首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants of Phaseolus vulgaris grown at 7 and 28 W m–2 showedno differences in rate of development of leaves or flowers.At 7 W m-Z plants had longer internodes, more succulent stemsand leaves, higher ratios of shoot:root and greater leaf areasthat those at 28 W m–2. These differences were establishedprior to detectable differences in photosynthesis and couldpartly be attributed to an increased proportion of far-red light. Although the final d. wt, carbon content, and fruit yield werehigher at 28 W m–2, plants at 7 W m–2 apparentlyhad similar relative growth rates and greater photosyntheticefficiency. Dry weight differences are most easily interpretedas resulting from the establishment of an earlier net carbongain at 28 W m–2 than at 7 W m–2.  相似文献   

2.
Salt Tolerance in the Succulent, Coastal Halophyte, Sarcocornia natalensis   总被引:2,自引:0,他引:2  
The effects of 0, 50, 100, 200, 300, 400 and 500 mol m–3NaCl on growth and ion accumulation in the succulent, coastalhalophyte Sarcocornia natalensis (Bunge ex Ung.-Sternb.) A.J. Scott were investigated. Increase in salinity from 0 to 300 mol m–3 NaCl stimulatedproduction of fresh, dry, and organic dry mass, increased succulenceand shifted resource allocation from roots to shoots. Growthwas optimal at 300 mol m–3 and decreased with furtherincrease in salinity. Water contributed to a large proportion of the increase in freshmass. Inorganic ions, especially Na+ and Cl– contributedsubstantially to the dry mass. At 300 mol m–3 NaCl inorganicions contributed to 37% of total dry mass and NaCl concentrationin the shoots was 482 mol m–3. Expressed sap osmotic potentialsdecreased from –2.10 to –3.95 MPa as salinity increasedfrom 0 to 300 mol m–3 NaCl. Massive accumulation of inorganicions, especially Na+ and Cl, accounted for 86% of theosmotic adjustment at 300 mol m–3 NaCl. Salinity treatments decreased the concentrations of K+ in shoots.Plant Na+ :K+ ratios increased steadily with salinity and reacheda maximum of 16.6 at 400 mol m3 NaCl. It is suggested that the exceptional salt tolerance of S. natalensisis achieved by massive inorganic ion accumulation which providessufficient solutes for osmoregulation, increased water fluxand turgor-induced growth. Key words: Sarcocornia natalensis, salt tolerance, halophyte  相似文献   

3.
We studied the responses of Xanthium occidentale (Bertol.) (cockleburor Noogoora burr), a noxious weed, to atmospheric CO2 enrichmentand nitrate-N concentrations in the root zone ranging from 0.5to 25 mM. CO2 enrichment (1500 cm3 m–3) increased dry-matterproduction to about the same extent (18 per cent) at all levelsof supplied N: most of the increment in dry matter was distributedequally between leaves and roots so that there was little effecton shoot-to-root dry-weight ratios. Growth was stimulated greatlyby N and plateaued at 12 mM supplied N. Shoot-to-root dry-weightand total N ratios increased with increasing N supply. CO2 enrichmenthad no effect on the total amount of N accumulated by plants,but increased the N-use efficiency of leaves. Enriched plantshad lower concentrations and quantities of N in their leavesthan controls, and therefore lower shoot-to-root total N ratios.Little free NO3 accumulated in organs of control or enrichedplants. NO3 was the major form of N in xylem sap fromdetopped plants at low supplied NO3-N, but amino N was equalin importance at high supplied NO3-N in control and enrichedplants. Concentrations of NO3 were lower in the xylemsap of CO2 enriched plants. It was concluded that the betterN-use efficiency of CO2 enriched plants could result in increasedgrowth of X. occidentale in regions of marginal soil fertilityas atmospheric levels of CO2 increase. CO2 enrichment, nitrogen, Xanthium, Noogoora burr, cocklebur  相似文献   

4.
Loliun perenne L. (cv.S. 23) was grown on vermiculite in winterin a heated greenhouse for 8 weeks under factorial combinationsof two potassium regimes (nominally 6 parts/106 and 156 parts/106in Hewitt's solution) and three densities of artificially supplementedvisible radiation flux (36.1, 7.3, and 2.2 W m–2). Growthand potassium uptake were studied through the calculation ofvarious growth functions from fitted curves. There was little effect of potassium treatment but the experimentalmaterial responded markedly to light. Leaf-area ratio in thethree treatments showed extreme plasticity in increasing from2–3 x 10–2 through 6 x 10–2 to 8–9 x10–2 m2 g–1 as light intensity decreased. Correspondingdecreases in unit leaf rate, however, caused over-all reductionsin relative growth rate. Specific absorption rates for potassium (AK, dry-weight basis)were strongly reduced at the lower light intensities but alsodisplayed complex ontogenetic drifts. Values of the allometricconstant, k (the ratio of root and shoot relative growth rates),decreased from c. 0.7 at 36.1 W m–2 through c. 0.3 at7.3 W m–2 to a value not significantly different fromzero (P < 0.05) at 2.2 W m–2. In material grown under the two higher light intensities a constantinverse relationship was found between the mass ratio of rootand shoot and the corresponding activity ratio. The resultsconform to this model: Mass ratio = –0.001+45.0 (1/activityratio) where activity ratio is expressed as specific absorptionrate for potassium (in µg g root–1 h–1)/unitshoot rate (rate of increase of whole-plant dry weight per unitshoot dry weight, in mg g shoot–1 h–1). The implicationsof this relationship are discussed.  相似文献   

5.
The uptake and redistribution of 15N within a 6-year-old asparagus(Asparagus officinalis L.) crop were examined for applicationsof 15N-enriched ammonium sulphate (5 g N m-2) either prior togrowth of foliage (commonly called 'fern'), prior to harvest,or early-harvest prior to the main period of spear (newly-emerged,edible, unexpanded shoot) production. During the harvest inspring, 38 kg N ha-1 was removed in harvested spears, but thiswas small compared to the 710 kg N ha-1 present in crowns androots. Limited uptake of 15 N occurred during harvest from thepre-harvest and early-harvest applications (11 and 4% of the15N applied, respectively) and the lack of plant uptake of Nfrom soil was also evident from an accumulation of inorganicN in unfertilized soil during spring. These results indicatethat N in spears was derived largely from remobilisation ofN stored in the crowns and roots. Most plant uptake of added 15N occurred during the first 8 weeksof foliage growth in summer, when 282 kg N ha-1 had accumulatedin the above-ground foliage. After this 8 week period, foliagefrom the early-harvest treatment contained 24% of the 15N applied.Fifteen weeks later (late autumn), foliage was senescing andthe 15N content of senesced foliage in all treatments had declinedby 90% due to remobilisation and translocation into the crownand root tissue. Similarly, foliage N had declined from 282to 24 kg N ha-1 and this remobilised N was equivalent to approximately40% of the total plant N present prior to foliage growth. During the subsequent spring period, the 15N enrichment of spearswas about twice that of the crowns and roots. Thus, there waspreferential remobilisation of recently-absorbed, stored N fornew spear growth.Copyright 1994, 1999 Academic Press Asparagus, Asparagus officinalis, nitrogen, 15N, redistribution, remobilisation, uptake  相似文献   

6.
In Trifolium repens L. there were immediate transient depolarizationsof the membrane electropotential (Evo) when KH2PO4 was addedto phosphate-free media, but these were of the same magnitudeas the controls (K2SO4 and KCI). Furthermore, the extents ofdepolarization were the same as the expected effect of the addedK+ calculated using the Goldman equation. There was no significantdepolarization on adding H3PO4 to buffered media. Consequently,there was no evidence for a depolarization caused by phosphate.This result provides evidence that the H+–H2PO4 symportin roots of T. repens operates with a stoichiometry of 1: 1. In a group of control plants ( + P plants) and a group whichwere stressed by reducing the supply of phosphate (– Pplants), the – P plants had lower values for Evo than+P plants (– 118 mV and – 130 mV, respectively).The absence of phosphate from the measurement media also reducedEvo (mean effect = 9 mV). A significant difference in Evo between– P and + P plants persisted when phosphate was addedto – P plants. The electropotential difference acrossthe tonoplast (Evo) in – P plants became more positivewith time. Key words: White clover, membrane transport, roots, tonoplast, symport  相似文献   

7.
The growth of four heathland species, two grasses (D. flexuosa,M. caerulea) and two dwarf shrubs (C. vulgaris, E. tetralix),was tested in solution culture at pH 4.0 with 2 mol m–3N, varying the N03/NH4+ ratio up to 40% nitrate. In addition,measurements of NRA, plant chemical composition, and biomassallocation were carried out on a complete N03/NH4+ replacementseries up to 100% nitrate. With the exception of M. caerulea, the partial replacement ofNH4+ by NO3 tended to enhance the plant's growth ratewhen compared to NH4+ only. In contrast to the other species,D. flexuosa showed a very flexible response in biomass allocation:a gradual increase in the root weight ratio (RWR) with NO3increasing from 0 to 100%. In the presence of NH4+, grassesreduced nitrate in the shoot only; roots did not become involvedin the reduction of nitrate until zero ambient NH4+. The dwarfshrubs, being species that assimilate N exclusively in theirroots, displayed an enhanced root NRA in the presence of nitrate;in contrast to the steady increase with increasing NO3in Calluna roots, enzyme activity in Erica roots followed arather irregular pattern. Free nitrate accumulated in the tissuesof grasses only, and particularly in D. flexuosa. The relative uptake ratio for NO3 [(proportion of nitratein N uptake)/(proportion of nitrate in N supply)] was lowestin M. caerulea and highest in D. flexuosa. Whereas M. caeruleaand the dwarf shrubs always absorbed ammonium highly preferentially(relative uptake ratio for NO3 <0.20), D. flexuosashowed a strong preference for NO3 at low external nitrate(the relative uptake ratio for N03 reaching a value of2.0 at 10% NO3). The ecological significance of thisprominent high preference for NO3 at low NO3/NH4+ratio by D. flexuosa and its consequences for soil acidificationare briefly discussed. Key words: Ammonium, heathland lants, N03/NH4+ ratio, nitrate, nitrate reductase activity, soil acidification, specific absorption rate  相似文献   

8.
Datura roots were pressure-infiltrated with 400 µg ml–115N-nitrate feeding solutions with and without the additionof 7 mM L-methionine-DL-sulphoximine (MSO), a glutamine synthetaseinhibitor. Over a 30 min time course the main diversion of newlyreduced 15N in MSO untreated roots was to glutamine. In MSO-treatedroots ammonia assimilation into amino compounds was completelysuppressed, with resultant accumulation of a large 15N ammoniapool. This treatment also caused marked concentrational changesin the free amino compound pools, suggesting that conditionsof nitrogen stress had been induced. Glutamate dehydrogenaseactivity was unaffected by the MSO treatment. The results are consistent with the concept that the glutaminesynthetase/glutamate synthase pathway is the major route ofnewly reduced nitrogen assimilation in Datura roots.  相似文献   

9.
Growth of two actinorhizal species was studied in relation tothe form of N supply in water culture. Non-nodulated bog myrtle(Myrica gale) and grey alder (Alnus incana) were grown withNH4+, NH4NO3 or NO3 (4 mol m–3 N). A nodulatedseries of bog myrtle was also cultivated in N-free medium. Relative growth rate (RGR), utilization rate of N, and shoot/rootratio were highest for the two species with the N completelysupplied as NH4+. In both species, nitrate was largely reducedin the roots and the presence of NO3 in combined-N supplyalways affected the RGR and N utilization rate negatively. BothN2 fixation and complete NO3 nutrition represented conditionsof relative N-deficiency resulting in relatively low tissue-Nconcentrations and a greater allocation of dry mass to the roots.The physiological N status of nodulated M. gale plants was comparativelygood, as indicated by a normal nodule weight ratio and a relativelyhigh N2-fixing rate per unit nodule mass. However, whole-plantN2-fixing capacity remained relatively low in comparison withacquisition rates of N in combined-N plants. The anion charge from the nitrate reduction was largely directlyexcreted as an OH efflux. H + /N ratios generally agreedwith the theory. In comparison with NH4+ nutrition, carboxylateconcentrations were higher in N2-fixing M. gale plants and theH + /N ratio in nodulated plants was less than unity below thevalue for ammonium plants as previously found for other actinorhizalspecies. Therefore, NH4+ should be an energetically more attractiveN source for actinorhizal plants than N2. The results agree with commonly accepted views on energeticsof N uptake and assimilation in higher plants and support theconcept of a basically similar physiological behaviour betweennon-legumes and legumes. Key words: Actinorhizal symbioses, ammonium, H+/OH efflux, nitrate, N2 fixation, NRA  相似文献   

10.
Decreases in salinity (<10%) increased the growth rates ofPhaeodactylum tricornutum and Dunaliella tertiolecta. Increasinglevels of cadmium (1–50 ppm (mg 1–1)) reduced thegrowth rates of both species. 100 ppm cadmium was lethal toD. tertiolecta but not to P. tricornutum. Lead (1 –4 ppm)initially increased the growth rate of D. tertiolecta but thencaused all but the 1 ppm culture to die. Lead (1–4 ppm)caused a decrease in growth rate of P. tricornutum. After exposureto 1 ppm cadmium, cultures of D. tertiolecta showed an increasedtolerance to levels of cadmium, and a changed response to levelsof lead. Exposure of P. tricornutum to either cadmium or lead,or exposure of D. tertiolecta to lead caused no change in responseto either metal.  相似文献   

11.
The Growth and Survival of Severely-shaded Tillers in Lolium perenne L.   总被引:5,自引:0,他引:5  
ONG  C. K.; MARSHALL  C. 《Annals of botany》1979,43(2):147-155
The effect of shading a single tiller to below its compensationpoint for a period of 5 weeks in vegetative plants of Loliumperenne L. cv. S23, was studied in two different experimentseach employing two light regimes, one of which was common toboth experiments. In the first experiment tillers in the axils of the first leafwere shaded three weeks from appearance at both 40 and 70 Wm–2. None of the shaded tillers died and they continuedto produce new leaves and increase in dry weight but at a reducedrate. In the second experiment, tillers with one emerged leafin any leaf axil position were shaded at 70 W m–2 andin a treatment in which light was reduced to 13 W m–2after initial growth at 70 W m–2. As in the first experimentall shaded tillers survived at 70 W m–2 but in the 70 13 W m–2 transfer regime all shaded tillers died. In the second experiment shaded tillers in both light regimeswere supplied with 14C-assimilate by translocation from theremainder of the plant but in the 70 13 W m–2 the initialsupport was withdrawn within 5 weeks of shading. The results are discussed in terms of the physiological relationshipsbetween the tillers of the grass plant. Lolium perenne L., growth of tillers, survival of tillers, effect of light  相似文献   

12.
Budgets for C and N were computed for pigeonpea (Cajanus cajanL.) at 15 d intervals, for the entire life cycle. Maximum Cand N in dry matter was observed at 90 d after sowing. Of theplants total respiratory loss during the vegetative phase, shoots,roots and nodules accounted for 65%, 23% and 12%, respectively.During the reproductive phases, the respiratory burden of theroots increased, while that of shoots and nodules decreased.Total respiratory loss as a proportion of net photosynthateremained more or less constant until ‘flowering and pod-setting’but increased heavily during seed filling, losing nearly 75%of the photosynthate in respiration. The efficiency of nitrogenfixation, in relation to respiratory output of the whole plantand nodulated roots, decreased during the period 60–90d after sowing, while that of nodules decreased from day 45onwards. Photosynthate supply to nodules and nodulated rootsincreased up to 75 d and 90 d after sowing, respectively. During45–90 d, nodules were fixing a constant proportion ofN per unit of C translocated (0.2 mg N mg–1 C). Nodulatedroots, on an average, fixed 0.07 mg N mg–1 C translocatedin the vegetative phase and this value decreased considerablyduring the subsequent phases. The crop produced during its lifecycle 50.4 g of glucose equivalents and yielded 3.8 g seed drymatter and 0.8 g seed protein giving an average of 13.2 g g–1seed dry matter and 62.8 g g–1 seed protein. Selectioncriteria for the improvement of C, N economy in pigeonpea havebeen suggested. Key words: Cajanus cajan, Carbon, Nitrogen, Dry weight, Plant parts, Growth, Development, Models  相似文献   

13.
Foy  R.H. 《Journal of plankton research》1993,15(11):1263-1276
The cell composition of the planktonic cyanobacteria, Oscillatoriaagardhii (Gomont) and Oscillatona redekei (van Goor), was comparedfor cultures grown under nitrogen (N) and phosphorus (P) limitation,and light climates which were energy (E) limited (photoperiods3:21 and 6:18 light:dark (LD) and irradiances 12–153 µmolm–2s–1). Increases in carbohydrate/protein ratio(CHO/Prot) and declines in chlorophyll a (Cha) and phycocyanin(PC) resulted from N and P limitation. N-, P- and E-limitedcultures could be distinguished on the basis of P content andthe ratio of PC/Cha. The P content range of 0.1–0.55%of ash-free dry weight (AFDW) for P-limited cultures was lowerthan that for N- and E-limited cultures (0.56–2.2 %AFDW).Cultures limited by N were distinguishable from E-limited cellsby lower PC/Cha ratios, ranging from 0 to 4.08, compared to3.9–6.9 for E-limited cells. Under the 3:21 LD cycle,the minimum PC/Cha ratio of E-limited cells was 4.5. Increasesin the CHO/Prot ratios were proportional to the difference betweenthe nutrient-limited growth rate and the non-nutrient-limitedgrowth rate. A comparison of the composition of the two speciesshowed greater accumulation of carbohydrate by O.agardhii undernutrient-limiting conditions, but that O. redekei had higherlevels of protein, chlorophyll a and phycocyanin and, in theabsence of P limitation, higher P contents than O.agardhii.  相似文献   

14.
The relative requirement of N and P (the optimum N:P ratio)by Dunaliella tertiolecta, Phaeodactylum tricornutum, Prymnesiumparvum and Thalassiosira pseudonana was studied under variouslight intensities and spectra. The ratio was determined as theratio of the minimum cell N and P concentrations (q0N and q0pwhen either nutrient was limiting. The ratio varied widely amongspecies; under light-saturation for growth (116 µEin m–2s–1 it ranged from 11.8 in D. tertiolecta to 36.6 in P.tricornutum. The ratio appeared to be higher at a sub-saturatingintensity (24 µEin m–2 s–1 in all except P.tricornutum, mainly because of higher qoN with little changein qoP. In T. pseudonana QoP also increased, resulting in aninsignificant change in the ratio. The ratio varied little withinthe range of saturation intensity. Light quality affected qoNand qoP as well as the ratio, and the pattern of change variedfrom species to species. The optimum ratio of individual specieswas linearly correlated to their qoN except in P. tricornutum.qoN for all species showed a linear correlation with cell proteinconcentrations irrespective of light conditions. The changeof optimum N:P ratios in the three species thus appears to berelated to changes in cell protein contents. The ratio of carbohydratesto protein remained constant regardless of light intensity orquality and was higher in P-limited cultures. We conclude thatchanges in light regime can strongly influence algal nutrientrequirements and species interrelationships by altering theoptimum cellular N:P ratio.  相似文献   

15.
Two hydroponic experiments were conducted to determine the effectsof brief and prolonged AI3+ exposures on the hydraulic conductivity(Lp) of northern red oak (Quercus rubra L.) root systems. RootLp was determined using the pressure chamber method of Fiscus(1977). In the first experiment, 28- to 40-d-old seedlings weretreated for 4 d with complete nutrient solutions containingone of three Al concentrations (0.04, 1.85 or 3.71 mol m–3)and either 0 or 50 mmol m–3 P. Neither Lp nor daily transpirationwas affected by treatment. In Experiment II, seedlings were grown for 48–63 d incomplete solutions containing one of three Al concentrations(0, 0.75 or 2.00 mol m–3) and either 10 or 250 mmol m–3Ca. Lp and leaf area to root length ratio (LA/RL) were reducedwhen (AI3+/ Ca2+), the solution activity ratio, was 2.9 andhigher. Lp and LA/RL were also negatively correlated with Alconcentration and Al/Ca concentration ratio in the roots. Lpwas positively correlated with LA/RL in both experiments. Itis unclear whether Lp in the second experiment was reduced directlyby solution and root chemistry or whether Lp changed in responseto altered leaf/root balance. Key words: Al phytotoxicity, Al x Ca interaction, Quercus rubra, root hydraulic conductivity  相似文献   

16.
JARVIS  S. C. 《Annals of botany》1981,48(2):147-158
The effect of changes in nitrate-nitrogen supply on the absorptionand distribution of copper was examined in grasses grown inflowing solution culture with a maintained concentration ofcopper. Absorption by roots (µg Cu g–1 dry root)decreased markedly when nitrogen had been depleted or was maintainedat 0.1 mg l–1 N, but there was an immediate increase whennitrogen was maintained at 1.0 or 10.0 mg l–1. There werealso large increases in the concentration of copper in the shootsof plants grown with 1.0 and 10.0 mg 1–1 N. The rootsof plants grown with 0.1 or 1.0 mg 1–1 N retained similarproportions of uptake, but a lower proportion was retained whenthe plants were grown with 10.0 mg 1–1. Although a lowerproportion of the copper was associated with cell walls in theplants grown at 10.0 mg 1–1 N this was the result of alower content of cell walls rather than an effect on copperitself. In a longer-term experiment in conventional solutionculture with a range of nitrogen concentration, the concentrationof copper in shoots was largely determined by shoot growth. Dactylis glomerata, Festuca arundinacea, Lolium perenne, cell walls, copper absorption, copper distribution, flowing solution culture, nitrate-nitrogen  相似文献   

17.
JARVIS  S. C. 《Annals of botany》1984,53(2):153-162
The absorption and distribution of Cu in red clover (Trifoliumpratense L.) were measured in plants grown in flowing solutionculture with Cu maintained throughout at 0.5 µg 1–1and N supplied either as nitrate or through symbiotic fixation.Although there was a decrease in Cu absorption, both with time,and with a depleted nitrate supply, it increased to its formerrate when nitrate was adjusted to 10 mg N 1–1 after aperiod of depletion. Differences in absorption between plantsdependent upon fixation and those supplied with nitrate wererelated to the slower initial growth of the plants fixing N.Considerable proportions (> 30 per cent) of the absorbedCu were retained by the roots. At the final harvest, and withthe exception of plants grown with nitrate adjusted to 0.1 mgN 1–1 after a period of depletion, the proportion of theCu retained was related to the concentration of N in the roots.The different N treatments produced differences in Cu concentrationin the shoots, and the effects were greater in the youngestfully expanded leaves than in older leaves. Trifolium pratense L., red clover, absorption, copper, flowing solution culture, nitrogen  相似文献   

18.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown as simulated swards for 71 d in flowing nutrientsolutions with roots at 11 C and shoots at 20/15 C, day/night,under natural illumination. Root temperatures were then changedto 3, 5, 7, 11, 13, 17 or 25 C and the total N2, fixation over21 d was measured in the absence of a supply mineral N. Alltreatments were subsequently supplied with 10 mmol m–2NO2 in the flowing solutions for 14 d, and the relativeuptake of N by N2, fixation and NO3 uptake was compared.Net uptake of K+ was measured on a daily basis. Root temperature had little effect on root d. wt over the 35-dexperimental period, but shoot d. wt increased by a factor of3.5 between 3 and 25 C, with the sharpest increase occurringat 7–11 C. Shoot: root d. wt ratios increased from 25to 68 with increasing temperature at 7–25 C. N2-fixationper plant (in the absence of NO2 ) increased with roottemperature at 3–13C, but showed little change above13 C. The ratios of N2 fixation: NO2 uptake over 14d (mol N: mol N) were 0.47–0.77 at 3–7 C, 092–154at 11–17 C, and 046 at 25 C, reflecting the dominanceof NO3 uptake over N2 fixation at extremes of high andlow root temperature. The total uptake of N varied only slightlyat 11–25 –C (095–110 mmol N plant–1),the decline in N2 fixation as root temperature increased above11 C was compensated for by the increase in NO 3 uptake.The % N in shoot dry matter declined with decreasing root temperature,from 32% at 13 C to 15% at 3 C. In contrast, concentrationsof N expressed on a shoot water content basis showed a modestdecrease with increasing temperature, from 345 mol m–3at 3 C to 290 mol m–3 at 25 C. Trifolium repens L, white clover, root temperature, N2 fixation, potassium uptake, nitrate uptake, flowing solution culture  相似文献   

19.
Bryce, J. H. and ap Rees, T. 1985. Comparison of the respiratorymetabolism of Plantago lanceolata L. and Plantago major L.—J.exp. Bot. 36 1559–1565. The aim of this work was to discover if the respiratory metabolismof the roots of Plantago lanceolata L. differed from that ofthe roots of Plantago major L. Measurements of oxygen uptakeand dry weight of excised root systems during growth of seedlingsprovided evidence that the two species differed in the amountof respiration needed to support a given increase in dry weight.Excised root systems were given a 6-h pulse in [U-14C]sucrosefollowed by a 16.5-h chase in sucrose. The detailed distributionof 14C amongst the major components of the roots at the endof the pulse and the chase revealed no significant differencebetween the two species. Patterns of 14CO2 production from [1-14C],[2-14C], [3,4-14C], and [6-14C]glucose of excised root systemsfrom plants of three ages were similar for the two species.It is suggested that there is no conclusive evidence for anysignificant inherent difference in the respiratory metabolismof the roots of the two species. Key words: 14C sugar metabolism, respiration, roots, Plantago  相似文献   

20.
Faraday, C. D., Quinton, P. M. and Thomson, W. W. 1986. Ionfluxes across the transfusion zone of secreting Limonium saltglands determined from secretion rates, transfusion zone areasand plasmodesmatal frequencies.—J. exp. Bot. 37: 482–494. The epidermal salt-secreting glands of Limonium (Plumbaginaceae)are enclosed in a cuticular envelope. Ions and metabolites enterthe glands from the mesophyll through gaps in the cuticularenvelope, the transfusion zones. Net influxes of ions acrossthe transfusion zone were calculated from measurements of secretionrates and transfusion zone areas. When leaves of L. pereziiF. T. Hubb. were treated with 300 mol m–3 NaCl, transfusionzone influxes of Na+ K+, Ca++ and Cl as high as 7?0?10–5,1.7?10–5, 5?8?10–7 and 8.5?10–5 mol m–2s–1 respectively, were calculated. Assuming a transmembranepathway, these fluxes would be some of the highest reportedfor ions in plant cells. Key words: Salt glands, ion fluxes, ultrastructure  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号