首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AimDesign and synthesis of novel nalidixic acid derivatives of potent anticancer and topoisomerase II inhibitory activities were our major aim.Materials & methodsAll the newly synthesized nalidixic acid derivatives were submitted to the National Cancer Institute (NCI), Bethesda, USA and were accepted for single dose screening. Further investigation via IC50 determination of the most potent compound 6a against K-562 and SR leukemia cell lines. Finally, the topoisomerase II inhibitory activity, the cell cycle analysis and molecular docking of 6a were performed in order to identify the possible mechanism of the anticancer activity.ResultsCompound 6a showed interesting selectivity against leukemia especially K-562 and SR subpanels with IC50 35.29 µM and 13.85 µM respectively. Moreover, compound 6a revealed potent topoisomerase IIα and topoisomerase IIβ inhibitory activity compared with known topoisomerase inhibitors such as doxorubicin and topotecan with IC50 1.30 µM and 0.017 µM respectively. Cell cycle analysis indicated that compound 6a induced cell cycle arrest at G2-M phase leading to inhibition of cell proliferation and apoptosis. Molecular modeling demonstrated that the potent topoisomerase inhibitory activity of 6a was due to the interaction with the topoisomerase II enzyme through coordinate bonding with the magnesium ion Mg2+, hydrogen bonding with Asp 545 and arene cation interaction with His 759.  相似文献   

2.
A series of quinoline-chalcone hybrids was designed as potential anti-cancer agents, synthesized and evaluated. Different cytotoxic assays revealed that compounds experienced promising activity. Compounds 9i and 9j were the most potent against all the cell lines tested with IC50 = 1.91–5.29 µM against A549 and K-562 cells. Mechanistically, 9i and 9j induced G2/M cell cycle arrest and apoptosis in both A549 and K562 cells. Moreover, all PI3K isoforms were inhibited non selectively with IC50s of 52–473 nM when tested against the two mentioned compounds with 9i being most potent against PI3K-γ (IC50 = 52 nM). Docking of 9i and 9j showed a possible formation of H-bonding with essential valine residues in the active site of PI3K-γ isoform. Meanwhile, Western blotting analysis revealed that 9i and 9j inhibited the phosphorylation of PI3K, Akt, mTOR, as well as GSK-3β in both A549 and K562 cells, suggesting the correlation of blocking PI3K/Akt/mTOR pathway with the above antitumor activities. Together, our findings support the antitumor potential of quinoline-chalcone derivatives for NSCLC and CML by inhibiting the PI3K/Akt/mTOR pathway.  相似文献   

3.
New derivatives of phaeosphaeride A (PPA) were synthesized and characterized. Anti-tumor studies were carried out on the U937, HCT-116, PC3, MCF-7, A549, К562, NCI-H929, Jurkat, THP-1, RPMI8228 tumor cell lines, and on the HEF cell line. All the compounds synthesized were found to have better efficacy than PPA towards the tumor cell lines mentioned. Compound 6 (IC50?=?0.59?±?0.27?µM) was observed to be 11 times more active than PPA (IC50?=?6.5?±?0.30?µM) towards the NCI-H929 cell line, with a therapeutic index of 18. Compound 6 was determined to be over half and 16 times more active than etoposide towards the NCI-H929 (IC50?=?0.9?±?0.05?µM) and A549 (IC50?=?100?±?7.0?µM) cell lines, respectively.  相似文献   

4.
Designed and synthesized novel homopiperazine linked imidazo[1,2-a]pyrimidine derivatives (10a–i, 11a–g, 12), and evaluated them for their in vitro cytotoxicity against HeLa cells (cervical cancer), A549 cells (lung cancer) cells, by MTT assay. Compound 12 (IC50 = 4.14 µM) and compound 10c (IC50 = 5.98 µM) were found to be 2.5 fold, and 1.74 fold more potent when compared with standard Etoposide (IC50 = 10.44 µM), against A549 (lung cancer cells). Compound 12 also found to be 1.57 and 1.13 fold potent against DU145 (IC50 = 6.24 µM) and HeLa (IC50 = 6.54 µM), respectively when compared with Etoposide (DU145, IC50 = 9.8 µM; HeLa, IC50 = 7.43 µM). Compound 10f (IC50 = 6.12 µM) was found to be 1.31 fold more potent than Etoposide (IC50 = 7.43 µM) against HeLa cell lines.Moreover compounds 10a and 11a showed cytotoxicity at low micro-molar concentrations against A549 cells. Synthesized compounds were also evaluated for their antimicrobial activity by Cup plate diffusion method. Compounds 10c, 11b, 11d and 11f displayed remarkable antimicrobial activity relating to their standard drugs Gentamycin, Amphotericin B and Ampicillin. Significantly, compound 10c showed broad spectrum activity against tested microbial strains. All the designed compounds were well occupied the binding site of the colchicine and interacted with both α- and β-tubuline interface (PDB ID: 3E22), which demonstrates that synthesized compounds are promising tubulin inhibitors. Also, the synthesized compounds occupied the catalytic triad and adenine-binding site, in the active site of β-ketoacyl-acyl carrier protein synthase III enzyme (PDB ID: 1MZS). The molecular docking results provided the useful information for the future design of more potent inhibitors. These preliminary results convinced further investigation and modifications on synthesized compounds aiming towards the development of potential cytotoxic as well as antimicrobial agents.  相似文献   

5.
A new series of benzimidazole linked pyrazole derivatives were synthesized by cyclocondensation reaction through one-pot multicomponent reaction in absolute ethanol. All the synthesized compounds were tested for their in vitro anticancer activities on five human cancer cell lines including MCF-7, HaCaT, MDA-MB231, A549 and HepG2. EGFR receptor inhibitory activities were carried out for all the compounds. Majority of the compounds showed potent antiproliferative activity against the tested cancer cell lines. Compound 5a showed the most effective activity against the lungs cancer cell lines (IC50 = 2.2 µM) and EGFR binding (IC50 = 0.97 µM) affinity as compared to other members of the series. Compound 5a inhibited growth of A549 cancer cells by inducing a strong G2/M phase arrest. In addition, same compound inhibited growth of A549 cancer cells by inducing apoptosis. In molecular docking studies compound 5a was bound to the active pocket of the EGFR (PDB 1M17) with five key hydrogen bonds and two π-π interaction with binding energies ΔG = −34.581 Kcal/mol.  相似文献   

6.
Dual targeting of EGFR and HER2 is a proven anticancer strategy for the treatment of solid tumors. An array of new N-substituted-2-(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydrobenzo[g]quinazolin-2-ylthio) acetamides 518 were designed and synthesized from the starting compound 4-(2-mercapto-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 4. The targeted compounds were screened for their cytotoxic activity against MDA-MB-231 breast cancer cell line. The IC50 of all the compounds were in the range of 0.36–40.90 µM. The percentage inhibition towards EGFR was measured and found to be in the range of 63.00–16.90 %. The most potent compounds 5, 9, 15, 17 and 18 were further screened for their activity against both EGFR and HER2 receptors. The compounds showed IC50 in the range of 0.64–1.81 µM for EGFR and 1.13–2.21 µM for HER2, in comparison to erlotinib, the reference drug. Compound 17, the most potent towards EGFR in this series, undergoes cell cycle analysis and was found to arrest the cycle at the G2/M phase. Measurement of the cytotoxicity of compound 17 against normal breast cell line showed mild cytotoxic activity. The most potent compounds were subjected to a single dose of 8 Gy of γ-radiation and the cytotoxicity of the tested compounds was found to increase after irradiation, thus proving the synergistic effect of γ-irradiation. Molecular docking was adopted for all the synthesized compounds to confirm their mechanism of action.  相似文献   

7.
EGFR has a key role in cell growth. Its mutation and overexpression share in epithelial malignancies and tumor growth. Quinazoline and quinoline derivatives are common anticancer intracellular inhibitors of EGFR kinase, and their optimization is an important issue for development of potent targeted anticancer agents. Based on these facts, different strategies were used for optimizing our reported quinoline-3-carboxamide compound III (EGFR IC50 = 5.283 µM and MCF-7 IC50 = 3.46 µM) through different molecular modeling techniques. The optimized compounds were synthesized and subjected to EGFR binding assay and accordingly some more potent inhibitors were obtained. The most potent quinoline-3-carboxamides were the furan derivative 5o; thiophene derivative 6b; and benzyloxy derivative 10 showing EGFR IC50 values 2.61, 0.49 and 1.73 μM, respectively. Furthermore, the anticancer activity of compounds eliciting potent EGFR inhibition (5o, 5p, 6b, 8a, 8b, and 10) was evaluated against MCF-7 cell line where they exhibited IC50 values 3.355, 3.647, 5.069, 3.617, 0.839 and 10.85 μM, respectively. Compound 6b was selected as lead structure for further optimization hoping to produce more potent EGFR inhibitors.  相似文献   

8.
A series of twenty-one 3,4-dihydropyrimidine derivatives bearing the heterocyclic 1,3-benzodioxole at position 4 in addition to different substituents at positions 2, 3 and 5 were designed and synthesized as monastrol analogs. The novel synthesized compounds were screened for their cytotoxic activity towards 60 cancer cell lines according to NCI (USA) protocol. Compounds 10b and 15 showed the best antitumor activity against most cell lines. Compound 15 was subsequently tested in 5-doses mode and displayed high selectivity towards CNS, prostate and leukemia subpanel with selectivity ratios of 22.30, 15.38 and 12.56, respectively at GI50 level. The IC50 of compounds 9d, 10b, 12, 15 and 16 against kinesin enzyme were 3.86 ± 0.12, 10.70 ± 0.35, 3.95 ± 0.12, 4.36 ± 0.14, and 14.07 ± 0.45 μM respectively, while the prototype compound, monastrol, reported IC50 value of 20 ± 0.42 μM. The safest compound among test compounds against normal cell line (HEK 293) is 10b with IC50 value of 62.02 ± 2.42 µM/ml in comparison to doxorubicin (IC50 = 11.34 ± 0.44 µM/ml). Cell cycle analysis of SNB-75 cells treated with compound 15 showed cell cycle arrest at G2/M phase. Further, the assay of levels of active caspase-3 and caspase-9 was investigated. Moreover, Molecular docking of compounds, 9d, 10b, 12, 15, 16, monastrol and mon-97 was performed to study the interaction between inhibitors and the kinesin spindle protein allosteric binding site.  相似文献   

9.
Multitargeted therapy is considered a successful approach to cancer treatment. The development of small molecule multikinase inhibitors through hybridization strategy can provide highly potent and selective anticancer agents. A library of N-alkyl-2-[(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydroquinazolin-2-yl)thio]acetamide derivatives 518 was designed and synthesized. The synthesized compounds were screened for cytotoxic activity against MDA-MB-231 breast cancer cell line and showed IC50 in the range of 0.34–149.10 µM. The inhibition percentage of VEGFR-2 was measured for all the compounds and found to be in the range of 90.09–20.44%. The promising compounds 8, 12, 13, 16 and 17 were selected to measure their possible multikinase inhibitory activity against VEGFR-2 and EGFR. IC50 of the promising compounds were in the range of 247–793 nM for VEGFR-2 in reference to sunitinib (IC50 320 nM), and 369–725 nM for EGFR in reference to erlotinib (IC50 568 nM). Compounds 12 and 13 showed the most potent activity towards VEGFR-2 & EGFR, respectively. Measuring the cytotoxicity of 12 and 13 against MCF-10 normal breast cell line indicates their relative safety to normal breast cells (IC50 37 & 97 µM, respectively). As radiotherapy is considered the primary treatment for some types of solid tumors, the radiosensitizing ability of 12 and 13 was measured by subjecting the MDA-MB-231 cells to a single dose of 8 Gy of gamma radiation. IC50 of 12 and 13 decreased from 1.91 & 0.51 µM to 0.79 & 0.43 µM, respectively. Molecular docking was performed to gain insights into the ligand-binding interactions of 12 inside VEGFR-2 and EGFR binding sites in comparison to their co-crystallized ligands.  相似文献   

10.
Anticancer therapeutics with profiles of high potency, low toxicity, and low resistance is of considerable interest. A new series of functionalized spirooxindole linked with 3-acylindole scaffold is reported, starting from chalcones derived from 3-acetyl indole with isatin, and l-4-thiazolidinecarboxylic acid. The reactions proceeded regioselectivity, stereoselectivity, without side products in high yield (71–89%). The new spirooxindole hybrids have been evaluated in vitro for their antiproliferative effects against colon cancer (HCT-116), hepatocellular carcinoma (HepG2) and prostate cancer (PC-3). The selectivity of their activity was evaluated. Some of the synthesized compounds showed considerable anticancer activities. Compound 4k proved to retain a high cytotoxic activity and selectivity against colon cancer cells HCT-116 (IC50 = 7 ± 0.27 µM, SI: 3.7), and HepG2 (IC50 = 5.5 ± 0.2 µM, SI: 4.7) in comparison to (IC50 = 12.6 ± 0.5, SI: 0.4 and 5.5 ± 0.3 µM, SI: 0.9, respectively). Compound 4k was less active (IC50 = 6 ± 0.3 µM, SI: 4.3) than cisplatin (IC50 = 5 ± 0.56 µM, SI: 1.0) but showed greater selectivity towards prostate cancer cells PC-3 in comparison to cisplatin. The details of the binding mode of the active compounds were clarified by molecular docking. Ligand Efficiency (LE) and Ligand Lipophilic Efficiency (LLE) were evaluated and revealed that compound 4k had acceptable value.  相似文献   

11.
Two new series of furochromone and benzofuran derivatives were designed, synthesized and evaluated for their in vitro anticancer activity against MCF-7 and MDA231 breast cancer cell lines. Compounds 5, 6, 7, 9, 15a, 16, 17a and 18 exhibited the best antiproliferative activities with IC50 values ranging from 1.19 to 2.78?µM against MCF-7 superior to lapatinib as reference standard (IC50; 4.69?µM). Compounds 15a and 18 revealed significant cytotoxic activity against MCF-7 and MDA231, therefore their inhibitory potencies against p38α MAP kinase were evaluated. Remarkably they exhibited significant IC50 of 0.04?µM comparable to SB203580 (IC50; 0.50?µM) as a reference standard. These promising results of cytotoxic activity and significant inhibition of p38α MAP kinase, were confirmed by exploring the effect of benzofuran derivative (18) on the apoptotic induction and cell cycle progression of MCF-7 cell line. Compound 18 induced preG1 apoptosis and cell growth arrest at G2/M phase preventing the mitotic cycle. Moreover it activated the caspase-7 which executes apoptosis. Molecular docking study was carried out using GOLD program to predict the mode of binding interaction of the synthesized compounds into the target p38α MAPK. Additionally, the physicochemical properties and ADME parameters of compound 18 were examined in silico to investigate its drug-likeness.  相似文献   

12.
Twenty five newly synthesized coumarin scaffold based derivatives were assayed for their in vitro anticancer activity against MCF-7 breast and PC-3 prostate cancer cell lines and were further assessed for their in vitro VEGFR-2 kinase inhibitory activity. The in vitro cytotoxic studies revealed that most of the synthesized compounds possessed very promising cytotoxicity against MCF-7, particularly; compounds 4a (IC50 = 1.24 µM) and 3d (IC50 = 1.65 µM) exhibited exceptional activities superior to the positive control staurosporine (IC50 = 8.81 µM). Similarly, the majority of the compounds exhibited higher antiproliferative activities compared to the reference standard with IC50 values ranging from 2.07 to 8.68 µM. The two cytotoxic derivatives 4a and 3d were selected to evaluate their inhibitory potencies against VEGFR-2 kinase. Remarkably, compound 4a, exhibited significant IC50 of 0.36 µM comparable to staurosporine (IC50; 0.33 µM). Moreover, it was capable of inducing preG1 apoptosis, cell growth arrest at G2/M phase and activating caspase-9. On the other hand, insignificant cytotoxic activity was observed for all compounds towards PC-3 cell line. Molecular docking study was carried out for the most active anti-VEGFR-2 derivative 4a, which demonstrated the ability of the tested compound to interact with the key amino acids in the target VEGFR-2 kinase binding site. Additionally, the ADME parameters and physicochemical properties of compound 4a were examined in silico.  相似文献   

13.
Twenty three fused carbazole–imidazoles 6a–w were designed, synthesized, and screened as new α-glucosidase inhibitors. All the synthesized fused carbazole-imidazoles 6a-w were found to be more active than acarbose (IC50?=?750.0?±?1.5?µM) against yeast α-glucosidase with IC50 values in the range of 74.0?±?0.7–298.3?±?0.9?µM. Kinetic study of the most potent compound 6v demonstrated that this compound is a competitive inhibitor for α-glucosidase (Ki value?=?75?µM). Furthermore, the in silico studies of the most potent compounds 6v and 6o confirmed that these compounds interacted with the key residues in the active site of α-glucosidase.  相似文献   

14.
Eight new C21 steroidal glycosides, namely cynanotins A–H (18), together with fifteen known analogues, were isolated from the roots of Cynanchum otophyllum. Their structures were elucidated by spectroscopic analysis and chemical methods. In this study, all of isolates were tested for their vitro inhibitory activities against five human tumor cell lines (HL-60, SMMC-7721, A-549, MCF-7 and SW480). Compounds 315 showed moderate cytotoxic activities against HL-60 cell lines with IC50 values ranging from 11.4 to 37.9?µM. Compounds 5, 9, and 10 showed marked or moderate cytotoxic activities against five human tumor cell lines with IC50 values ranging from 11.4 to 36.7?µM. Compound 11 displayed moderate cytotoxic activities against HL-60, SMMC-7721, MCF-7 and SW480 cell lines with IC50 values of 12.2–30.8?µM. Compared to the positive control (IC50: 35.0?µM), compounds 5, 911 exhibited more potential inhibitory activity against MCF-7 cells (IC50: 16.1–25.6?µM).  相似文献   

15.
Secondary acquired mutation in EGFR, i.e. EGFR T790M and amplification of c-MET form the two key components of resistant NSCLC. Thus, previously published pharmacophore models of EGFR T790M and c-MET were utilized to screen an in-house database. On the basis of fitness score, indole-pyrimidine scaffold was selected for further evaluation. Derivatives of indole-pyrimidine scaffold with variedly substituted aryl substitutions were sketched and then docked in both the targets. These docked complexes were then subjected to molecular dynamic simulations, to study the stability of the complexes and evaluate orientations of the designed molecules in the catalytic domain of the selected kinases. Afterwards, the complexes were subjected to MM-GBSA calculation, to study the effect of substitutions on binding affinity of double mutant EGFR towards these small molecules. Finally, the designed molecules were synthesized and evaluated for their inhibitory potential against both the kinases using in vitro experiments. Additionally, the compounds were also evaluated against EGFR (L858R) to determine their selectivity towards double mutant, resistant kinase [EGFR (T790M)]. Compound 7a and 7c were found to be possess nanomolar range inhibitory (IC50) potential against EGFR (T790M), 7 h showed good inhibitory potential against c-MET with IC50 value of 0.101 µM. Overall, this work is one of the earliest report of compounds having significant dual inhibitory potential against secondary acquired EGFR and cMET, with IC50 values in nanomolar range.  相似文献   

16.
We describe a series of potent and highly selective small-molecule MALT1 inhibitors, optimized from a High-Throughput Screening hit. Advanced analogues such as compound 40 show high potency (IC50: 0.01 µM) in a biochemical assay measuring MALT1 enzymatic activity, as well as in cellular assays: Jurkat T cell activation (0.05 µM) and IL6/10 secretion (IC50: 0.10/0.06 µM) in the TMD8 B-cell lymphoma line. Compound 40 also inhibited cleavage of the MALT1 substrate RelB (IC50: 0.10 µM). Mechanistic enzymology results suggest that these compounds bind to the known allosteric site of the protease.  相似文献   

17.
Two series of 2-aminopyridine derivatives 6-17 and tyrphostin AG17 analogs 18-22 bearing 4-methylbenzenesulfonamide moiety were designed and synthesized as anticancer compounds. The synthesized compounds were biologically evaluated for their cytotoxic activity against human breast cancer cell line MCF-7. From 2-aminopyridine and tyrphostin AG17 series, compounds 14, 16 and 20 showed the best activities with IC50 values of 20.4, 18.3 and 26.3 µM, respectively compared to E7070 IC50 36.3 µM. Further biological evaluation of 14, 16 and 20 against cyclin dependent kinase-2 (CDK2) revealed good inhibitory activity with IC50 of 2.53, 1.79 and 2.92 µM, respectively compared to roscovitine IC50 0.43 µM. Additionally, capability of γ-radiation to augment the cytotoxic activity of 14, 16 and 20 was studied and showed a dramatic increase in the cell killing effect at lower concentrations after irradiation. Docking was used to investigate the possible binding modes of compounds 14, 16 and 20 inside the active site of CDK2 enzyme.  相似文献   

18.
A new series of hybrid structures 14a–l containing thiohydantoin as anti-cancer moiety and pyrazole core possessing SO2Me pharmacophore as selective COX-2 moiety was designed and synthesized to be evaluated for both anti-inflammatory and anti-cancer activities. The synthesized compounds were evaluated for their COX inhibition, in vivo anti-inflammatory activity, ulcerogenic liability, in vitro cytotoxic activity and human topoisomerase-1 inhibition. All compounds were more selective for COX-2 isozyme and showed good in vivo anti-inflammatory activity. Also, all derivatives were significantly less ulcerogenic (ulcer indexes = 2.64–3.87) than ibuprofen (ulcer index = 20.25) and were of acceptable ulcerogenicity when compared with the non-ulcerogenic reference drug celecoxib (ulcer index = 2.99). Regarding anti-cancer activity, most of the target derivatives showed activities against A-549, MCF-7 and HCT-116 cell lines (IC50 = 5.32–17.90, 3.67–19.04 and 3.19–14.87 µM respectively) in comparison with doxorubicin (IC50 = 0.20, 0.50 and 2.44 µM respectively). Compound 14a inhibited the human topoisomerase-1 with IC50 = 29.7 µg/ml while 14b and 14c showed more potent inhibitory activity with IC50 = 26.5 and 23.3 µg/ml. respectively in comparison with camptothecin (IC50 = 20.2 µg/ml). Additionally, COX-2 and human topoisomerase-1 docking studies were carried out to explain the interaction of the synthesized hybrid structures 14a–l with the target enzymes.  相似文献   

19.
derivatives of benzo[g]indazole 5a, b, benzo[h]quinazoline 7, 12a-c, 13a-c and 15a-c and benzo[h]quinoline 17a-c and 19a-c were synthesized from 6-methoxy-3,4-dihydronaphthalen-1(2H)-one (1). Anticancer activity of all the synthesized compounds was evaluated against four cancerous cell lines; HepG2, MCF-7, HCT116 and Caco-2. MCF-7 cells emerged as the most sensitive cell line against the target compounds. All the examined compounds, except 5a and 5b, displayed potent to moderate anticancer activity against MCF-7 cells with an IC50 values ranging from 7.21 to 21.55 µM. In particular, compounds 15c and 19b emerged as the most potent derivatives against EGFR-expressing MCF-7 cells with IC50 values = 7.70 ± 0.39 and 7.21 ± 0.43 μM, respectively. Additionally, both compounds did not display any significant cytotoxicity towards normal BHK-21 fibroblast cells (IC50 value > 200 µM), thereby providing a good safety profile as anticancer agents. Furthermore, compounds 15c and 19b displayed potent inhibitory activity towards EGFR in the sub-micromolar range (IC50 = 0.13 ± 0.01 and 0.14 ± 0.01 μM, respectively), compared to that of Erlotinib (IC50 = 0.11 ± 0.01 μM). Docking studies for 15c and 19b into EGFR active site was carried out to explore their potential binding modes. Therefore, compounds 15c and 19b can be considered as interesting candidates for further development of more potent anticancer agents.  相似文献   

20.
A series of novel methyl 4-(4-amidoaryl)-3-methoxythiophene-2-carboxylate derivatives were designed against the active site of protein tyrosine phosphatise 1B (PTP1B) enzyme using MOE.2008.10. These molecules are also subjected for in silico toxicity prediction studies and considering their corresponding drug scores, it implied that, the molecules are promising as anticancer agents. The designed compounds were synthesized by using suitable methods and characterized. They were subjected to inhibitory activity against PTP1B and in vitro anticancer activity by MTT assay. Most of the tested compounds showed potent inhibitory activity against PTP1B, among the compounds tested, compound 5b exhibited the highest activity (IC50 = 5.25 µM) and remarkable cytotoxic activity at 0.09 µM of IC50 against the MCF-7 cell line. In addition to this, compound 5c also showed potential anticancer activity at 2.22 µM of IC50 against MCF-7 and 0.72 µM against HepG2 cell lines as well as PTP1B inhibitory activity at IC50 of 6.37 µM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号