首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of novel schiff base derivatives (H1H20) containing pyrazine and triazole moiety have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of β-ketoacyl-acyl carrier protein synthase III (FabH). These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and Bacillus amyloliquefaciens and selected compounds among them were tested for their Escherichia coli FabH inhibitory activity. Based on the biological data, compound H17 showed the most potent antibacterial activity with MIC values of 0.39–1.56 μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC50 of 5.2 μM, being better than the positive control Kanamycin B with IC50 of 6.3 μM. Furthermore, docking simulation was performed to position compound H17 into the E. coli FabH active site to determine the probable binding conformation. This study indicated that compound H17 has demonstrated significant E. coli FabH inhibitory activity as a potential antibacterial agent and provides valuable information for the design of E. coli FabH inhibitors.  相似文献   

2.
Fatty acid biosynthesis is essential for bacterial survival. Of these promising targets, β-ketoacyl-acyl carrier protein (ACP) synthase III (FabH) is the most attractive target. A series of novel 1,3,4-oxadiazole-2(3H)-thione derivatives containing 1,4-benzodioxane skeleton targeting FabH were designed and synthesized. These compounds were determined by 1H-NMR, 13C-NMR, MS and further confirmed by crystallographic diffraction study for compound 7m and 7n . Most of the compounds exhibited good inhibitory activity against bacteria by computer-assisted screening, antibacterial activity test and E. coli FabH inhibitory activity test, wherein compounds 7e and 7q exhibited the most significant inhibitory activities. Besides, compound 7q showed the best E. coli FabH inhibitory activity (IC50=2.45 μΜ). Computational docking studies also showed that compound 7q interacts with FabH critical residues in the active site.  相似文献   

3.
A series of metronidazole–thiazole derivatives has been designed, synthesized and evaluated as potential antibacterial inhibitors. All the synthesized compounds were determined by elemental analysis, 1H NMR and MS. They were also tested for antibacterial activity against Escherichia coli, Bacillus thuringiensis, Bacillus subtilis and Pseudomonas aeruginosa as well as for the inhibition to FabH. The results showed that compound 5e exhibited the most potent inhibitory activity against E. coli FabH with IC50 of 4.9 μM. Molecular modeling simulation studies were performed in order to predict the biological activity of proposed compounds. Toxicity assay of compounds 5a, 5b, 5d, 5e, 5g and 5i showed that they were noncytotoxic against human macrophage. The results revealed that these compounds offered remarkable viability.  相似文献   

4.
Fatty acid biosynthesis is essential for bacterial survival. Components of this biosynthetic pathway have been identified as attractive targets for the development of new antibacterial agents. FabH, β-ketoacyl-acyl carrier protein (ACP) synthase III, is a particularly attractive target, since it is central to the initiation of fatty acid biosynthesis and is highly conserved among Gram positive and negative bacteria. Three series of Schiff bases containing thiazole template were synthesized and developed as potent inhibitors of FabH. This inhibitor class demonstrates strong antibacterial activity. Escherichia coli FabH inhibitory assay and docking simulation indicated that the compounds 11 and 18 were potent inhibitors of E. coli FabH.  相似文献   

5.
A group of tetrazole bearing compounds were synthesized and evaluated for their in vitro cyclooxygenase (COX) isozymes (COX-1/COX-2) inhibitory activity, in vitro anti-inflammatory activity through measuring levels of expression of IL-6 and TNF-α and antimicrobial activity. Cyclization of pyridine derivative 5b was confirmed using 2D NMR such as NOESY and HMBC experiments. Within the synthesized compounds, compound 7c was identified as effective and selective COX-2 inhibitors (COX-2 IC50 = 0.23 uM; COX-2 selectivity index = 16.91). Moreover 7c was the most effective derivative on TNF-α (37.6 pg/ml). While, the most active compound on IL-6 was isoxazole derivative 6 (42.8 pg/ml). Dual inhibitory activity on both IL-6 and TNF-α was exhibited by compounds 2 and 3 (IL-6 = 47.5 and 82.7 pg/ml, respectively) and (TNF-α = 31.7 and 33.8 pg/ml, sequentially).Additionally, compound 7a, showed broad spectrum antimicrobial activity against Gram positive cocci, Gram positive rods and yeast fungus (inhibition zone = 20 and 19 mm). None of the test compounds exhibited activity against Gram negative rods. Compounds 3 and 7c exhibited good antifungal activity at MIC equal to 64.5 µg/ml. While compound 6 showed antibacterial activities against Micrococcus lysodicticus and Bacillus subtilis at MIC = 32.25 and 64.5 µg/ml, respectively.Computational analysis was used to predict molecular properties and bioactivity of the target compounds. To confirm the mode of action of the synthesized compounds as anti-inflammatory agents, molecular docking was done. Appreciable binding interactions were observed for compound 7c containing COX-2 pharmacophore (SO2NH2), with binding energy −10.6652 Kcal/mol, forming two hydrogen bonding interactions with His90 and Tyr355 amino acids. It was fully fitted within COX-2 active site having the highest COX-2 selectivity index between all the test compounds (S.I. = 16.91).  相似文献   

6.
Novel 4-oxobenzo[d]1,2,3-triazin derivatives bearing pyridinium moiety 6a–q were synthesized and screened against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Most of the synthesized compounds showed good inhibitory activity against AChE. Among the synthesized compounds, the compound 6j exhibited the highest AChE inhibitory activity. It should be noted that these compounds displayed low anti-BuChE activity with the exception of the compound 6i, as it exhibited BuChE inhibitory activity more than donepezil. The kinetic study of the compound 6j revealed that this compound inhibited AChE in a mixed-type inhibition mode. This finding was also confirmed by the docking study. The latter study demonstrated that the compound 6j interacted with both the catalytic site and peripheral anionic site of the AChE active site. The compound 6j was also observed to have significant neuroprotective activity against H2O2-induced PC12 oxidative stress, but low activity against β-secretase.  相似文献   

7.
A series of novel Schiff base derivatives have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of FabH. These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. Compounds with potent antibacterial activities were tested for their E. coli FabH inhibitory activity. Compound 3v showed the most potent antibacterial activity with MIC of 1.56-6.25 μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC(50) of 4.3 μM. Docking simulation was performed to position compound 3v into the E. coli FabH active site to determine the probable binding conformation.  相似文献   

8.
A series of novel cinnamic acid secnidazole ester derivatives have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of FabH. These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. Compounds with potent antibacterial activities were tested for their E. coli FabH inhibitory activity. Compound 3n showed the most potent antibacterial activity with MIC of 1.56-6.25 μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC?? of 2.5 μM. Docking simulation was performed to position compound 3n into the E. coli FabH active site to determine the probable binding conformation.  相似文献   

9.
In the present investigation, new chloroquinoline derivatives bearing vinyl benzylidene aniline substituents at 2nd position were synthesized and screed for biofilm inhibitory, antifungal and antibacterial activity. The result of biofilm inhibition of C. albicans suggested that compounds 5j (IC50 value?=?51.2?μM) and 5a (IC50 value?=?66.2?μM) possess promising antibiofilm inhibition when compared with the standard antifungal drug fluconazole (IC50?=?40.0?μM). Two compounds 5a (MIC?=?94.2?μg/mL) and 5f (MIC?=?98.8?μg/mL) also exhibited good antifungal activity comparable to standard drug fluconazole (MIC?=?50.0?μg/mL). The antibacterial screening against four strains of bacteria viz. E. coli, P. aeruginosa, B. subtilis, and S. aureus suggested their potential antibacterial activity and especially all the compounds except 5g were found more active than the standard drug ciprofloxacin against B. subtilis. To further gain insights into the possible mechanism of these compounds in biofilm inhibition through the agglutinin like protein (Als), molecular docking and molecular dynamics simulation studies were carried out. Molecular modeling studies suggested the clear role in inhibition of this protein and the resulting biofilm inhibitory activity.  相似文献   

10.
A series of 3-S-β-d-glucosides-4-arylideneamino-5-aryl-1,2,4-triazoles were rationally designed and synthesized according to the principle of superposition of bioactive substructures by the combination of 1,2,4-triazole, Schiff base and glucosides. The structures of the target compounds have been characterized by 1H NMR, 13C NMR, IR, MS and HRMS. All the newly synthesized compounds have been evaluated for their antimicrobial activities in vitro against Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 8099) as well as Monilia albican (ATCC 10231). The bioactive assay showed that most of the tested compounds displayed variable inhibitory effects on the growth of the Gram-positive bacterial strain (Staphylococcus aureus), Gram-negative bacterial strains (Escherichia coli) and fungal strains (Monilia albican). All the target compounds exhibited better antifungal activity than antibacterial activity. Especially, compounds 6b, 6c, 6f, 6j, 6k and 6l showed excellent activity against fungus Monilia albican with MIC values of 16 μg/mL.  相似文献   

11.
FabH, β-ketoacyl-acyl carrier protein (ACP) synthase III, is critically important to the initiation of fatty acid biosynthesis and is highly conserved among Gram-positive and Gram-negative bacteria. A series of novel secnidazole derivatives (120) were synthesized and fully characterized by spectroscopic methods and elemental analysis. Among these compounds, 6, 8, 11, 13, 14, 1620 were reported for the first time. These compounds were tested for antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. The compounds inhibitory assay and docking simulation indicated that compound 20 (E)-2-(2-methyl-5-nitro-1H-imidazol-1-yl)-N′-(3,4,5-trimethylbenzylidene)acetohydrazide with MIC of 3.13–6.25 μg/mL against the tested bacterial strains was a potent inhibitor of Escherichia coli FabH.  相似文献   

12.
Two series of thiazole derivatives containing amide skeleton were synthesized and developed as potent Escherichia coli β-ketoacyl-(acyl-carrier-protein) synthase III (ecKAS III) inhibitors. All the 24 new synthesized compounds were assayed for antibacterial activity against the respective Gram-negative and Gram-positive bacterial strains, including E. coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. In which, 10 compounds with broad-spectrum antibacterial activities were further tested for their ecKAS III inhibitory activity. Last, we have successfully found that compound 4e showed both the promising broad antibacterial activity with MIC of 1.56–6.25 μg/mL against the representative bacterial stains, and also processed the most potent ecKAS III inhibitory activity with IC50 of 5.3 μM. In addition, docking simulation also carried out in this study to give a potent prediction binding mode between the small molecule and ecKAS III (PDB code: 1hnj) protein.  相似文献   

13.
A series of new N-substituted 1H-dibenzo[a,c]carbazole derivatives were synthesized from dehydroabietic acid, and their structures were characterized by IR, 1H NMR and HRMS spectral data. All compounds were evaluated for their antibacterial and antifungal activities against four bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas fluorescens) and three fungi (Candida albicans, Candida tropicalis and Aspergillus niger) by serial dilution technique. Some of the synthesized compounds displayed pronounced antimicrobial activity against tested strains with low MIC values ranging from 0.9 to 15.6 μg/ml. Among them, compounds 6j and 6r exhibited potent inhibitory activity comparable to reference drugs amikacin and ketoconazole.  相似文献   

14.
Abstract

Two series of aminoguanidines containing an alkynyl moiety were designed, synthesised, and screened for antibacterial and anticancer activities. Generally, the series 3a–3j with a 1,2-diphenylethyne exhibited better antibacterial activity than the other series (6a–6k) holding 1,4-diphenylbuta-1,3-diyne moiety antibacterial activity. Most compounds in series 3a–3j showed potent growth inhibition against the tested bacterial strains, with minimum inhibitory concentration (MIC) values in the range 0.25–8?µg/mL. Compound 3g demonstrated rapid and persistent bactericidal activity at 2?×?MIC. The resistance study revealed that resistance of the tested bacteria towards 3g is not easily developed. Molecular docking studies revealed that compounds 3g and 6e bind strongly to the LpxC and FabH enzymes. Moreover, excellent activity of selected compounds against the growth of cancer cell lines A549 and SGC7901 was also observed, with IC50 values in the range 0.30–4.57?µg/mL. These findings indicate that compounds containing the aminoguanidine moiety are promising candidates for the development of new antibacterial and anticancer agents.  相似文献   

15.
Antibiotic resistance in bacteria has been an emerging public health problem, thus discovery of novel and effective antibiotics is urgent. A series of novel hybrids of N-aryl pyrrothine-base α-pyrone hybrids was designed, synthesized and evaluated as bacterial RNA polymerase (RNAP) inhibitors. Among them, compound 13c exhibited potent antibacterial activity against antibiotic-resistant S. aureus with the minimum inhibitory concentration (MIC) in the range of 1–4 μg/mL. Moreover, compound 13c exhibited strong inhibitory activity against E.coli RNAP with IC50 value of 16.06 μM, and cytotoxicity in HepG2 cells with IC50 value of 7.04 μM. The molecular docking study further suggested that compound 13c binds to the switch region of bacterial RNAP. In summary, compound 13c is a novel bacterial RNAP inhibitor, and a promising lead compound for further optimization.  相似文献   

16.
As a naturally wide distributed flavone, chrysin exhibits numerous biological activities including anticancer, anti-inflammatory, and antimicrobials activities. β-Ketoacyl-acyl carrier protein synthase III (FabH) catalyzes the initial step of fatty acid biosynthesis via a type II fatty acid synthase in most bacteria. The important role of this essential enzyme combined with its unique structural features and ubiquitous occurrence in bacteria has made it an attractive new target for the development of antibacterial agents. We first used a structure-based approach to develop 18 novel chrysin analogues that target FabH for the development of new antibiotics. Structure-based design methods were used for the expansion of the chrysin derivatives including molecular docking and SAR research. Based on the results, 5-hydroxy-2-phenyl-7-(2-(piperazin-1-yl)ethoxy)-4H-chromen-4-one (3g) showed the most potent antibacterial activity with MIC of 1.56–6.25 μg/mL against the test bacterial stains, and docking simulation was performed to position compound 3g into the Escherichia coli FabH active site to determine the probable binding conformation. The biological assays indicated that compound 3g is a potent inhibitor of E. coli FabH as antibiotics.  相似文献   

17.
Owing to the growing need for novel antibacterial agents, we synthesized a novel series of fluoroquinolones including 7-substituted-1-(2,4-difluorophenyl)-6-fluoro-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxylic acid derivatives, which were tested against clinically relevant Gram positive and Gram negative bacteria. Chemical structures of the synthesized compounds were identified using spectroscopic methods. In vitro antimicrobial effects of the compounds were determined via microdilution assay. Microbiological examination revealed that compounds 13 and 14 possess a good antibacterial profile. Compound 14 was the most active and showed an antibacterial profile comparable to that of the reference drugs trovafloxacin, moxifloxacin, and ciprofloxacin. A significant MIC90 value (1.95 μg/mL) against S. aureus ATCC 25923, E. coli ATCC 35218, and E. coli ATCC 25922 was recorded for compound 14. We observed reduced metabolic activity associated with compounds 13 and 14 in the relevant bacteria via a luminescence ATP assay. Results of this assay supported the antibacterial potency of compounds 13 and 14. An E. coli DNA gyrase inhibitory assay indicated that compound 14 is a potent inhibitor of E. coli DNA gyrase. Docking studies revealed that there is a strong interaction between compound 14 and the E. coli DNA gyrase enzyme. Genotoxicity and cytotoxicity evaluations of compounds 13 and 14 showed that compound 14 is non-genotoxic and less cytotoxic compared to the reference drugs (trovafloxacin, moxifloxacin, and ciprofloxacin), which increases its biological importance.  相似文献   

18.
An effective intramolecular C–H arylation reaction catalyzed by a bimetallic catalytic system Pd(OAc)2/CuI for the synthesis of fluorine-substituted carbazoles from corresponding N-phenyl-2-haloaniline derivatives under ligand free conditions is demonstrated. The established method is effective for both N-phenyl-2-bromoaniline and N-phenyl-2-chloroaniline, and requires the low loading of Pd(OAc)2 (0.5 mol %). A series of new fluorinated carbazoles were synthesized in excellent yields using the protocol (>83%, 19 examples) and were fully characterized by 1H, 13C and 19F NMR spectral data, HRMS and elemental analysis. All compounds were evaluated for their antibacterial activities against four bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and methicillin-resistant S. aureus with resistance to gentamicin) by serial dilution technique. All tested compounds showed antibacterial activity against three test strains (S. aureus, B. subtilis and MRSA), and most of these compounds displayed pronounced antimicrobial activities against these three strains with low MIC values ranging from 0.39 to 6.25 μg/mL. Among them, compounds 7 and 14 exhibited potent inhibitory activity better than reference drugs meropenem and streptomycin. Three compounds (2, 4 and 5) showed antibacterial activity against E. coli. with MIC values from 12.5 to 25 μg/mL.  相似文献   

19.
Fatty acid biosynthesis is essential for bacterial survival. FabH, β-ketoacyl-acyl carrier protein (ACP) synthase III, is a particularly attractive target, since it is central to the initiation of fatty acid biosynthesis and is highly conserved among Gram-positive and -negative bacteria. Fifty-six 1-acetyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazole derivatives were synthesized and developed as potent inhibitors of FabH. This inhibitor class demonstrates strong antibacterial activity. Escherichia coli FabH inhibitory assay and docking simulation indicated that the compounds 1-(5-(4-fluorophenyl)-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (12) and 1-(5-(4-chlorophenyl)-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (13) were potent inhibitors of E. coli FabH.  相似文献   

20.
Three series of rhodanine derivatives bearing a quinoline moiety (6ah, 7ag, and 8ae) have been synthesized, characterized, and evaluated as antibacterial agents. The majority of these compounds showed potent antibacterial activities against several different strains of Gram-positive bacteria, including multidrug-resistant clinical isolates. Of the compounds tested, 6g and 8c were identified as the most effective with minimum inhibitory concentration (MIC) values of 1 μg/mL against multidrug-resistant Gram-positive organisms, including methicillin-resistant and quinolone-resistant Staphylococcus aureus (MRSA and QRSA, respectively). None of the compounds exhibited any activity against the Gram-negative bacteria Escherichia coli 1356 at 64 μg/mL. The cytotoxic activity assay showed that compounds 6g, 7g and 8e exhibited in vitro antibacterial activity at non-cytotoxic concentrations. Thus, these studies suggest that rhodanine derivatives bearing a quinoline moiety are interesting scaffolds for the development of novel Gram-positive antibacterial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号