   

5.
This study presented a method to estimate the complete ground reaction forces from pressure insoles in walking. Five male subjects performed 10 walking trials in a laboratory. The complete ground reaction forces were collected during a right foot stride by a force plate at 1000Hz. Simultaneous plantar pressure data were collected at 100Hz by a pressure insole system with 99 sensors covering the whole plantar area. Stepwise linear regressions were performed to individually reconstruct the complete ground reaction forces in three directions from the 99 individual pressure data until redundancy among the predictors occurred. An additional linear regression was performed to reconstruct the vertical ground reaction force by the sum of the value of the 99 pressure sensors. Five other subjects performed the same walking test for validation. Estimated ground reaction forces in three directions were calculated with the developed regression models, and were compared with the real data recorded from force plate. Accuracy was represented by the correlation coefficient and the root mean square error. Results showed very good correlation in anterior-posterior (0.928) and vertical (0.989) directions, and reasonable correlation in medial-lateral direction (0.719). The root mean square error was about 12%, 5% and 28% of the peak recorded value. Future studies should aim to generalize the methods or to establish specific methods to other subjects, patients, motions, footwear and floor conditions. The method gives an extra option to study an estimation of the complete ground reaction forces in any environment without the constraints from the number and location of force plates.  相似文献   

6.
The study compared the centre of pressure measurements (COP) and vertical ground reaction forces (vGRF) from a pressure insole system to that from force plates (FP) during two flywheel quadriceps resistance exercises: leg press and squat. The comparison was performed using a motion capture system and simultaneous measurements of COP and vGRF from FP and insoles. At lower insole-vGRF (<250 N/insole) COP accuracy deteriorated and those data were excluded from further analysis. The insoles systematically displaced the COP slightly posteriorly and medially compared to the FP measurements. Pearson’s coefficient of correlation (r) between insole- and FP-COP showed good agreement in both the anteroposterior (squat: r = 0.96, leg press: r = 0.97) and mediolateral direction (squat: r = 0.84, leg press: r = 0.90), whereas the root-mean-square errors (RMSE) were lower in the mediolateral (squat: 3.9 mm, leg press: 4.5 mm) than the anteroposterior (squat and leg press: 11.8 mm) direction. Vertical GRF was slightly overestimated by the insoles in leg press and RMSE were greater in leg press (8% of peak force) than in squat (6%). Overall, results were within the range of previous studies performed on gait. The strong agreement between insole and FP measurements indicates that insoles may replace FPs in field applications and biomechanical computations during resistance exercise, provided that the applied force is sufficient.  相似文献   

7.
Tufted capuchin monkeys are known to use both quadrupedalism and bipedalism in their natural environments. Although previous studies have investigated limb kinematics and metabolic costs, their ground reaction forces (GRFs) and center of mass (CoM) mechanics during two and four‐legged locomotion are unknown. Here, we determine the hind limb GRFs and CoM energy, work, and power during bipedalism and quadrupedalism over a range of speeds and gaits to investigate the effect of differential limb number on locomotor performance. Our results indicate that capuchin monkeys use a “grounded run” during bipedalism (0.83–1.43 ms?1) and primarily ambling and galloping gaits during quadrupedalism (0.91–6.0 ms?1). CoM energy recoveries are quite low during bipedalism (2–17%), and in general higher during quadrupedalism (4–72%). Consistent with this, hind limb vertical GRFs as well as CoM work, power, and collisional losses are higher in bipedalism than quadrupedalism. The positive CoM work is 2.04 ± 0.40 Jkg?1 m?1 (bipedalism) and 0.70 ± 0.29 Jkg?1 m?1 (quadrupedalism), which is within the range of published values for two and four‐legged terrestrial animals. The results of this study confirm that facultative bipedalism in capuchins and other nonhuman primates need not be restricted to a pendulum‐like walking gait, but rather can include running, albeit without an aerial phase. Based on these results and similar studies of other facultative bipeds, we suggest that important transitions in the evolution of hominin locomotor performance were the emergences of an obligate, pendulum‐like walking gait and a bouncy running gait that included a whole‐body aerial phase. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Obesity is the primary risk factor for the development and progression of medial compartment knee osteoarthritis. Laterally wedged insoles can reduce many of the biomechanical risk factors for disease development in osteoarthritis patients and lean individuals but their efficacy is unknown for at-risk, obese women. The purpose was to determine how an 8° laterally wedged insole influenced kinetic and kinematic gait parameters in obese women. Gait analysis was performed on fourteen obese (average 29.3 years; BMI 37.2kg/m(2)) and 14 lean control women (average 26.1 years; BMI 22.4kg/m(2)) with and without a full-length, wedged insole. Peak joint angles, the external knee adduction moment and its angular impulse were calculated during preferred and standard 1.24m/s walking speeds. Statistical significance was assessed using a 2-way ANOVA (α=0.05). The insole significantly reduced the peak external knee adduction moment (mean decrease of 3.6±3.9Nm for obese and 1.9±1.8Nm for controls) and its angular impulse in both groups. The wedged insoles also produced small changes in ankle dorsiflexion (obese: 1.2±1.4° increase; control: 1.5±1.4° increase) and eversion range of motion (obese: 1.3±1.9° decrease; control: 1.5±1.2° decrease) but did not alter peak angles of superior joints. Although the majority of obese women may develop knee osteoarthritis during their lifetime, a prophylactic insole intervention could allow obese women with no severe knee malalignments to be active while preventing or delaying disease onset. However, the long-term effects of the insole have not yet been examined.  相似文献   

9.
Desert ants (Cataglyphis fortis) navigate by means of path integration, and perform accurately even in undulating terrain. They are able to correctly calculate the ground distance between nest and feeder even if their foraging excursion leads them over corrugated surfaces. To compute the respective ground projection when walking over an inclined surface, ants must measure its slope with sufficient accuracy—but how they do so is still not understood. Using a new behavioural assay that included a negative reinforcement, we investigated how well different slopes are discriminated by the ants. Ants were trained to visit an elevated feeder, via a ramp of fixed inclination (five training inclinations were used: 0°, 15°, 30°, 45°, 60°). The ants discriminated a steeper test slope that differed from the training slope by 12.5°. This discrimination performance was found to be constant for training slopes between 0° and 45°. Ants trained on a 60° slope, however, did not discriminate all steeper slopes, up to a vertical ascent, from the 60° inclination. The consequences of this discrimination accuracy for errors in the path integration process are discussed.  相似文献   

10.
The goal of this investigation was to investigate how walking patterns are affected following muscle-damaging exercise by quantifying both lower limb kinematics and kinetics. Fifteen young women conducted a maximal isokinetic eccentric exercise (EE) muscle damage protocol (5 × 15) of the knee extensors and flexors of both legs at 60°/s. Three-dimensional motion data and ground reaction forces (GRFs) were collected 24 h pre-EE while the participants walked at their preferred self-selected walking speed (SWS). Participants were asked to perform two gait conditions 48 h post-EE. The first condition (COND1) was to walk at their own speed and the second condition (COND2) to maintain the SWS (±5%) they had 24 h pre-EE. Walking speed during COND1 was significantly lower compared to pre-exercise values. When walking speed was controlled during COND2, significant effects of muscle damage were noticed, among other variables, for stride frequency, loading rate, lateral and vertical GRFs, as well as for specific knee kinematics and kinetics. These findings provide new insights into how walking patterns are adapted to compensate for the impaired function of the knee musculature following muscle damage. The importance to distinguish the findings caused by muscle damage from those exhibited in response to changes in stride frequency is highlighted.  相似文献   

11.
A recently described variable-stiffness shoe has been shown to reduce the adduction moment and pain in patients with medial-compartment knee osteoarthritis. The mechanism associated with how this device modifies overall gait patterns to reduce the adduction moment is not well understood. Yet this information is important for applying load modifying intervention for the treatment of knee osteoarthritis. A principal component analysis (PCA) was used to test the hypothesis that there are differences in the frontal plane kinematics that are correlated with differences in the ground reaction forces (GRFs) and center of pressure (COP) for a variable-stiffness compared to a constant-stiffness control shoe. Eleven healthy adults were tested in a constant-stiffness control shoe and a variable-stiffness shoe while walking at self-selected speeds. The PCA was performed on trial vectors consisting of all kinematic, GRF and COP data. The projection of trial vectors onto the linear combination of four PCs showed there were significant differences between shoes. The interpretation of the PCs indicated an increase in the ankle eversion, knee abduction and adduction, decreases in the hip adduction and pelvic obliquity angles and reduced excursion of both the COP and peak medial-lateral GRFs for the variable-stiffness compared to the control shoe. The variable-stiffness shoe produced a unique dynamic change in the frontal plane motion of the ankle, hip and pelvis that contributed to changes in the GRF and COP and thus reduced the adduction moment at a critical instant during gait suggesting a different mechanism that was seen with fixed interventions (e.g. wedges).  相似文献   

12.

Objective

Biomechanical effects of laterally wedged insoles are assessed by reduction in the knee adduction moment. However, the degree of reduction may vary depending on the reference frame with which it is calculated. The purpose of this study was to clarify the effect of reference frame on the reduction in the knee adduction moment by laterally wedged insoles.

Methods

Twenty-nine healthy participants performed gait trials with a laterally wedged insole and with a flat insole as a control. The knee adduction moment, including the first and second peaks and the angular impulse, were calculated using four different reference frames: the femoral frame, tibial frame, laboratory frame and the Joint Coordinate System.

Results

There were significant effects of reference frame on the knee adduction moment first and second peaks (P < 0.001 for both variables), while the effect was not significant for the angular impulse (P = 0.84). No significant interaction between the gait condition and reference frame was found in either of the knee adduction moment variables (P = 0.99 for all variables), indicating that the effects of laterally wedged insole on the knee adduction moments were similar across the four reference frames. On the other hand, the average percent changes ranged from 9% to 16% for the first peak, from 16% to 18% for the second peak and from 17% to 21% for the angular impulse when using the different reference frames.

Conclusion

The effects of laterally wedged insole on the reduction in the knee adduction moment were similar across the reference frames. On the other hand, Researchers need to recognize that when the percent change was used as the parameter of the efficacy of laterally wedged insole, the choice of reference frame may influence the interpretation of how laterally wedged insoles affect the knee adduction moment.  相似文献   

13.
Ground reaction forces (GRFs) are often used in inverse dynamics analyses to determine joint loading. These GRFs are usually measured using force plates (FPs). As an alternative, instrumented force shoes (FSs) can be used, which have the advantage over FPs that they do not constrain foot placement. This study tested the FS system in one normal weight subject (77 kg) performing 19 different lifting, pushing and pulling and walking tasks. Kinematics were measured with an optoelectronic system and the GRFs and the positions of the centre of pressure (CoP) were synchronously measured with FPs and FSs. Differences between the outcomes of the two measurement systems (i.e. CoP and GRFs) and the resulting ankle and L5/S1 joint moments were determined at the instant of the peak GRF (DaPF). For most lifting and pushing and pulling tasks, the difference between the FP and FS measurements remained small: GRF DaPF remained below 3% body weight, CoP DaPF remained below 10 mm, ankle moment DaPF remained below 7% of the peak total ankle moment that occurred during normal walking and L5/S1 moment DaPF remained below 7% of the peak total L5/S1 moment that occurred during normal symmetric lifting. More substantial differences were only found in the maximal pushing tasks. For the walking tasks, peak vertical GRFs were somewhat underestimated. However, differences in ankle and L5/S1 moments remained small, i.e. DaPF below 7% of the peak total moment that occurred during normal walking.  相似文献   

14.
Anti-pronation orthoses, like medially posted insoles (MPI), have traditionally been used to treat various of lower limb problems. Yet, we know surprisingly little about their effects on overall foot motion and lower limb mechanics across walking and running, which represent highly different loading conditions. To address this issue, multi-segment foot and lower limb mechanics was examined among 11 overpronating men with normal (NORM) and MPI insoles during walking (self-selected speed 1.70 ± 0.19 m/s vs 1.72 ± 0.20 m/s, respectively) and running (4.04 ± 0.17 m/s vs 4.10 ± 0.13 m/s, respectively). The kinematic results showed that MPI reduced the peak forefoot eversion movement in respect to both hindfoot and tibia across walking and running when compared to NORM (p < 0.05–0.01). No differences were found in hindfoot eversion between conditions. The kinetic results showed no insole effects in walking, but during running MPI shifted center of pressure medially under the foot (p < 0.01) leading to an increase in frontal plane moments at the hip (p < 0.05) and knee (p < 0.05) joints and a reduction at the ankle joint (p < 0.05). These findings indicate that MPI primarily controlled the forefoot motion across walking and running. While kinetic response to MPI was more pronounced in running than walking, kinematic effects were essentially similar across both modes. This suggests that despite higher loads placed upon lower limb during running, there is no need to have a stiffer insoles to achieve similar reduction in the forefoot motion than in walking.  相似文献   

15.
Many people with stroke experience foot drop while walking. Further, walking on uneven surfaces is a common fall risk for these people that hinder with their daily life activities. In addition, a few years after a stroke, lower-limb exercises become less focused, especially the ankle joint movement. The objective of this study is to determine the gait performance of older adults with chronic stroke on an uneven surface in relation to ankle mobility after a four-week bi-axial ankle range of motion (ROM) exercise session. Fifteen older adults with chronic post-stroke hemiparesis (N = 15; mean age = 65 years) participated in a total of 12 bi-axial ankle ROM exercises that consisted of three 30-min training sessions per week for four weeks. Basic clinical tests and gait performance in even and uneven surfaces were evaluated before and after training. Participants with chronic post-stroke hemiparesis showed significantly improved ankle functions, decreased ankle stiffness (from 0.140 ± 0.059 to 0.128 ± 0.067 N·m/°; p = 0.025), and increased paretic ankle passive ROMs (dorsiflexion(DF)/plantarflexion(PF): from 27.3 ± 14.7° to 50.6 ± 10.3°, p < 0.001; inversion(INV)/eversion(EV): 21.7 ± 9.7° to 28.6 ± 9.9°; p = 0.033) after training. They exhibited significant improvements in the walking performance over an uneven surface, step kinematics (walking speed 0.257 ± 0.17 to 0.320 ± 0.178 m/s; p = 0.017; step length: 0.214 ± 0.109 to 0.243 ± 0.108 m; p = 0.009), and clinical balance and mobility (Berg balance scale: 47.2 ± 4.7 to 50.1 ± 3.9, p = 0.0001; timed-up and go test: 23.9 ± 10.3 to 20.2 ± 7.0 s, p = 0.0156). This study is the first research to investigate the walking performance on uneven surfaces in the elderly with chronic stroke in relation to the ankle biomechanical property changes.  相似文献   

16.
To examine functional differences in total hip replacement patients (THR) when stratified either by age or by functional ability as defined by self-selected walking speed. THR patients and a control group underwent three-dimensional motion analysis under self-selected normal and fast walking conditions. Patients were stratified into five age groups for comparison with existing literature. The THR cohort was also stratified into three functional groups determined by their self-selected gait speed (low function <1SD of total cohort’s mean walking speed; high function >1SD; normal function within 1SD). Hip kinematics, ground reaction forces, joint moments and joint powers in all three planes (x-y-z) were analysed. 137 THR and 27 healthy control patients participated. When stratified by age, during normal walking the youngest two age groups walked quicker than the oldest two groups (p < 0.0001) but between-group differences were not consistent across age strata. The differences were diminished under the fast walking condition. When stratified by function, under normal walking conditions, the low function and normal function THR groups had a reduced extension angle (mean = 1.75°, SD = ±7.75, 1.26° ± 7.42, respectively) compared to the control group (−6.07° ± 6.43; p < 0.0001). The low function group had a reduced sagittal plane hip power (0.75 W/kg ± 0.24), reduced flexor (0.60 Nm/kg ± 0.85) and extensor moment (0.51 Nm/kg ± 0.17) compared to controls (p < 0.0001). These differences persisted under the fast walking condition. There were systematic differences between patients when stratified by function, in both walking conditions. Age-related differences were less systematic. Stratifying by biomechanical factors such as gait speed, rather than age, might be more robust for investigating functional differences.  相似文献   

17.
The pathology’s impact on gait pattern may be overestimated by conventional gait indices (Gillette Gait Index – GGI, Gait Deviation Index – GDI, Gait Profile Score – GPS), since impairments’ consequences on kinematics may be amplified by a change in walking speed. The objectives of this study were to evaluate the influence of walking speed on the computation of gait indices and to propose a corrective method to cancel the effects of walking speed. Spatiotemporal parameters and kinematics of fifty-four asymptomatic participants (30 M/24 W, 37.9 ± 13.7 years, 72.8 ± 13.3 kg, 1.74 ± 0.10 m) were collected at four speed conditions (C1:[0,0.4] m s−1, C2:[0.4,0.8] m s−1, C3:[0.8,1.2] m s−1, C4:spontaneous). Four values of each index were computed for each trial using successively the four conditions as normative data repository. Mean values over all participants were statistically compared (paired t-tests, 95% confidence level). Indices values computed with normative at equivalent walking speed were not statistically different from reference values. Meanwhile, deviations appeared when the walking speed discrepancy between conditions and normative increased. These drifts related to walking speed mismatch have been quantified and fitting functions proposed. A correction was applied to indices. GGI was efficiently adjusted while GDI and GPS remain different from their reference values for C1 and C2. Gait indices must be interpreted cautiously in function of the normative data repository’s walking speed used for computation. Furthermore, a coupled use of conventional and corrected gait indices could lead to a better comprehension of the contribution of impairments and walking speed on gait deviations and overall gait quality.  相似文献   

18.
Work performance and individual joint contribution to total work are important information for creating training protocols, but were not assessed so far for sloped walking. Therefore, the purpose of this study was to analyze lower limb joint work and joint contribution of the hip, knee and ankle to total lower limb work during sloped walking in a healthy population. Eighteen male participants (27.0 ± 4.7 yrs, 1.80 ± 0.05 m, 74.5 ± 8.2 kg) walked on an instrumented ramp at inclination angles of 0°, ±6°, ±12° and ±18° at 1.1 m/s. Kinematic and kinetic data were captured using a motion-capture system (Vicon) and two force plates (AMTI). Joint power curves, joint work (positive, negative, absolute) and each joint’s contribution to total lower limb work were analyzed throughout the stance phase using an ANOVA with repeated measures. With increasing inclination positive joint work increased for the ankle and hip joint and in total during uphill walking. Negative joint work increased for each joint and in total work during downhill walking. Absolute work was increased during both uphill (all joints) and downhill (ankle & knee) walking. Knee joint contribution to total negative and absolute work increased during downhill walking while hip and ankle contributions decreased. This study identified, that, when switching from level to a 6° and from 6° to a 12° inclination the gain of individual joint work is more pronounced compared to switching from 12° to an 18° inclination. The results might be used for training recommendations and specific training intervention with respect to sloped walking.  相似文献   

19.
This study describes the validation of a new wearable system for assessment of 3D spatial parameters of gait. The new method is based on the detection of temporal parameters, coupled to optimized fusion and de-drifted integration of inertial signals. Composed of two wirelesses inertial modules attached on feet, the system provides stride length, stride velocity, foot clearance, and turning angle parameters at each gait cycle, based on the computation of 3D foot kinematics. Accuracy and precision of the proposed system were compared to an optical motion capture system as reference. Its repeatability across measurements (test-retest reliability) was also evaluated. Measurements were performed in 10 young (mean age 26.1±2.8 years) and 10 elderly volunteers (mean age 71.6±4.6 years) who were asked to perform U-shaped and 8-shaped walking trials, and then a 6-min walking test (6 MWT). A total of 974 gait cycles were used to compare gait parameters with the reference system. Mean accuracy±precision was 1.5±6.8 cm for stride length, 1.4±5.6 cm/s for stride velocity, 1.9±2.0 cm for foot clearance, and 1.6±6.1° for turning angle. Difference in gait performance was observed between young and elderly volunteers during the 6 MWT particularly in foot clearance. The proposed method allows to analyze various aspects of gait, including turns, gait initiation and termination, or inter-cycle variability. The system is lightweight, easy to wear and use, and suitable for clinical application requiring objective evaluation of gait outside of the lab environment.  相似文献   

20.
It has been shown that gait parameters vary systematically with the slope of the surface when walking uphill (UH) or downhill (DH) (Andriacchi et al., 1977; Crowe et al., 1996; Kawamura et al., 1991; Kirtley et al., 1985; McIntosh et al., 2006; Sun et al., 1996). However, gait trials performed on inclined surfaces have been subject to certain technical limitations including using fixed speed treadmills (TMs) or, alternatively, sampling only a few gait cycles on inclined ramps. Further, prior work has not analyzed upper body kinematics. This study aims to investigate effects of slope on gait parameters using a self-paced TM (SPTM) which facilitates more natural walking, including measuring upper body kinematics and gait coordination parameters.Gait of 11 young healthy participants was sampled during walking in steady state speed. Measurements were made at slopes of +10°, 0° and −10°. Force plates and a motion capture system were used to reconstruct twenty spatiotemporal gait parameters. For validation, previously described parameters were compared with the literature, and novel parameters measuring upper body kinematics and bilateral gait coordination were also analyzed.Results showed that most lower and upper body gait parameters were affected by walking slope angle. Specifically, UH walking had a higher impact on gait kinematics than DH walking. However, gait coordination parameters were not affected by walking slope, suggesting that gait asymmetry, left-right coordination and gait variability are robust characteristics of walking. The findings of the study are discussed in reference to a potential combined effect of slope and gait speed. Follow-up studies are needed to explore the relative effects of each of these factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号