首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Non-invasive techniques for quantifying early biochemical and biomechanical changes in articular cartilage may provide a means of more precisely assessing osteoarthritis (OA) progression. The goals of this study were to determine the relationship between T1rho magnetic resonance (MR) imaging relaxation times and changes in cartilage composition, cartilage mechanical properties, and synovial fluid biomarker levels and to demonstrate the application of T1rho imaging to evaluate cartilage composition in human subjects in vivo. Femoral condyles and synovial fluid were harvested from healthy and OA porcine knee joints. Sagittal T1rho relaxation MR images of the condyles were acquired. OA regions of OA joints exhibited an increase in T1rho relaxation times as compared to non-OA regions. Furthermore in these regions, cartilage sGAG content and aggregate modulus decreased, while percent degraded collagen and water content increased. In OA joints, synovial fluid concentrations of sGAG decreased and C2C concentrations increased compared to healthy joints. T1rho relaxation times were negatively correlated with cartilage and synovial fluid sGAG concentrations and aggregate modulus and positively correlated with water content and permeability. Additionally, we demonstrated the application of these in vitro findings to the study of human subjects. Specifically, we demonstrated that walking results in decreased T1rho relaxation times, consistent with water exudation and an increase in proteoglycan concentration with in vivo loading. Together, these findings demonstrate that cartilage MR imaging and synovial fluid biomarkers provide powerful non-invasive tools for characterizing changes in the biochemical and biomechanical environments of the joint.  相似文献   

2.
Structural magnetic resonance imaging (MRI) has shown great utility in diagnosing soft tissue burden in osteoarthritis (OA), though MRI measures of cartilage integrity have proven more elusive. Sodium MRI can reflect the proteoglycan content of cartilage; however, it requires specialized hardware, acquisition sequences, and long imaging times. This study was designed to assess the potential of a clinically feasible sodium MRI acquisition to detect differences in the knee cartilage of subjects with OA versus healthy controls (HC), and to determine whether longitudinal changes in sodium content are observed at 3 and 6 months. 28 subjects with primary knee OA and 19 HC subjects age and gender matched were enrolled in this ethically-approved study. At baseline, 3 and 6 months subjects underwent structural MRI and a 0.4ms echo time 3D T1-weighted sodium scan as well as the knee injury and osteoarthritis outcome score (KOOS) and knee pain by visual analogue score (VAS). A standing radiograph of the knee was taken for Kellgren-Lawrence (K-L) scoring. A blinded reader outlined the cartilage on the structural images which was used to determine median T1-weighted sodium concentrations in each region of interest on the co-registered sodium scans. VAS, K-L, and KOOS all significantly separated the OA and HC groups. OA subjects had higher T1-weighted sodium concentrations, most strongly observed in the lateral tibial, lateral femoral and medial patella ROIs. There were no significant changes in cartilage volume or sodium concentration over 6 months. This study has shown that a clinically-feasible sodium MRI at a moderate 3T field strength and imaging time with fluid attenuation by T1 weighting significantly separated HCs from OA subjects.  相似文献   

3.
The influence of ankle kinematics and plantar pressure from mid-range barefoot running on T2 relaxation times of tibiotalar cartilage is unknown. This study aimed to quantitatively evaluate the T2 relaxation time of tibiotalar cartilage and ankle biomechanics following 5 km barefoot running. Twenty healthy runners (who had no 5 km barefoot running experience) underwent 3.0-Tesla magnetic resonance (MR) scans and assessment of running gait before and after 5 km barefoot running. Participants were divided into two groups consisting of marathon-experienced (n = 10) and novice (n = 10) with equal number of males and females in each group. Three musculoskeletal radiologists measured T2 relaxation times in 18 regions of the ankle cartilage: anterior zone, central zone, and posterior zone, or lateral, middle, and medial sections in the sagittal plane. Three-dimensional ankle kinetics, kinematics, and plantar pressure were all also assessed during barefoot running. In the novice group, the T2 relaxation time in the posterior zone of tibial cartilage (p = 0.001) and lateral section in both tibial (p = 0.02) and talar (p = 0.02) cartilage were significantly increased after barefoot running. Ankle kinematics exhibited significant changes in females. Plantar loading was shifted from the medial to lateral aspect after running. This included a significant reduction in the loading under the toes and the 1st, 2nd and 3rd metatarsals, with a significant increase under the 4th and 5th metatarsals and lateral midfoot. The results suggest that plantar pressure may directly lead to local increases in cartilage T2 signal, which was not associated with changes in ankle kinematics.  相似文献   

4.
Insulin-like growth factor 1 (IGF-1) has poor anabolic efficacy in cartilage in osteoarthritis (OA), partly because of its sequestration by abnormally high levels of extracellular IGF-binding proteins (IGFBPs). We studied the effect of NBI-31772, a small molecule that inhibits the binding of IGF-1 to IGFBPs, on the restoration of proteoglycan synthesis by human OA chondrocytes. IGFBPs secreted by human OA cartilage or cultured chondrocytes were analyzed by western ligand blot. The ability of NBI-31772 to displace IGF-1 from IGFBPs was measured by radiobinding assay. Anabolic responses in primary cultured chondrocytes were assessed by measuring the synthesis of proteoglycans in cetylpyridinium-chloride-precipitable fractions of cell-associated and secreted 35S-labeled macromolecules. The penetration of NBI-31772 into cartilage was measured by its ability to displace 125I-labeled IGF-1 from cartilage IGFBPs. We found that IGFBP-3 was the major IGFBP secreted by OA cartilage explants and cultured chondrocytes. NBI-31772 inhibited the binding of 125I-labeled IGF-1 to IGFBP-3 at nanomolar concentrations. It antagonized the inhibitory effect of IGFBP-3 on IGF-1-dependent proteoglycan synthesis by rabbit chondrocytes. The addition of NBI-31772 to human OA chondrocytes resulted in the restoration or potentiation of IGF-1-dependent proteoglycan synthesis, depending on the IGF-1 concentrations. However, NBI-31772 did not penetrate into cartilage explants. This study shows that a new pharmacological approach that uses a small molecule inhibiting IGF-1/IGFBP interaction could restore or potentiate proteoglycan synthesis in OA chondrocytes, thereby opening exciting possibilities for the treatment of OA and, potentially, of other joint-related diseases.  相似文献   

5.
Treatment of osteoarthritis (OA) with nonsteroidal anti-inflammatory drugs (NSAIDs) diminishes inflammation along with mediators of cartilage destruction. However, NSAIDs may exert adverse direct effects on cartilage, particularly if treatment is prolonged. We therefore compared the direct effects of indomethacin, naproxen, aceclofenac and celecoxib on matrix turnover in human OA cartilage tissue. Human clinically defined OA cartilage from five different donors was exposed for 7 days in culture to indomethacin, naproxen, aceclofenac and celecoxib--agents chosen based on their cyclo-oxygenase (COX)-2 selectivity. As a control, SC-560 (a selective COX-1 inhibitor) was used. Changes in cartilage proteoglycan turnover and prostaglandin E2 production were determined. OA cartilage exhibited characteristic proteoglycan turnover. Indomethacin further inhibited proteoglycan synthesis; no significant effect of indomethacin on proteoglycan release was found, and proteoglycan content tended to decrease. Naproxen treatment was not associated with changes in any parameter. In contrast, aceclofenac and, prominently, celecoxib had beneficial effects on OA cartilage. Both were associated with increased proteoglycan synthesis and normalized release. Importantly, both NSAIDs improved proteoglycan content. Inhibition of prostaglandin E2 production indirectly showed that all NSAIDs inhibited COX, with the more COX-2 specific agents having more pronounced effects. Selective COX-1 inhibition resulted in adverse effects on all parameters, and prostaglandin E2 production was only mildly inhibited. NSAIDs with low COX-2/COX-1 selectivity exhibit adverse direct effects on OA cartilage, whereas high COX-2/COX-1 selective NSAIDs did not show such effects and might even have cartilage reparative properties.  相似文献   

6.
The objective of this study was to describe the rate of change in knee cartilage volume over 4.5 years in subjects with symptomatic knee osteoarthritis (OA) and to determine factors associated with cartilage loss. One hundred and five subjects were eligible for this longitudinal study. Subjects' tibial cartilage volume was assessed by magnetic resonance imaging (MRI) at baseline, at 2 years and at 4.5 years. Of 105 subjects, 78 (74%) completed the study. The annual percentage losses of medial and lateral tibial cartilage over 4.5 years were 3.7 ± 4.7% (mean ± SD; 95% confidence interval 2.7 to 4.8%) and 4.4 ± 4.7% (mean ± SD; 95% confidence interval 3.4 to 5.5%), respectively. Cartilage volume in each individual seemed to track over the study period, relative to other study participants. After multivariate adjustment, annual medial tibial cartilage loss was predicted by lesser severity of baseline knee pain but was independent of age, body mass index and structural factors. No factors specified a priori were associated with lateral cartilage volume rates of change. Tibial cartilage declines at an average rate of 4% per year in subjects with symptomatic knee OA. There was evidence to support the concept that tracking occurs in OA. This may enable the prediction of cartilage change in an individual. The only significant factor affecting the loss of medial tibial cartilage was baseline knee pain, possibly through altered joint loading.  相似文献   

7.
Treatment of osteoarthritis (OA) with nonsteroidal anti-inflammatory drugs (NSAIDs) diminishes inflammation along with mediators of cartilage destruction. However, NSAIDs may exert adverse direct effects on cartilage, particularly if treatment is prolonged. We therefore compared the direct effects of indomethacin, naproxen, aceclofenac and celecoxib on matrix turnover in human OA cartilage tissue. Human clinically defined OA cartilage from five different donors was exposed for 7 days in culture to indomethacin, naproxen, aceclofenac and celecoxib – agents chosen based on their cyclo-oxygenase (COX)-2 selectivity. As a control, SC-560 (a selective COX-1 inhibitor) was used. Changes in cartilage proteoglycan turnover and prostaglandin E2 production were determined. OA cartilage exhibited characteristic proteoglycan turnover. Indomethacin further inhibited proteoglycan synthesis; no significant effect of indomethacin on proteoglycan release was found, and proteoglycan content tended to decrease. Naproxen treatment was not associated with changes in any parameter. In contrast, aceclofenac and, prominently, celecoxib had beneficial effects on OA cartilage. Both were associated with increased proteoglycan synthesis and normalized release. Importantly, both NSAIDs improved proteoglycan content. Inhibition of prostaglandin E2 production indirectly showed that all NSAIDs inhibited COX, with the more COX-2 specific agents having more pronounced effects. Selective COX-1 inhibition resulted in adverse effects on all parameters, and prostaglandin E2 production was only mildly inhibited. NSAIDs with low COX-2/COX-1 selectivity exhibit adverse direct effects on OA cartilage, whereas high COX-2/COX-1 selective NSAIDs did not show such effects and might even have cartilage reparative properties.  相似文献   

8.
Calcium ions and various amounts of proteoglycans were removed from porcine articular cartilage explants using ethylenediaminetetraacetic acid or guanidinium chloride solutions. The water proton magnetic parameters such as T(1) and T(2) relaxation times, diffusion (D), and magnetization transfer (M(S)/M(0)) were then measured by 1D MR microscopy on native specimens, after incubation in the extracting solutions and after final reconditioning in a physiological saline. While the replacement of the interstitial fluid by the treating solutions strongly affected the various MR parameters, calcium depletion did not show any influence on the MRI appearance of the chondral tissue. Interestingly, only the longitudinal relaxation time T(1) and the diffusion coefficient D were seen to be sensitive to an extensive proteoglycan depletion of the tissue. Our results indicate that a modest proteoglycan depletion, as it occurs in the early stage of a pathological cartilage degradation, has little relevance to the above MR parameters. Further MRI studies on the macromolecular components of cartilage are, therefore, necessary for a better understanding of the interaction mechanisms between water and extracellular matrix that might lead to the early diagnosis of the cartilage damage.  相似文献   

9.
Significant complications in the management of osteoarthritis (OA) are the inability to identify early cartilage changes during the development of the disease, and the lack of techniques to evaluate the tissue response to therapeutic and tissue engineering interventions. In recent studies several spectroscopic parameters have been elucidated by Fourier transform infrared imaging spectroscopy (FT-IRIS) that enable evaluation of molecular and compositional changes in human cartilage with progressively severe OA, and in repair cartilage from animal models. FT-IRIS permits evaluation of early-stage matrix changes in the primary components of cartilage, collagen and proteoglycan on histological sections at a spatial resolution of approximately 6.25 microm. In osteoarthritic cartilage, the collagen integrity, monitored by the ratio of peak areas at 1338 cm(-1)/Amide II, was found to correspond to the histological Mankin grade, the gold standard scale utilized to evaluate cartilage degeneration. Apparent matrix degradation was observable in the deep zone of cartilage even in the early stages of OA. FT-IRIS studies also found that within the territorial matrix of the cartilage cells (chondrocytes), proteoglycan content increased with progression of cartilage degeneration while the collagen content remained the same, but the collagen integrity decreased. Regenerative (repair) tissue from microfracture treatment of an equine cartilage defect showed significant changes in collagen distribution and loss in proteoglycan content compared to the adjacent normal cartilage, with collagen fibrils demonstrating a random orientation in most of the repair tissue. These studies demonstrate that FT-IRIS is a powerful technique that can provide detailed ultrastructural information on heterogeneous tissues such as diseased cartilage and thus has great potential as a diagnostic modality for cartilage degradation and repair.  相似文献   

10.
Bone morphogenetic protein-2 (BMP-2) has been proposed as a tool for cartilage repair and as a stimulant of chondrogenesis. In healthy cartilage, BMP-2 is hardly present, whereas it is highly expressed during osteoarthritis. To assess its function in cartilage, BMP-2 was overexpressed in healthy murine knee joints and the effects on proteoglycan (PG) synthesis and degradation were evaluated. Moreover, the contribution of BMP in repairing damage induced by interleukin-1 (IL-1) was investigated. Ad-BMP-2 was injected intra-articularly into murine knee joints, which were isolated 3, 7, and 21 days after injection for histology, immunohistochemistry, and autoradiography. In addition, patellar and tibial cartilage was isolated for RNA isolation or measurement of PG synthesis by means of 35SO4 2- incorporation. To investigate the role for BMP-2 in cartilage repair, cartilage damage was induced by intra-articular injection of IL-1. After 2 days, Ad-BMP-2, Ad-BMP-2 + Ad-gremlin, Ad-gremlin, or a control virus was injected. Whole knee joints were isolated for histology at day 4 or patellae were isolated to measure 35SO4 2- incorporation. BMP-2 stimulated PG synthesis in patellar cartilage on all days and in tibial cartilage on day 21. Aggrecan mRNA expression had increased on all days in patellar cartilage, with the highest increase on day 7. Collagen type II expression showed a similar expression pattern. In tibial cartilage, collagen type II and aggrecan mRNA expression had increased on days 7 and 21. BMP-2 overexpression also induced increased aggrecan degradation in cartilage. VDIPEN staining (indicating matrix metalloproteinase activity) was elevated on day 3 in tibial cartilage and on days 3 and 7 in patellar cartilage, but no longer was by day 21. Increased NITEGE staining (indicating aggrecanase activity) was found on days 7 and 21. In IL-1-damaged patellar cartilage, BMP-2 boosted PG synthesis. Blocking of BMP activity resulted in a decreased PG synthesis compared with IL-1 alone. This decreased PG synthesis was associated with PG depletion in the cartilage. These data show that BMP-2 boosts matrix turnover in intact and IL-damaged cartilage. Moreover, BMP contributes to the intrinsic repair capacity of damaged cartilage. Increased matrix turnover might be functional in replacing matrix molecules in the repair of a damaged cartilage matrix.  相似文献   

11.
OBJECTIVES: As the early form of OA is characterized by elevated water content in the cartilage tissue, the purpose of this study was to verify in vivo if age-related changes in patellar cartilage in healthy volunteers can be detected using quantitative MRI with T2 mapping and volume measurement MRI methods. DESIGN: Thirty healthy volunteers of various classes of age (18 to 65 years old) were enrolled in this study. MR images of the patellar cartilage were acquired at 1.5T. Patellar cartilage volume and T2 maps were determined. RESULTS: Despite non-significance, there was a trend in reducing cartilage volume with ageing (r: -0.25). In contrast global T2 slightly increased with ageing (r: 0.46). BMI (r: 0.51) and bone volume (r: 0.69) are well correlated to cartilage volume. CONCLUSION. Age-related physiologic changes in the water content of patellar cartilage can be detected using MRI. The proposed T2-mapping method, coupled with other non-invasive MR cartilage imaging techniques, could aid in the early diagnosis of OA.  相似文献   

12.
T1 relaxation in the rotating frame (T1rho) is a sensitive magnetic resonance imaging (MRI) contrast for acute brain insults. Biophysical mechanisms affecting T1rho relaxation rate (R1rho) and R1rho dispersion (dependency of R1rho on the spin-lock field) were studied in protein solutions by varying their chemical environment and pH in native, heat-denatured, and glutaraldehyde (GA) cross-linked samples. Low pH strongly reduced R1rho in heat-denatured phantoms displaying proton resonances from a number of side-chain chemical groups in high-resolution 1H NMR spectra. At pH of 5.5, R1rho dispersion was completely absent. In contrast, in the GA-treated phantoms with very few NMR visible side chain groups, acidic pH showed virtually no effect on R1rho. The present data point to a crucial role of proton exchange on R1rho and R1rho dispersion in immobilized protein solution mimicking tissue relaxation properties.  相似文献   

13.
Significant complications in the management of osteoarthritis (OA) are the inability to identify early cartilage changes during the development of the disease, and the lack of techniques to evaluate the tissue response to therapeutic and tissue engineering interventions. In recent studies several spectroscopic parameters have been elucidated by Fourier transform infrared imaging spectroscopy (FT-IRIS) that enable evaluation of molecular and compositional changes in human cartilage with progressively severe OA, and in repair cartilage from animal models. FT-IRIS permits evaluation of early-stage matrix changes in the primary components of cartilage, collagen and proteoglycan on histological sections at a spatial resolution of ∼6.25 μm. In osteoarthritic cartilage, the collagen integrity, monitored by the ratio of peak areas at 1338 cm−1/Amide II, was found to correspond to the histological Mankin grade, the gold standard scale utilized to evaluate cartilage degeneration. Apparent matrix degradation was observable in the deep zone of cartilage even in the early stages of OA. FT-IRIS studies also found that within the territorial matrix of the cartilage cells (chondrocytes), proteoglycan content increased with progression of cartilage degeneration while the collagen content remained the same, but the collagen integrity decreased. Regenerative (repair) tissue from microfracture treatment of an equine cartilage defect showed significant changes in collagen distribution and loss in proteoglycan content compared to the adjacent normal cartilage, with collagen fibrils demonstrating a random orientation in most of the repair tissue. These studies demonstrate that FT-IRIS is a powerful technique that can provide detailed ultrastructural information on heterogeneous tissues such as diseased cartilage and thus has great potential as a diagnostic modality for cartilage degradation and repair.  相似文献   

14.
Boschetti F  Peretti GM 《Biorheology》2008,45(3-4):337-344
Osteoarthritis (OA) is a disease affecting articular cartilage and the underlying bone, resulting from many biological and mechanical interacting factors which change the extracellular matrix (ECM) and cells and lead to increasing levels of cartilage degeneration, like softening, fibrillation, ulceration and cartilage loss. The early diagnosis of the disease is fundamental to prevent pain, further tissue degeneration and reduce hospital costs. Although morphological modifications can be detected by modern non-invasive diagnostic techniques, they may not be evident in the early stages of OA. The mechanical properties of articular cartilage are related to its composition and structure and are sensitive to even small changes in the ECM that could occur in early OA. The aim of the present study was to compare the mechanical properties of healthy and OA cartilage using a combined experimental-numerical approach. Experimental assessments consisted of step wise confined and unconfined compression and tension stress relaxation tests on disks (for compression) or strips (for tension) of cartilage obtained from human femoral heads discarded from the operating room after total hip replacement. The numerical model was based on the biphasic theory and included the tension-compression non-linearity. Considering OA samples vs normal samples, the static compressive modulus was 55-68% lower, the permeability was 60-80% higher, the dynamic compressive modulus was 59-64% lower, the static tension modulus was 72-83% lower. The model successfully simulated the experimental tests performed on healthy and OA cartilage and was used in combination with the experimental tests to evaluate the role of different ECM components in the mechanical response of normal and OA cartilage.  相似文献   

15.
The phospholipids protons of native and reconstituted sarcoplasmic reticulum (SR) membrane vesicles yield well-resolved nuclear magnetic resonance (NMR) spectra. Resonance area measurements, guided by the line shape theory of Bloom and co-workers, imply that we are observing a large fraction of the lipid intensity and that the protein does not appear to reduce the percent of the signal that is well resolved. We have measured the spin-lattice (T1) and spin-spin (T2) relaxation rates of the choline, methylene, and terminal methyl protons at 360 MHz and the spin-lattice relaxation rate in the rotating frame (T1 rho) at 100 MHz. Both the T1 and T2 relaxation rates are single exponential processes for all of the resonances if the residual water proton signal is thoroughly eliminated by selective saturation. The T1 and T2 relaxation rates increase as the protein concentration increases, and T2 rate decrease with increasing temperature. This implies that the protein is reducing both high frequency (e.g., trans-gauche methylene isomerizations) and low frequency (e.g., large amplitude, chain wagging) lipid motions, from the center of the bilayer to the surface. It is possible that spin diffusion contributes to the effect of protein on lipid T1's although some of the protein-induced T1 change is due to motional effects. The T2 relaxation times are observed to be near 1 ms for the membranes with highest protein concentration and approximately 10 ms for the lipids devoid of protein. This result, combined with the observation that the T2 rates are monophasic, suggests that at least two lipid environments exist in the presence of protein, and that the lipids are exchanging between these environments at a rate greater than 1/T2 or 10(3) s-1. The choline resonance yields single exponential T1 rho relaxation in the presence and absence of protein, whereas the other resonances measured exhibit biexponential relaxation. Protein significantly increases the single T1 rho relaxation rate of the choline peak while primarily increasing the T1 rho relaxation rate of the more slowly relaxing component of the methylene and methyl resonances.  相似文献   

16.
Quantitative magnetic resonance imaging (MRI) is the most potential non-invasive means for revealing the structure, composition and pathology of articular cartilage. Here we hypothesize that cartilage mechanical properties as determined by the macromolecular framework and their interactions can be accessed by quantitative MRI. To test this, adjacent cartilage disk pairs (n=32) were prepared from bovine proximal humerus and patellofemoral surfaces. For one sample, the tissue Young's modulus, aggregate modulus, dynamic modulus and Poisson's ratio were determined in unconfined compression. The adjacent disk was studied at 9.4T to determine the tissue T(2) relaxation time, sensitive to the integrity of the collagen network, and T(1) relaxation time in the presence of Gd-DTPA, a technique developed for the estimation of cartilage proteoglycan (PG) content. Quantitative MRI parameters were able to explain up to 87% of the variations in certain biomechanical parameters. Correlations were further improved when data from the proximal humerus was assessed separately. MRI parameters revealed a topographical variation similar to that of mechanical parameters. Linear regression analysis revealed that Young's modulus of cartilage may be characterized more completely by combining both collagen- and PG-sensitive MRI parameters. The present results suggest that quantitative MRI can provide important information on the mechanical properties of articular cartilage. The results are encouraging with respect to functional imaging of cartilage, although in vivo applicability may be limited by the inferior resolution of clinical MRI instruments.  相似文献   

17.
Brandt KD  Smith GN  Myers SL 《Biorheology》2004,41(3-4):493-502
We previously reported that intraarticular injections of hyaluronan (HA), administered prophylactically to dogs in whom knee osteoarthritis had been induced by transection of the anterior cruicate ligament, did not significantly modify the intraarticular pathology but decreased the proteogylcan concentration of the articular cartilage by as much as 30%. Because the cartilage proteoglycan concentration is directly related to the stiffness of the tissue, these results raised the possibility that intraarticular HA therapy could exacerbate OA. In the present study, using a different HA formulation, with a longer interval between intraarticular HA injection and examination of joint tissues, we found that neither prophylactic nor therapeutic administration of HA had an effect on the severity of OA pathology, the magnitude of vertical ground reaction forces generated by the unstable hind limb (a surrogate for joint pain), or the cartilage proteoglycan concentration. The data suggest that the suppression of proteoglycan synthesis induced by HA is temporary and fully reversible and that HA injections do not result in overloading of the OA extremity. A significant correlation was noted between the severity of chondropathy and the magnitude of the vertical ground reaction forces generated by the unstable limb.  相似文献   

18.
Site-specific and depth-dependent properties of cartilage were implemented within a finite element (FE) model to determine if compositional or structural changes in the tissue could explain site-specific alterations of chondrocyte deformations due to cartilage loading in rabbit knee joints 3 days after a partial meniscectomy (PM). Depth-dependent proteoglycan (PG) content, collagen content and collagen orientation in the cartilage extracellular matrix (ECM), and PG content in the pericellular matrix (PCM) were assessed with microscopic and spectroscopic methods. Patellar, femoral groove and samples from both the lateral and medial compartments of the femoral condyle and tibial plateau were extracted from healthy controls and from the partial meniscectomy group. For both groups and each knee joint site, axisymmetric FE models with measured properties were generated. Experimental cartilage loading was applied in the simulations and chondrocyte volumes were compared to the experimental values. ECM and PCM PG loss occurred within the superficial cartilage layer in the PM group at all locations, except in the lateral tibial plateau. Collagen content and orientation were not significantly altered due to the PM. The FE simulations predicted similar chondrocyte volume changes and group differences as obtained experimentally. Loss of PCM fixed charge density (FCD) decreased cell volume loss, as observed in the medial femur and medial tibia, whereas loss of ECM FCD increased cell volume loss, as seen in the patella, femoral groove and lateral femur. The model outcome, cell volume change, was also sensitive to applied tissue geometry, collagen fibril orientation and loading conditions.  相似文献   

19.
Chowdhury TT  Bader DL  Lee DA 《Biorheology》2006,43(3-4):413-429
*NO and PGE2 are inflammatory mediators derived from the inducible iNOS and COX enzymes and are potentially important pharmacological targets in OA. Both mechanical loading and IL-1beta will influence the release of *NO and PGE2. Accordingly, the current study examines the effect of dynamic compression on *NO and PGE2 release by human chondrocytes cultured in agarose constructs in the presence and absence of selective iNOS and COX-2 inhibitors. The current data demonstrate that IL-1beta induced nitrite and PGE2 release and inhibited [3H]-thymidine and 35SO4 incorporation. Inhibitor experiments indicate that 1400W and NS-398 either partially reversed or abolished IL-1beta induced nitrite and PGE2 release. IL-1beta induced inhibition of cell proliferation and proteoglycan synthesis was partially reversed with 1400W but was not influenced by NS-398. For the dynamic loading experiments, 1400W and NS-398 either reduced or abolished the compression-induced inhibition of *NO and PGE2 release in the presence of IL-1beta. The IL-1beta induced inhibition of cell proliferation was not influenced by 1400W or NS-398 whereas strain-induced stimulation of proteoglycan synthesis in the presence of IL-1beta was enhanced by 1400W. The data obtained using human chondrocytes demonstrate that IL-1beta induced *NO and PGE2 release via an iNOS-driven-COX-2 inter-dependent pathway. This response could be reversed by dynamic compression. These data indicate interactions exist between the NOS and COX pathways, a finding which will provide new insights in the development of pharmacological or biophysical treatments for cartilage disorders such as OA.  相似文献   

20.
Articular cartilage is optimised for bearing mechanical loads. Chondrocytes are the only cells present in mature cartilage and are responsible for the synthesis and integrity of the extracellular matrix. Appropriate joint loads stimulate chondrocytes to maintain healthy cartilage with a concrete protein composition according to loading demands. In contrast, inappropriate loads alter the composition of cartilage, leading to osteoarthritis (OA). Matrix metalloproteinases (MMPs) are involved in degradation of cartilage matrix components and have been implicated in OA, but their role in loading response is unclear. With this study, we aimed to elucidate the role of MMP-1 and MMP-3 in cartilage composition in response to mechanical load and to analyse the differences in aggrecan and type II collagen content in articular cartilage from maximum- and minimum-weight-bearing regions of human healthy and OA hips. In parallel, we analyse the apoptosis of chondrocytes in maximal and minimal load areas. Because human femoral heads are subjected to different loads at defined sites, both areas were obtained from the same hip and subsequently evaluated for differences in aggrecan, type II collagen, MMP-1, and MMP-3 content (enzyme-linked immunosorbent assay) and gene expression (real-time polymerase chain reaction) and for chondrocyte apoptosis (flow cytometry, bcl-2 Western blot, and mitochondrial membrane potential analysis). The results showed that the load reduced the MMP-1 and MMP-3 synthesis (p < 0.05) in healthy but not in OA cartilage. No significant differences between pressure areas were found for aggrecan and type II collagen gene expression levels. However, a trend toward significance, in the aggrecan/collagen II ratio, was found for healthy hips (p = 0.057) upon comparison of pressure areas (loaded areas > non-loaded areas). Moreover, compared with normal cartilage, OA cartilage showed a 10- to 20-fold lower ratio of aggrecan to type II collagen, suggesting that the balance between the major structural proteins is crucial to the integrity and function of the tissue. Alternatively, no differences in apoptosis levels between loading areas were found – evidence that mechanical load regulates cartilage matrix composition but does not affect chondrocyte viability. The results suggest that MMPs play a key role in regulating the balance of structural proteins of the articular cartilage matrix according to local mechanical demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号