首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of thymol based substituted pyrazolines and chalcones was synthesized and evaluated for antimalarial activity, using in-vitro and in-vivo malaria models. All the target compounds (5a-k and 6a-j) were found to be active against human malaria parasite strain Plasmodium falciparum NF54. Among all, compounds 5e and 5f of chalcone series and 6c and 6f of pyrazoline series exhibited prominent antimalarial activity with IC50 less than 3 and 2 μM respectively, while other pyrazolines also significantly inhibited the P. falciparum with IC50 less than 10 μM. The designed pharmacophores were found to be effective against P. falciparum. Compound 6f was found to be able to retard malaria progression in mice. This was evident through decreased parasitemia, increased mean survival time and hemoglobin content in the treated animals. Moreover, 6f was observed as an inhibitor of heme polymerization pathway of the malaria parasite. It also inhibited free heme degradation, which could be possibly responsible for higher reactive oxygen species (ROS) in parasite, thus inhibiting the rapid proliferation of the parasite. In addition to this, compound 6f was found to be non-toxic with a good selectivity index. Based on these observations, the compound 6f could be taken up for further antimalarial lead optimization studies.  相似文献   

2.
A novel series of fatty acid synthase (FAS) inhibitors with D-(−)-pantolactone moiety and potential utility for the treatment of obesity were designed, synthesized and characterized, in which the structure of compound 3k was further confirmed by single X-ray diffraction. The mouse FAS inhibitory activity of synthesized compounds was evaluated. Major synthesized compounds (except 3g, 3i, 3k, 3l, and 3n) exhibited moderate FAS inhibitory properties with IC50 values in the range of 13.68 ± 1.52–33.19 ± 1.39 μM, reference inhibitor C75 has IC50 value of 13.86 ± 2.79 μM. Eight compounds (3c, 3d, 3e, 3f, 3j, 3m, 3q and 3r) also displayed inhibitory effect on lipid accumulation in human HepG2 cells. Additionally, the molecular docking study revealed that compound 3m having good inhibition activity against FAS and lipid accumulation also showed promising binding affinities with hFAS, while its binding model with hFAS (PDB ID: 4PIV) was different from that of reference compound C75.  相似文献   

3.
Two series of novel kojic acid analogues (4aj) and (5ad) were designed and synthesized, and their mushroom tyrosinase inhibitory activities was evaluated. The result indicated that all the synthesized derivatives exhibited excellent tyrosinase inhibitory properties having IC50 values in the range of 1.35 ± 2.15–17.50 ± 2.75 μM, whereas standard inhibitor kojic acid have IC50 values 20.00 ± 1.08 μM. Specifically, 5-phenyl-3-[5-hydroxy-4-pyrone-2-yl-methylmercap-to]-4-(2,4-dihydroxyl-benzylamino)-1,2,4-triazole (4f) exhibited the most potent tyrosinase inhibitory activity with IC50 value of 1.35 ± 2.15 μM. The kinetic studies of the compound (4f) demonstrated that the inhibitory effects of the compound on the tyrosinase were belonging to competitive inhibitors. Meanwhile, the structure-activity relationship was discussed.  相似文献   

4.
A series of 5-substitutedbenzylideneamino-2-butylbenzofuran-3-yl-4-methoxyphenyl methanones is synthesized and evaluated for antileishmanial and antioxidant activities. Compounds 4f (IC50?=?52.0?±?0.09?µg/ml), 4h (IC50?=?56.0?±?0.71?µg/ml) and 4l (IC50?=?59.3?±?0.55?µg/ml) were shown significant antileishmanial when compared with standard sodium stibogluconate (IC50?=?490.0?±?1.5?µg/ml). Antioxidant study revealed that compounds 4i (IC50?=?2.44?±?0.47?µg/ml) and 4l (IC50?=?3.69?±?0.44?µg/ml) have shown potent comparable activity when compared with standard ascorbic acid (IC50?=?3.31?±?0.34?µg/ml). Molecular docking study was carried out which replicating results of biological activity in case of initial hits 4f and 4h suggesting that these compounds have a potential to become lead molecules in drug discovery process. In silico ADME study was performed for predicting pharmacokinetic profile of the synthesised antileishmanial agents and expressed good oral drug like behaviour.  相似文献   

5.
With the increasingly acquired resistance, relapse and side effects of known marketed BRAFV600E inhibitors, it’s significant to design the more effective and novel drugs. In this study, a series of novel pyrazole derivatives containing acetamide bond had been designed and synthesized on the basis of analysis of the endogenous ligands extracted from the known B-Raf co-crystals in the PDB database. Then, the compounds were evaluated for biological activities as potential BRAFV600E inhibitors. The bioassay results in vitro against three human tumor cell lines revealed that some of the compounds showed very impressed antiproliferative property. Among them, the compound 5r with IC50 values of 0.10?±?0.01?μM against BRAFV600E and 0.96?±?0.10?μM against A375 cell line, showed the most potent inhibitory effect, compared with the positive-controlled agents vemurafenib (IC50?=?0.04?±?0.004?μM for BRAFV600E, IC50?=?1.05?±?0.10?μM against A375). Further investigation confirmed that the compound 5r could induce A375 cell apoptosis, induce A375 cell death through changing mitochondrial membrane potential, and result in A375 cell arrest at the G1 phase of the cell cycle. Docking simulations results indicated that the compound 5r could bind tightly at the BRAFV600E active site. Meanwhile, 3D-QSAR model suggested that these compounds may be potential anticancer inhibitors. Overall, the article provided some new molecular scaffolds for the further BRAFV600E inhibitors.  相似文献   

6.
A new series of sulfonate derivatives 1azk were synthesized and evaluated as inhibitors of nucleotide pyrophosphatases. Most of the compounds exhibited good to moderate inhibition towards NPP1, NPP2, and NPP3 isozymes. Compound 1m was a potent and selective inhibitor of NPP1 with an IC50 value of 0.387 ± 0.007 µM. However, the most potent inhibitor of NPP3 was found as 1x with an IC50 value of 0.214 ± 0.012 µM. In addition, compound 1e was the most active inhibitor of NPP2 with an IC50 value of 0.659 ± 0.007 µM. Docking studies of the most potent compounds were carried out, and the computational results supported the in vitro results.  相似文献   

7.
A series of nine new N-substituted-4-((1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)amino)benzamides (6a-i) derivatives was synthesized. All the compounds were screened in-vitro for BSA anti-denaturation property, antioxidant assay and p38α MAP kinase inhibition. The in vitro anti-inflammatory assay results revealed that the compounds (6f-i) showed better activity than the compounds 6a-e. Compound 6f bearing the 4-chlorophenyl group showed in vitro anti-inflammatory activity (82.35 ± 4.04) comparable to standard drug diclofenac sodium (84.13 ± 1.63) and better p38α MAP kinase inhibitory activity (IC50 = 0.032 ± 1.63 µM) than the prototypic inhibitor SB203580 (IC50 = 0.041 ± 1.75 µM). The selected active compounds (6f-i) were further studied in animal models for anti-inflammatory activity, ulcerogenic liability, lipid peroxidation and TNF-α inhibition potential. Compound 6f showed promising anti-inflammatory potential with a percentage inhibition of 83.73% when compared to the standard, diclofenac sodium (78.05%). Compound 6f was also found to show reduced ulcerogenic liability and lipid peroxidation in comparison to the standard. This compound also potently inhibited the lipopolysaccharide (LPS)-induced TNF-α production in mice model (ID50 = 8.23 mg/kg) in comparison to SB 203580 (ID50 = 26.38 mg/kg). The molecular docking of compounds 6a-i against p38α MAP kinase receptor was also performed to understand ligand receptor interaction. Amongst all synthesized molecules compound 6f displayed highest docking score of −9.824. It showed hydrogen bonding interactions with Asn115 and pi-cation interaction with Lys53.  相似文献   

8.
With the aim to discover novel, efficient and selective inhibitors of human alkaline phosphatase and nucleotide pyrophosphatase enzymes, two new series of pyrazolyl pyrimidinetriones (PPTs) (6a–g) and thioxopyrimidinediones (PTPs) (6h–n) were synthesized in good chemical yields using Knoevenagel condensation reaction between pyrazole carbaldehydes (4a–g) and pharmacologically active N-alkylated pyrimidinetrione (5a) and thioxopyrimidinedione (5b). The inhibition potential of the synthesized hybrid compounds was evaluated against human alkaline phosphatase (h-TNAP and h-IAP) and ectonucleotidase (h-NPP1 and h-NPP3) enzymes. Most of the tested analogs were highly potent with a variable degree of inhibition depending on the functionalized hybrid structure. The detailed structure-activity relationship (SAR) of PPT and PTP derivatives suggested that the compound with unsubstituted phenyl ring from PPT series led to selective and potent inhibition (6a; IC50 = 0.33 ± 0.02 µM) of h-TNAP, whereas compound 6c selectively inhibited h-IAP isozyme with IC50 value of 0.86 ± 0.04 µM. Similarly, compounds 6b and 6h were identified as the lead scaffolds against h-NPP1 and h-NPP3, respectively. The probable binding modes for the most potent inhibitors were elucidated through molecular docking analysis. Structure-activity relationships, mechanism of action, cytotoxic effects and druglikeness properties are also discussed.  相似文献   

9.
A novel series of acridine linked to thioacetamides 9a–o were synthesized and evaluated for their α-glucosidase inhibitory and cytotoxic activities. All the synthesized compounds exhibited excellent α-glucosidase inhibitory activity in the range of IC50 = 80.0 ± 2.0–383.1 ± 2.0 µM against yeast α-glucosidase, when compared to the standard drug acarbose (IC50 = 750.0 ± 1.5 µM). Among the synthesized compounds, 2-((6-chloro-2-methoxyacridin-9-yl)thio)-N-(p-tolyl) acetamide 9b displayed the highest α-glucosidase inhibitory activity (IC50 = 80.0 ± 2.0 μM). The in vitro cytotoxic assay of compounds 9a–o against MCF-7 cell line revealed that only the compounds 9d, 9c, and 9n exhibited cytotoxic activity. Cytotoxic compounds 9d, 9c, and 9n did not show cytotoxic activity against the normal human cell lines HDF. Kinetic study revealed that the most potent compound 9b is a competitive inhibitor with a Ki of 85 μM. Furthermore, the interaction modes of the most potent compounds 9b and 9f with α-glucosidase were evaluated through the molecular docking studies.  相似文献   

10.
Herein we report the discovery of a series of new small molecule inhibitors of histone lysine demethylase 4D (KDM4D). Molecular docking was first performed to screen for new KDM4D inhibitors from various chemical databases. Two hit compounds were retrieved. Further structural optimization and structure-activity relationship (SAR) analysis were carried out to the more selective one, compound 2, which led to the discovery of several new KDM4D inhibitors. Among them, compound 10r is the most potent one with an IC50 value of 0.41 ± 0.03 μM against KDM4D. Overall, compound 10r could be taken as a good lead compound for further studies.  相似文献   

11.
A novel series of 5,6-dichloro-2-methyl-1H-benzimidazole derivatives was synthesized and then screened for their urease inhibitory activity. All compounds showed more potent inhibitory activity in the range of IC50 = 0.0294 ± 0.0015–0.1494 ± 0.0041 µM than thiourea (IC50 = 0.5117 ± 0.0159 µM), as a reference inhibitor. Among all the tested compounds, the compound 15 (IC50 = 0.0294 ± 0.0015 µM) having strong electron-withdrawing nitro group on the phenyl ring was recorded as the most potent inhibitor of urease. All compounds were docked at the active sites of the Jack bean urease enzyme to investigate the reason of the inhibitory activity and the possible binding interactions of enzyme-ligand complexes.  相似文献   

12.
Four series of phenylpicolinamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (12ae, 13af, 14af and 15ai) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7) and c-Met kinase. Five selected compounds (13b, 15b, 15d, 15e and 15f) were further evaluated for the activity against HepG2 and Hela cell lines. Eighteen of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Seven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15f showed superior activity to Foretinib, with the IC50 values of 1.04 ± 0.11 μM, 0.02 ± 0.01 μM and 9.11 ± 0.55 μM against A549, PC-3 and MCF-7 cell lines, which were 0.62 to 19.5 times more active than Foretinib (IC50 values: 0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that replacement of quinoline nucleus of the previous active compounds with 1H-pyrrolo[2,3-b]pyridine moiety maintained even improved the potent cytotoxic activity. The results suggested that the introduction of fluoro atoms to the aminophenoxy part of target compounds or the phenyl group of pyrimidine substituted on C-4 position was benefit for the activity.  相似文献   

13.
A new series of 2,3-disubstituted quinazolin-4(3H)-one compounds including oxadiazole and furan rings was synthesized. Their inhibitory activities on urease were assessed in vitro. All newly synthesized compounds exhibited potent urease inhibitory activity in the range of IC50 = 1.55 ± 0.07–2.65 ± 0.08 µg/mL, when compared with the standard urease inhibitors such as thiourea (IC50 = 15.08 ± 0.71 µg/mL) and acetohydroxamic acid (IC50 = 21.05 ± 0.96 µg/mL). 2,3-Disubstituted quinazolin-4(3H)-one derivatives containing furan ring (3a-e) were found to be the most active inhibitors when compared with the compounds 2a-e bearing oxadiazole ring. Compound 3a, bearing 4-chloro group on phenyl ring, was found as the most effective inhibitor of urease with the IC50 value of 1.55 ± 0.11 µg/mL. The molecular docking studies of the newly synthesized compounds were performed to identify the probable binding modes in the active site of the Jack bean urease (JBU) enzymes.  相似文献   

14.
Herein, substituted imidazole-pyrazole hybrids (2a-2n) were prepared via a multi component reaction employing pyrazole-4-carbaldehydes (1a-1d), ammonium acetate, benzil and arylamines as reactants. All the new compounds were characterized through their spectral and elemental analyses. Further these compounds were tested against α-glucosidase enzyme. The compounds 2k, 2l and 2n possessed good inhibition potencies, however, compounds 2f (IC50 value: 25.19 ± 0.004 μM) and 2m (IC50 value: 33.62 ± 0.03 μM) were the most effective compounds of the series. Furthermore, molecular docking helped to understand the binding interactions of 2f and 2m with the understudy yeast’s α-glucosidase enzyme.  相似文献   

15.
A novel series of pyrazolo[1,5-a]pyrimidines were synthesized and proved by their spectral and elemental analysis, some elected of the newly synthesized compounds were examined for their cytotoxic activity employing MTT assay on two cancer cell lines (Breast and Hela cancers). Compounds 5, 7e and 7i showed the higher cytotoxicity against two cancer cell lines with (IC50 = 13.91 ± 1.4 and 22.37 ± 1.8 μM/L), (IC50 = 6.56 ± 0.5 and 8.72 ± 0.9 μM/L) and (IC50 = 4.17 ± 0.2 and 5.57 ± 0.4 μM/L) for two cancer cell lines breast and hela respectively, using doxorubicin as a reference drug. The most potent cytotoxic active compounds 5, 7e and 7i presented inhibitory activity against KDM (histone lysine demethylases) with IC50 = 4.05, 1.91 and 2.31 μM, respectively. The most potent KDM inhibitor 7e (IC50 = 1.91 μM) showed to cause cell cycle arrest at G2/M phase by 4 folds than control and induce total apoptotic effect by 10 folds more than control. In silico studies performed on the more potent cytotoxic active compounds 5, 7e and 7i included lipinisk's rule of five. Moreover, molecular docking study was utilized to explore the binding mode of the most active compounds to the target enzyme (PDB-ID: 5IVE). Also, some bioinformatics studies were carried out for compounds 7e and 7i using Swiss ADME (Swiss Institute of bioinformatics 2018).  相似文献   

16.
Twenty-five derivatives of 5-chloro-2-aryl benzo[d]thiazole (125) were synthesized and evaluated for their α-glucosidase (S. cerevisiae EC 3.2.1.20) inhibitory activity in vitro. Among them eight compounds showed potent activity with IC50 values between 22.1 ± 0.9 and 136.2 ± 5.7 μM, when compared with standard acarbose (IC50 = 840 ± 1.73 μM). The most potent compounds 4, 9, and 10 showed IC50 values in the range of 22.1 ± 0.9 to 25.6 ± 1.5 μM. Compounds 2, 5, 11, and 19 showed IC50 values within the range of 40.2 ± 0.5 to 60.9 ± 2.0 μM. Compounds 1 and 3 were also found to be good inhibitors with IC50 values 136.2 ± 5.7 and 104.8 ± 9.9 μM, respectively. Their activities were compared with α-glucosidase inhibitor drug acarbose (standard) (IC50 = 840 ± 1.73 μM). The remaining compounds were inactive. Structure-activity relationships (SAR) have also been established. Kinetics studies indicated compounds 2, 3, 10, 19, and 25 to be non-competitive, while 1, 5, 9, and 11 as competitive inhibitors of α-glucosidase enzyme. All the active compounds (15, 911, and 19) were also found to be non-cytotoxic, in comparison to the standard drug i.e., doxorubicin (IC50 = 0.80 ± 0.12 μM) in MTT assay. Furthermore, molecular interactions of active compounds with the enzyme binding sites were predicted through molecular modeling studies.  相似文献   

17.
A series of acetophenone derivatives (10a10i, 11, 12a12g, 13a13g, 14a14d and 15a15l) were designed, synthesized and evaluated for antifungal activities in vitro and in vivo. The antifungal activities of 53 compounds were tested against several plant pathogens, and their structure–activity relationship was summarized. Compounds 10a10f displayed better antifungal effects than two reference fungicides. Interestingly, the most potent compound 10d exhibited antifungal properties against Cytospora sp., Botrytis cinerea, Magnaporthe grisea, with IC50 values of 6.0–22.6?µg/mL, especially Cytospora sp. (IC50?=?6.0?µg/mL). In the in vivo antifungal assays, 10d displayed the significant protective efficacy of 55.3% to Botrytis cinerea and 73.1% to Cytospora sp. The findings indicated that 10d may act as a potential pesticide lead compound that merits further investigation.  相似文献   

18.
A series of new DNA-interactive C3-tethered 1,2,3-triazolo-β-carboline derivatives have been synthesized via ‘click’ reaction and evaluated for their in vitro cytotoxicity as well as DNA binding affinity. Interestingly, these hybrids have displayed potent in vitro cytotoxicity in comparison to Harmine against the HT-29 (colon cancer) and HGC-27 (gastric cancer) cell lines. The compounds 7f, 7k, 7n and 7s appear to be more effective against the HGC-27 cell line, among which compound 7f showed the highest cytotoxicity (5.44 ± 0.58, IC50 μM). The compounds 7e and 7f appear to be more active against the HT-29 cell line, among which compound 7f exhibited the highest cytotoxicity (3.67 ± 0.62, IC50 μM). To gain more insight into the DNA-binding ability, spectroscopic techniques such as UV–Visible, fluorescence and circular dichroism studies were performed. Viscosity measurements and molecular docking studies substantiate that these compounds indeed bind to DNA via the minor groove.  相似文献   

19.
derivatives of benzo[g]indazole 5a, b, benzo[h]quinazoline 7, 12a-c, 13a-c and 15a-c and benzo[h]quinoline 17a-c and 19a-c were synthesized from 6-methoxy-3,4-dihydronaphthalen-1(2H)-one (1). Anticancer activity of all the synthesized compounds was evaluated against four cancerous cell lines; HepG2, MCF-7, HCT116 and Caco-2. MCF-7 cells emerged as the most sensitive cell line against the target compounds. All the examined compounds, except 5a and 5b, displayed potent to moderate anticancer activity against MCF-7 cells with an IC50 values ranging from 7.21 to 21.55 µM. In particular, compounds 15c and 19b emerged as the most potent derivatives against EGFR-expressing MCF-7 cells with IC50 values = 7.70 ± 0.39 and 7.21 ± 0.43 μM, respectively. Additionally, both compounds did not display any significant cytotoxicity towards normal BHK-21 fibroblast cells (IC50 value > 200 µM), thereby providing a good safety profile as anticancer agents. Furthermore, compounds 15c and 19b displayed potent inhibitory activity towards EGFR in the sub-micromolar range (IC50 = 0.13 ± 0.01 and 0.14 ± 0.01 μM, respectively), compared to that of Erlotinib (IC50 = 0.11 ± 0.01 μM). Docking studies for 15c and 19b into EGFR active site was carried out to explore their potential binding modes. Therefore, compounds 15c and 19b can be considered as interesting candidates for further development of more potent anticancer agents.  相似文献   

20.
Nucleoside triphosphate diphosphohydrolases (NTPDases), an important class of ectonucleotidases, are responsible for the sequential hydrolysis of extracellular nucleotides. However, over-expression of NTPDases has been linked with various pathological diseases e.g. cancer. Thus, to treat these diseases, the inhibitors of this class of enzyme are of interest. The significance of this class of enzyme encouraged us to synthesize a new class of quinoline derivatives with the aim to find selective and potent inhibitors of NTPDases. Therefore, a mild and efficient synthetic route was established for the synthesis of quinoline derivatives. The reaction was catalyzed by molecular iodine to afford the substituted quinoline derivatives. All the synthetic derivatives (3a-3w) were evaluated for their potential to inhibit the h-NTPDase1, 2, 3 and 8. Most of the compounds were identified as dual inhibitors of h-NTPDase1 and 8 with lower effects on h-NTPDase2 and 3. Two compounds i.e. 3f and 3t were identified as selective inhibitor of h-NTPDase1 whereas the compound 3s inhibited the h-NTPDase8 selectively. Moreover, the compounds 3p (IC50 = 0.23 ± 0.01 µM), 3j (IC50 = 21.0 ± 0.03 µM) 3d (IC50 = 5.38 ± 0.21 µM) and 3c (IC50 = 1.13 ± 0.04 µM) were found to be the most potent inhibitors of h-NTPDase1, 2, 3 and 8, respectively. To determine the binding interaction, molecular docking studies were also carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号