首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We examined the influence exerted, through disuse of the hindlimb, on the collagen fibres of the achilles tendon in rats. With disuse the body mass decreased by 28%, and the mass of soleus muscle decreased by 20%. A decrease in the surface area and diameter was observed in the experimental group when compared to the control group. A histogram of the collagen fibres showed a decrease of the thick fibres in the experimental group. The maximum surface area of collagen fibres in the experimental group was seen to be only 43% of that of the control group. These results showed a decrease in the thickness of the collagen fibres of the achilles tendon through disuse. This seemed to suggest that resistance to tension is decreased by disuse.  相似文献   

2.
3.
Pain-free normal Achilles tendons and chronic painful Achilles tendons were examined by the use of antibodies against a general nerve marker (protein gene-product 9.5, PGP9.5), sensory markers (substance P, SP; calcitonin gene-related peptide, CGRP), and immunohistochemistry. In the normal tendons, immunoreactions against PGP9.5 and against SP/CGRP were encountered in the paratendinous loose connective tissue, being confined to nerve fascicles and to nerve fibers located in the vicinity of blood vessels. To some extent, these immunoreactions also occurred in the tendon tissue proper. Immunoreaction against PGP9.5 and against SP/CGRP was also observed in the tendinosis samples and included immunoreactive nerve fibers that were intimately associated with small blood vessels. In conclusion, Mechanoreceptors (sensory corpuscles) were occasionally observed, nerve-related components are present in association with blood vessels in both the normal and the tendinosis tendon.  相似文献   

4.
Connective tissue susceptibility to nonenzymatic glycation was examined following 0, 2, 4, 6, 8, and 10 weeks of incubating the rabbit Achilles tendon in phosphate-buffered saline containing ribose (glycated). The biomechanical integrity of the glycated tendons was then compared to control tendons incubated in phosphate-buffered saline (non-glycated) at each time interval, while the biochemical stability of both groups of tendons was determined by examining collagen extractability and the formation of pentosidine at 8 weeks. Whereas there were no significant biomechanical differences between control and glycated tendons at 0- and 2-week intervals (P > 0.05), moderately significant increases in maximum load, energy to yield, and toughness of glycated tendons were observed at 4 weeks. Beyond 4 weeks of incubation, the differences between glycated and non-glycated tendons became highly significant, as glycated tendons withstood more load and tensile stress (P < 0.01 for each variable), attained significantly higher modulus of elasticity (P < 0.01), absorbed more energy (P < 0.01), and became tougher (P < 0.01) than controls. These differences in the biomechanical indices of the effects of glycation were stable between the 6th and 10th week of glycation. The maximum increases in the biomechanical measurements as a result of glycation were 29% for maximum load, 125% for stress, 19% for strain, 106% for Young's modulus of elasticity, 14% for energy to yield, and 57% for toughness. Biochemical analysis showed a 61% reduction in the extractability of neutral salt-soluble collagen, a 48% decrease in acid-soluble collagen, and a 29% decline in pepsin-soluble collagen in glycated tendons (P < 0.01). In contrast, there was a 28% increase in the amount of insoluble collagen and significantly higher amounts of pentosidine (P < 0.01) in glycated tendons. Collectively, these biomechanical and biochemical results suggest that nonenzymatic glycation may explain the altered stability of connective tissue matrix induced by the processes of diabetes and aging.  相似文献   

5.
Following surgical Achilles tendon reconstruction surgery, there is a distinct trend towards an early and faster rehabilitation protocol to avoid muscle atrophy. However, this procedure involves the risk of a higher complication rate. In order to reduce the occurrence of re-ruptures and pathological tendon extensions, a tendon reconstruction with the highest possible primary stability is desirable. Therefore, the aim of this study was to determine if augmentation using synthetic polyester tapes (QuadsTape™) could provide greater primary stability in case of different tendon suture techniques.90 tendons of the superficial toe flexor of pigs were divided into 9 groups. The reconstruction method was combined using the factors suture technique (Kessler and Bunnell), augmentation (non-augmented and augmented with QuadsTape™) and defect type (end-to-end and 10 mm gap). The biomechanical measurements were performed on a material testing machine and consisted of a creep test, a cyclic test and a tear-off test. This study compared creep strain, ultimate load failure, maximum stress and stiffness.Irrespective of the type of defect involved, augmentation of the tendon sutures led to a significant increase of the maximum force (not augmented: 82.30 ± 25.48 N, augmented: 135.73 ± 30.69 N, p < 0.001) and the maximum stress (not augmented: 2.26 ± 0.83 MPa, augmented: 4.13 ± 1.79 MPa, p < 0.001). Furthermore, there was a non-significant increase in stiffness and no significant differences were observed with respect to creep strain.Augmentation of Achilles tendon reconstruction using QuadsTape™ increases composite strength and stiffness in the in vitro model, thus potentially contributing to the feasibility of early rehabilitation programs. Biological factors still need to be investigated in order to formulate appropriate indications.  相似文献   

6.
This study aimed to investigate the acute effects of capacitive and resistive electric transfer (CRet) on Achilles tendon elongation during muscle contraction, as well as the circulation in the peritendinous region. Sixteen healthy men participated in this study. All 16 participants underwent 2 interventions: (1) CRet trial and (2) CRet without power (sham trial). Tendon elongation was measured four times. Using near-infrared spectroscopy, the blood circulation (volume of total-hemoglobin (Hb), oxygenated hemoglobin (oxy-Hb), and deoxygenated hemoglobin (deoxy-Hb)) was measured for 5 min before the intervention and for 30 min after the intervention. The differences between the measurements obtained before and after intervention were compared between the two interventions. The changes in tendon elongation and deoxy-Hb were not significantly different between the interventions. Total- and oxy-Hb were significantly increased in the CRet trial compared with the sham trial. In addition, the increases in total-Hb and oxy-Hb lasted for 30 min after the CRet intervention (CRet vs. sham: oxy-Hb: F = 8.063, p = 0.001, total-Hb: F = 4.564, p = 0.011). In conclusion, CRet significantly improved blood circulation in the peritendinous region.  相似文献   

7.
Rodent models are commonly used to investigate tendon healing, with the biomechanical and structural properties of the healed tendons being important outcome measures. Tendon storage for later testing becomes necessary when performing large experiments with multiple time-points. However, it is unclear whether freezing rodent tendons affects their material properties. Thus the aim of this study was to determine whether freezing rat Achilles tendons affects their biomechanical or structural properties. Tendons were frozen at either −20 °C or −80 °C directly after harvesting, or tested when freshly harvested. Groups of tendons were subjected to several freeze-thaw cycles (1, 2, and 5) within 3 months, or frozen for 9 months, after which the tendons were subjected to biomechanical testing. Additionally, fresh and thawed tendons were compared morphologically, histologically and by transmission electron microscopy. No major differences in biomechanical properties were found between fresh tendons and those frozen once or twice at −20 °C or −80 °C. However, deterioration of tendon properties was found for 5-cycle groups and both long-term freezing groups; after 9 months of freezing at −80 °C the tear resistance of the tendon was reduced from 125.4 ± 16.4N to 74.3 ± 18.4N (p = 0.0132). Moreover, tendons stored under these conditions showed major disruption of collagen fibrils when examined by transmission electron microscopy. When examined histologically, fresh samples exhibited the best cellularity and proteoglycan content of the enthesis. These properties were preserved better after freezing at −80 °C than after freezing at −20 °C, which resulted in markedly smaller chondrocytes and less proteoglycan content. Overall, the best preservation of histological integrity was seen with tendons frozen once at −80 °C. In conclusion, rat Achilles tendons can be frozen once or twice for short periods of time (up to 3 months) at −20 °C or −80 °C for later testing. However, freezing for 9 months at either −20 °C or −80 °C leads to deterioration of certain parameters.  相似文献   

8.
王晓军  刘劲松  张洪彬  沈勇伟 《生物磁学》2009,(20):3897-3899,3881
目的:研究短跑训练对运动员跟腱的影响。方法:选择从事运动训练4-6年的健康男、女短跑运动员为实验组(n=12),同时选同龄健康非运动员男、女为对照组(n=12),采用高频超声检测平静状态跟腱长度、横截面积,以及小腿三头肌等长收缩最大力量跖屈跟腱长度的变化。结果:跟腱长度:对照组男子168.5±9.2mm,女子162.4±9.8mm,实验组男子170.9±10.7mm,女子164.0±7.0mm。实验组和对照组组内、组间差别均无统计学意义。跟腱横截面积:对照组男子62.2±6.2mm2,女子47.1±4.5mm2,实验组男子65.6±2.9mm2,女子49.6±1.9mm2。同组内男子比女子跟腱横截面积大,差别有统计学意义(P&lt;0.05),但实验组和对照组组间差别无统计学意义。小腿三头肌等长收缩最大力跖屈时跟腱拉长值:对照组男子7.6±3.6mm,女子4.9±2.8mm,实验组男子11.1±2.9mm,女子7.9±3.1mm。男子比女子跟腱拉长值大、实验组比对照组拉长值大,差别均有统计学意义(P&lt;0.05)。结论:短跑训练可增加跟腱可拉伸长度,跟腱的长度和横截面积未发生明显变化。高频超声可作为重要的测量手段用于...  相似文献   

9.
Surgical repair for large rotator cuff tear remains challenging due to tear size, altered muscle mechanical properties, and poor musculotendinous extensibility. Insufficient extensibility might lead to an incomplete reconstruction; moreover, excessive stresses after repair may result in repair failure without healing. Therefore, estimates of extensibility of cuff muscles can help in pre-surgical planning to prevent unexpected scenarios during surgery. The purpose of this study was to determine if quantified mechanical properties of the supraspinatus muscle using shear wave elastography (SWE) could be used to predict the extensibility of the musculotendinous unit on cadaveric specimens. Forty-five fresh-frozen cadaveric shoulders (25 intact and 20 with rotator cuff tear) were used for the study. Passive stiffness of 4 anatomical regions in the supraspinatus muscle was first measured using SWE. After detaching the distal edge of supraspinatus muscle from other cuff muscles, the detached muscle was axially pulled with the scapula fixed. The correlation between the SWE modulus and the extensibility of the muscle under 30 and 60 N loads was assessed. There was a significant negative correlation between SWE measurements and the experimental extensibility. SWE modulus for the anterior-deep region in the supraspinatus muscle showed the strongest correlation with extensibility under 30 N (r = 0.70, P < 0.001) and 60 N (r = 0.68, P < 0.001). Quantitative SWE assessment for the supraspinatus muscle was highly correlated with extensibility of musculotendinous unit on cadaveric shoulders. This technique may be used to predict the extensibility for rotator cuff tears for pre-surgical planning.  相似文献   

10.
Accurate assessment of muscle–tendon forces in vivo requires knowledge of the muscle–tendon moment arm. Dual-energy X-ray absorptiometry (DXA) can produce 2D images suitable for visualising both tendon and bone, thereby potentially allowing the moment arm to be measured but there is currently no validated DXA method for this purpose. The aims of this study were (i) to compare in vivo measurements of the patellar tendon moment arm (dPT) assessed from 2D DXA and magnetic resonance (MR) images and (ii) to compare the reliability of the two methods. Twelve healthy adults (mean±SD: 31.4±9.5 yr; 174.0±9.5 cm; 76.2±16.6 kg) underwent two DXA and two MR scans of the fully extended knee at rest. The tibiofemoral contact point (TFCP) was used as the centre of joint rotation in both techniques, and the dPT was defined as the perpendicular distance from the patellar tendon axis to the TFCP. The dPT was consistently longer when assessed via DXA compared to MRI (+3.79±1.25 mm or +9.78±3.31%; P<0.001). The test–retest reliability of the DXA [CV=2.13%; ICC=0.94; ratio limits of agreement (RLA)=1.01 (?/÷1.07)] and MR [(CV=2.27%; ICC=0.96; RLA=1.00 (?/÷1.07)] methods was very high and comparable between techniques. Moreover, the RLA between the mean DXA and MRI dPT values [1.097 (?/÷1.061)] demonstrated very strong agreement between the two methods. In conclusion, highly reproducible dPT measurements can be determined from DXA imaging with the knee fully extended at rest. This has implications for the calculation of patellar tendon forces in vivo where MR equipment is not available.  相似文献   

11.
The plantarflexor moment arm of the Achilles tendon determines the mechanical advantage of the triceps surae and also indirectly affects muscle force generation by setting the amount of muscle-tendon shortening per unit of ankle joint rotation. The Achilles tendon moment arm may be determined geometrically from an axis (or center) of joint rotation and the line of action of the tendon force, but such moment arms may be sensitive to the location of the joint axis. Using motion analysis to track an ultrasound probe overlying the Achilles tendon along with markers on the shank and foot, we measured Achilles tendon moment arm during loaded and unloaded dynamic plantarflexion motions in 15 healthy subjects. Three representations of the axis or center of rotation of the ankle were considered: (1) a functional axis, defined by motions of the foot and shank; (2) a transmalleolar axis; and (3) a transmalleolar midpoint. Moment arms about the functional axis were larger than those found using the transmalleolar axis and transmalleolar midpoint (all p < 0.001). Moment arms computed with the functional axis increased with plantarflexion angle (all p < 0.001), and increased with loading in the most plantarflexed position (p < 0.001) but these patterns were not observed when either using a transmalleolar axis or transmalleolar midpoint. Functional axis moment arms were similar to those estimated previously using magnetic resonance imaging, suggesting that using a functional axis for ultrasound-based geometric estimates of Achilles tendon moment arm is an improvement over landmark-based methods.  相似文献   

12.
Shear wave elastography (SWE) is a promising tool for estimating musculoskeletal tissue properties, but few studies have rigorously assessed its repeatability and sources of error. The objectives of this study were to assess: (1) the extent to which probe positioning error and human user error influence measurement accuracy, (2) intra-user, inter-user, and day-to-day repeatability, and (3) the extent to which active and passive conditions affect shear wave speed (SWS) repeatability. Probe positioning and human usage errors were assessed by acquiring SWE images from custom ultrasound phantoms. Intra- and inter-user repeatability were assessed by two users acquiring five trials of supraspinatus muscle and tendon SWE images from ten human subjects. To assess day-to-day repeatability, five of the subjects were tested a second time, approximately 24 h later. Imaging of the phantoms indicated high inter-user repeatability, with intraclass correlation coefficient (ICC) values of 0.68–0.85, and RMS errors of no more than 4.1%. SWE imaging of the supraspinatus muscle and tendon had high repeatability, with intra- and inter-user ICC values of greater than 0.87 and 0.73, respectively. Day-to-day repeatability demonstrated ICC values greater than 0.33 for passive muscle, 0.48 for passive tendon, 0.65 for active muscle, and 0.94 for active tendon. This study indicates the technique has good to very good intra- and inter-user repeatability, and day-to-day repeatability is appreciably higher when SWE images are acquired under a low level of muscle activation. The findings from this study establish the feasibility and repeatability of SWE for acquiring data longitudinally in human subjects.  相似文献   

13.
Achilles tendon ruptures have been linked with detrimental changes in muscle-tendon structure, which may help explain long-term functional deficits. However, the causal effects of muscle-tendon structure on joint function have not been tested in a controlled setting. Therefore, the purpose of this study was to test the implications of muscle-tendon unit parameters on simulated single-leg heel raise height. We hypothesized that muscle fiber length and resting ankle angle – a clinical surrogate measure of tendon slack length – would predict single-leg heel raise height more strongly than other parameters. To test this hypothesis, we developed a two-part simulation paradigm that recreated clinically relevant muscle-tendon scenarios and then tested these parameters on single-leg heel raise height. We found that longer muscle fibers had the greatest positive effect on single-leg heel raise height. However, tendon slack length, determined by simulating resting ankle angles in a secondary analysis, revealed a stronger negative correlation with heel raise height. Our findings support previous clinical observations that both muscle fascicle length and resting tendon length are important muscle-tendon parameters for patient function. In addition to minimizing tendon elongation following rupture, treatment plans should focus on preserving plantarflexor muscle structure to mitigate functional loses following Achilles tendon ruptures.  相似文献   

14.
Viscoelastic characterization of the tissue-engineered corneal stromal model is important for our understanding of the cell behaviors in the pathophysiologic altered corneal extracellular matrix (ECM). The effects of the interactions between stromal cells and different ECM characteristics on the viscoelastic properties during an 11-day culture period were explored. Collagen-based hydrogels seeded with keratocytes were used to replicate human corneal stroma. Keratocytes were seeded at 8 × 103 cells per hydrogel and with collagen concentrations of 3, 5 and 7 mg/ml. Air-pulse-based surface acoustic wave optical coherence elastography (SAW-OCE) was employed to monitor the changes in the hydrogels' dimensions and viscoelasticity over the culture period. The results showed the elastic modulus increased by 111%, 56% and 6%, and viscosity increased by 357%, 210% and 25% in the 3, 5 and 7 mg/ml hydrogels, respectively. To explain the SAW-OCE results, scanning electron microscope was also performed. The results confirmed the increase in elastic modulus and viscosity of the hydrogels, respectively, arose from increased fiber density and force-dependent unbinding of bonds between collagen fibers. This study reveals the influence of cell-matrix interactions on the viscoelastic properties of corneal stromal models and can provide quantitative guidance for mechanobiological investigations which require collagen ECM with tuneable viscoelastic properties.  相似文献   

15.
Achilles tendon injuries affect both athletes and the general population, and their incidence is rising. In particular, the Achilles tendon is subject to dynamic loading at or near failure loads during activity, and fatigue induced damage is likely a contributing factor to ultimate tendon failure. Unfortunately, little is known about how injured Achilles tendons respond mechanically and structurally to fatigue loading during healing. Knowledge of these properties remains critical to best evaluate tendon damage induction and the ability of the tendon to maintain mechanical properties with repeated loading. Thus, this study investigated the mechanical and structural changes in healing mouse Achilles tendons during fatigue loading. Twenty four mice received bilateral full thickness, partial width excisional injuries to their Achilles tendons (IACUC approved) and twelve tendons from six uninjured mice were used as controls. Tendons were fatigue loaded to assess mechanical and structural properties simultaneously after 0, 1, 3, and 6 weeks of healing using an integrated polarized light system. Results showed that the number of cycles to failure decreased dramatically (37-fold, p<0.005) due to injury, but increased throughout healing, ultimately recovering after 6 weeks. The tangent stiffness, hysteresis, and dynamic modulus did not improve with healing (p<0.005). Linear regression analysis was used to determine relationships between mechanical and structural properties. Of tendon structural properties, the apparent birefringence was able to best predict dynamic modulus (R2=0.88–0.92) throughout healing and fatigue life. This study reinforces the concept that fatigue loading is a sensitive metric to assess tendon healing and demonstrates potential structural metrics to predict mechanical properties.  相似文献   

16.
17.
Limited information is available concerning the existence of a cholinergic system in the human Achilles tendon. We have studied pain-free normal Achilles tendons and chronically painful Achilles tendinosis tendons with regard to immunohistochemical expression patterns of the M(2) muscarinic acetylcholine receptor (M(2)R), choline acetyltransferase (ChAT), and vesicular acetylcholine transporter (VAChT). M(2)R immunoreactivity was detected in the walls of blood vessels. As evidenced via parallel staining for CD31 and alpha-smooth muscle actin, most M(2)R immunoreactivity was present in the endothelium. M(2)R immunoreactivity also occured in tenocytes, which regularly immunoreact for vimentin. The degree of M(2)R immunoreactivity was highly variable, tendinosis tendons that exhibit hypercellularity and hypervascularity showing the highest levels of immunostaining. Immunoreaction for ChAT and VAChT was detected in tenocytes in tendinosis specimens, particularly in aberrant cells. In situ hybridization revealed that mRNA for ChAT is present in tenocytes in tendinosis specimens. Our results suggest that autocrine/paracrine effects occur concerning the tenocytes in tendinosis. Up-regulation/down-regulation in the levels of M(2)R immunoreactivity possibly take place in tenocytes and blood vessel cells during the various stages of tendinosis. The presumed local production of acetylcholine (ACh), as evidenced by immunoreactivity for ChAT and VAChT and the detection of ChAT mRNA, appears to evolve in response to tendinosis. These observations are of importance because of the well-known vasoactive, trophic, and pain-modulating effects that ACh is known to have and do unexpectedly establish the presence of a non-neuronal cholinergic system in the Achilles tendon.  相似文献   

18.
Ankle foot orthoses (AFOs) are designed to improve gait for individuals with neuromuscular conditions and have also been used to reduce energy costs of walking for unimpaired individuals. AFOs influence joint motion and metabolic cost, but how they impact muscle function remains unclear. This study investigated the impact of different stiffness AFOs on medial gastrocnemius muscle (MG) and Achilles tendon (AT) function during two walking speeds. We performed gait analyses for eight unimpaired individuals. Each individual walked at slow and very slow speeds with a 3D printed AFO with no resistance (free hinge condition) and four levels of ankle dorsiflexion stiffness: 0.25 Nm/°, 1 Nm/°, 2 Nm/°, and 3.7 Nm/°. Motion capture, ultrasound, and musculoskeletal modeling were used to quantify MG and AT lengths with each AFO condition. Increasing AFO stiffness increased peak AFO dorsiflexion moment with decreased peak knee extension and peak ankle dorsiflexion angles. Overall musculotendon length and peak AT length decreased, while peak MG length increased with increasing AFO stiffness. Peak MG activity, length, and velocity significantly decreased with slower walking speed. This study provides experimental evidence of the impact of AFO stiffness and walking speed on joint kinematics and musculotendon function. These methods can provide insight to improve AFO designs and optimize musculotendon function for rehabilitation, performance, or other goals.  相似文献   

19.
The present study aimed to clarify the effects of knee joint angle on the behavior of the medial gastrocnemius muscle (MG) fascicles during eccentric plantar flexions. Eight male subjects performed maximal eccentric plantar flexions at two knee positions [fully extended (K0) and 90° flexed (K90)]. The eccentric actions were preceded by static plantar flexion at a 30° plantar flexed position and then the ankle joint was forcibly dorsiflexed to 15° of dorsiflexion with an isokinetic dynamometer at 30°/s and 150°/s. Tendon force was calculated by dividing the plantar flexion torque by the estimated moment arm of the Achilles tendon. The MG fascicle length was determined with ultrasonography. The tendon forces during eccentric plantar flexions were influenced by the knee joint angle, but not by the angular velocity. The MG fascicle lengths were elongated as the ankle was dorsiflexed in K0, but in K90 they were almost constant despite the identical range of ankle joint motion. These results suggested that MG fascicle behavior during eccentric actions was markedly affected by the knee joint angle. The difference in the fascicle behavior between K0 and K90 could be attributed to the non-linear force–length relations and/or to the slackness of tendinous tissues.  相似文献   

20.
目的:探讨层析法新工艺和原有的低温乙醇工艺制备纤维蛋白原在大鼠跟腱断裂模型中促恢复的效果差异。方法:构建大鼠跟腱部位断裂模型,将其分为空白组(未剪跟腱)、模型组(跟腱断裂未给药)、实验组(自制纤维蛋白原2 mg/mL)与对照组(市售纤维蛋白原2 mg/mL),观察各组大鼠在手术后三周跟腱部位的最大滑动距离、弹性模量和最大抗拉力差异。结果:采用冷沉淀溶解、酸沉除杂、S/D灭活病毒、MacroCap Q柱层析、过滤等流程可从人血浆冷沉淀组分Ⅰ中成功分离纯度为90.9%纤维蛋白原。试验中构建的大鼠跟腱部位断裂模型无感染、且均存活至试验终止。生物力学结果显示,四组大鼠跟腱在最大滑行距离上无明显统计学差异(P0.05);在跟腱部位弹性模量及最大抗压力比较上,实验组及对照组均优于模型组,但与空白组仍有一定差距,且差异均具有统计学意义(P0.05)。结论:采用柱层析法分离人纤维蛋白原,不仅能有效提高分离效率,减少蛋白损失,还可增强纤维蛋白原在断裂跟腱中的促恢复效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号