首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a rational approach to simultaneously test Escherichia coli strains for the presence of known virulence genes in a reverse dot blot procedure. Specific segments of virulence genes of E. coli designed to have similar hybridization parameters were subcloned on plasmids and subsequently amplified by PCR as unlabeled probes in amounts sufficient to be bound to nylon membranes. Various pathogenic isolates and laboratory strains of E. coli were probed for the presence of virulence genes by labeling the genomic DNA of these strains with digoxigenin and then hybridizing them to the prepared nylon membranes. These hybridization results demonstrated that besides the E. coli K-12 safety strain derivatives, E. coli B and C strains are also devoid of genes encoding any of the investigated virulence factors. In contrast, pathogenic E. coli control strains, used to evaluate the method, showed typical hybridization patterns. The described probes and their easy application on a single filter were shown to provide a useful tool for the safety assessment of E. coli strains to be used as hosts in biotechnological processes. This approach might also be used for the identification and characterization of clinically significant E. coli isolates from human and animal species.  相似文献   

2.
Aims:  To develop methods to differentiate Escherichia coli O157:H7 and related serotypes by the use of amplicon length polymorphism (ALP) analysis based on identifying DNA sequence deletions within highly homologous regions of three sequenced E. coli strains.
Methods and Results:  Potential primer locations along the ancestral genomic backbone were identified and evaluated against three sequenced genomes and then applied to a reference set of pathogenic E. coli strains. All 16 primer combinations generated the expected diagnostic fragments as predicted for the E. coli K12 MG1655, O157:H7 EDL933, and O157:H7B Sakai genomes.
Conclusions:  This study defines a collection of primers distributed along the length of the E. coli genome that were applied to ALP analysis methods to successfully differentiate between serotypes of E. coli O157:H7 and other E. coli serotypes.
Significance and Impact of the Study:  ALP-PCR analysis method was validated as an independent method of classification when compared with that of rep-PCR. The principles underlying ALP analysis can be readily applied for the detection and differentiation of other closely related microbial species because of the abundance of complete DNA sequence data for a large number of microbial genomes.  相似文献   

3.
Genomes of prokaryotes differ significantly in size and DNA composition. Escherichia coli is considered a model organism to analyze the processes involved in bacterial genome evolution, as the species comprises numerous pathogenic and commensal variants. Pathogenic and nonpathogenic E. coli strains differ in the presence and absence of additional DNA elements contributing to specific virulence traits and also in the presence and absence of additional genetic information. To analyze the genetic diversity of pathogenic and commensal E. coli isolates, a whole-genome approach was applied. Using DNA arrays, the presence of all translatable open reading frames (ORFs) of nonpathogenic E. coli K-12 strain MG1655 was investigated in 26 E. coli isolates, including various extraintestinal and intestinal pathogenic E. coli isolates, 3 pathogenicity island deletion mutants, and commensal and laboratory strains. Additionally, the presence of virulence-associated genes of E. coli was determined using a DNA "pathoarray" developed in our laboratory. The frequency and distributional pattern of genomic variations vary widely in different E. coli strains. Up to 10% of the E. coli K-12-specific ORFs were not detectable in the genomes of the different strains. DNA sequences described for extraintestinal or intestinal pathogenic E. coli are more frequently detectable in isolates of the same origin than in other pathotypes. Several genes coding for virulence or fitness factors are also present in commensal E. coli isolates. Based on these results, the conserved E. coli core genome is estimated to consist of at least 3,100 translatable ORFs. The absence of K-12-specific ORFs was detectable in all chromosomal regions. These data demonstrate the great genome heterogeneity and genetic diversity among E. coli strains and underline the fact that both the acquisition and deletion of DNA elements are important processes involved in the evolution of prokaryotes.  相似文献   

4.
Morris RT  Drouin G 《Genomics》2008,92(3):168-172
We previously showed that gene conversions were more frequent in the genomes of three Escherichia coli pathogenic strains than in the genome of the nonpathogenic K-12 E. coli strain. However, that study did not address whether the more frequent conversions observed in the genes of pathogenic strains occurred between the backbone genes common to these four strains or in the numerous horizontally transferred genes found only in pathogenic strains. Here, we show that ectopic gene conversions are equally frequent in the backbone genes of pathogenic and nonpathogenic strains, that most of these conversions are short, and that the nucleotide changes they generate are probably selectively neutral. Backbone genes are therefore under similar selective constraints in both pathogenic and nonpathogenic E. coli strains. The higher frequency of gene conversions we previously observed in pathogenic strains is therefore due to higher conversion frequencies between the numerous horizontally transferred genes found only in pathogenic strains.  相似文献   

5.
The widespread species Escherichia coli includes a broad variety of different types, ranging from highly pathogenic strains causing worldwide outbreaks of severe disease to avirulent isolates which are part of the normal intestinal flora or which are well characterized and safe laboratory strains. The pathogenicity of a given E. coli strain is mainly determined by specific virulence factors which include adhesins, invasins, toxins and capsule. They are often organized in large genetic blocks either on the chromosome ('pathogenicity islands'), on large plasmids or on phages and can be transmitted horizontally between strains. In this review we summarize the current knowledge of the virulence attributes which determine the pathogenic potential of E. coli strains and the methodology available to assess the virulence of E. coli isolates. We also focus on a recently developed procedure based on a broad-range detection system for E. coli-specific virulence genes that makes it possible to determine the potential pathogenicity and its nature in E. coli strains from various sources. This makes it possible to determine the pathotype of E. coli strains in medical diagnostics, to assess the virulence and health risks of E. coli contaminating water, food and the environment and to study potential reservoirs of virulence genes which might contribute to the emergence of new forms of pathogenic E. coli.  相似文献   

6.
ABSTRACT: BACKGROUND: The Escherichia coli species contains a variety of commensal and pathogenic strains, and its intraspecific diversity is extraordinarily high. With the availability of an increasing number of E. coli strain genomes, a more comprehensive concept of their evolutionary history and ecological adaptation can be developed using phylogenomic analyses. In this study, we constructed two types of whole-genome phylogenies based on 34 E. coli strains using collinear genomic segments. The first phylogeny was based on the concatenated collinear regions shared by all of the studied genomes, and the second phylogeny was based on the variable collinear regions that are absent from at least one genome. Intuitively, the first phylogeny is likely to reveal the lineal evolutionary history among these strains (i.e., an evolutionary phylogeny), whereas the latter phylogeny is likely to reflect the whole-genome similarities of extant strains (i.e., a similarity phylogeny). RESULTS: Within the evolutionary phylogeny, the strains were clustered in accordance with known phylogenetic groups and phenotypes. When comparing evolutionary and similarity phylogenies, a concept emerges that Shigella may have originated from at least three distinct ancestors and evolved into a single clade. By scrutinizing the properties that are shared amongst Shigella strains but missing in other E. coli genomes, we found that the common regions of the Shigella genomes were mainly influenced by mobile genetic elements, implying that they may have experienced convergent evolution via horizontal gene transfer. Based on an inspection of certain key branches of interest, we identified several collinear regions that may be associated with the pathogenicity of specific strains. Moreover, by examining the annotated genes within these regions, further detailed evidence associated with pathogenicity was revealed. CONCLUSIONS: Collinear regions are reliable genomic features used for phylogenomic analysis among closely related genomes while linking the genomic diversity with phenotypic differences in a meaningful way. The pathogenicity of a strain may be associated with both the arrival of virulence factors and the modification of genomes via mutations. Such phylogenomic studies that compare collinear regions of whole genomes will help to better understand the evolution and adaptation of closely related microbes and E. coli in particular.  相似文献   

7.
目的了解安徽省合肥地区动物源性大肠埃希菌的血清型分布和耐药状况,以期筛选出菌苗株和指导临床合理用药。方法对46份疑似大肠埃希菌病病料进行细菌分离培养、生化编码鉴定和致病性测定。采用玻片凝集试验对分离到的46株致病性大肠埃希菌进行血清型鉴定。同时分别采用K-B纸片琼脂扩散法和双纸片增效法检测致病性大肠埃希菌的耐药性和ESBLs阳性菌株。结果46株致病性大肠埃希菌中,除7株细菌未能定型外,其余39株细菌分布于10个血清型,O127:K63血清型为优势血清型,占定型菌株的33.33%。46株致病性大肠埃希菌对21种抗菌药物均呈现不同程度的耐药性,15个ESBLs阳性菌株表现为多重耐药,对各种抗菌药物的耐药率均高于ESBLs阴性菌株。结论O127:K63血清型为优势血清型,可作为菌苗株。合肥地区动物源性大肠埃希菌耐药性较为严重,尤其是产ESBLs大肠埃希菌多重耐药更为突出。  相似文献   

8.
Escherichia coli, including the closely related genus Shigella, is a highly diverse species in terms of genome structure. Comparative genomic hybridization (CGH) microarray analysis was used to compare the gene content of E. coli K-12 with the gene contents of pathogenic strains. Missing genes in a pathogen were detected on a microarray slide spotted with 4,071 open reading frames (ORFs) of W3110, a commonly used wild-type K-12 strain. For 22 strains subjected to the CGH microarray analyses 1,424 ORFs were found to be absent in at least one strain. The common backbone of the E. coli genome was estimated to contain about 2,800 ORFs. The mosaic distribution of absent regions indicated that the genomes of pathogenic strains were highly diversified because of insertions and deletions. Prophages, cell envelope genes, transporter genes, and regulator genes in the K-12 genome often were not present in pathogens. The gene contents of the strains tested were recognized as a matrix for a neighbor-joining analysis. The phylogenic tree obtained was consistent with the results of previous studies. However, unique relationships between enteroinvasive strains and Shigella, uropathogenic, and some enteropathogenic strains were suggested by the results of this study. The data demonstrated that the CGH microarray technique is useful not only for genomic comparisons but also for phylogenic analysis of E. coli at the strain level.  相似文献   

9.
Our understanding of Escherichia coli biofilm formation in vitro is based on studies of laboratory K-12 strains grown in standard media. However, pathogenic E. coli isolates differ substantially in their genetic repertoire from E. coli K-12 and are subject to heterogeneous environmental conditions. In this study, in vitro biofilm formation of 331 nondomesticated E. coli strains isolated from healthy (n = 105) and diarrhea-afflicted children (n = 68), bacteremia patients (n = 90), and male patients with urinary tract infections (n = 68) was monitored using a variety of growth conditions and compared to in vitro biofilm formation of prototypic pathogenic and laboratory strains. Our results revealed remarkable variation among the capacities of diverse E. coli isolates to form biofilms in vitro. Notably, we could not identify an association of increased biofilm formation in vitro with a specific strain collection that represented pathogenic E. coli strains. Instead, analysis of biofilm data revealed a significant dependence on growth medium composition (P < 0.05). Poor correlation between biofilm formation in the various media suggests that diverse E. coli isolates respond very differently to changing environmental conditions. The data demonstrate that prevalence and expression of three factors known to strongly promote biofilm formation in E. coli K-12 (F-like conjugative pili, aggregative adherence fimbriae, and curli) cannot adequately account for the increased biofilm formation of nondomesticated E. coli isolates in vitro. This study highlights the complexity of genetic and environmental effectors of the biofilm phenotype within the species E. coli.  相似文献   

10.
The ferric enterobactin receptor protein (81 kDal) of Escherichia coli O111 was purified by preparative sodium dodecyl sulphate-polyacrylamide gel electrophoresis and used to raise polyclonal antiserum in rabbits. This antiserum was used in conjunction with the immunoblot technique to examine the degree of antigenic homology of the ferric enterobactin receptor protein among 17 pathogenic and laboratory strains of E. coli. Both the molecular weight and the antigenic properties of the enterobactin receptor were highly conserved. However, the laboratory strain C and a pathogenic enteroinvasive strain, E. coli O164, were unusual in not producing the 81 kDal protein. The antiserum also recognized an 81 kDal protein from iron-restricted Salmonella typhimurium and an 83 kDal protein from iron-restricted Klebsiella pneumoniae.  相似文献   

11.
Evolution of the iss gene in Escherichia coli   总被引:1,自引:0,他引:1  
The increased serum survival gene iss has long been recognized for its role in extraintestinal pathogenic Escherichia coli (ExPEC) virulence. iss has been identified as a distinguishing trait of avian ExPEC but not of human ExPEC. This gene has been localized to large virulence plasmids and shares strong similarities with the bor gene from bacteriophage lambda. Here, we demonstrate that three alleles of iss occur among E. coli isolates that appear to have evolved from a common lambda bor precursor. In addition to the occurrence of iss on the ColV/BM virulence plasmids, at least two iss alleles occur within the E. coli chromosome. One of these alleles (designated type 3) was found to occur in the genomes of all currently sequenced ExPEC strains on a similar prophage element that also harbors the Sit iron and manganese transport system. When the prevalence of the three iss types was examined among 487 E. coli isolates, the iss type 3 gene was found to occur at a high frequency among ExPEC isolates, irrespective of the host source. The plasmid-borne iss allele (designated type 1) was highly prevalent among avian pathogenic E. coli and neonatal meningitis-associated E. coli isolates but not among uropathogenic E. coli isolates. This study demonstrates the evolution of iss in E. coli and provides an additional tool for discriminating among E. coli pathotypes through the differentiation of the three iss allele types and bor.  相似文献   

12.
30株大肠杆菌的泛基因组学特征分析   总被引:2,自引:0,他引:2  
Fu J  Qin QW 《遗传》2012,34(6):765-772
泛基因组(Pan-genome)是某一物种全部基因的总称,其中包括核心基因组(该物种所有个体中都存在的基因)和非必须基因组(只在部分个体中存在的基因,以及某个体特有的基因)。文章从泛基因组学角度比较分析了30株已经完成测序的大肠杆菌的基因、基因组成及其进化特征,结果表明核心基因只占据每株大肠杆菌全部基因数目的 50%左右,而平均每个菌株有146个特有基因,结果表明随着更多大肠杆菌菌株的基因组被测序,将会不断有新基因被发现。通过比较分析大肠杆菌不同菌株之间基因的保守性与基因的GC含量以及选择压力之间的关系,发现越保守的基因其GC含量变化范围越窄,同时在进化中受到的选择压力也越大。这些结果将有助于深入了解大肠杆菌基因组的进化特征及其基因组成的动态变化,并为预防和控制由致病性大肠杆菌引发的流行疾病提供理论依据,同时也为大规模病原菌基因组数据的分析方法提供借鉴。  相似文献   

13.
Comparisons of the genetic maps of Escherichia coli K-12 and Salmonella typhimurium LT2 suggest that the size and organization of bacterial chromosomes are highly conserved. Employing pulsed-field gel electrophoresis, we have estimated the extent of variation in genome size among 14 natural isolates of E. coli. The BlnI and NotI restriction fragment patterns were highly variable among isolates, and genome sizes ranged from 4,660 to 5,300 kb, which is several hundred kilobases larger than the variation detected between enteric species. Genome size differences increase with the evolutionary genetic distance between lineages of E. coli, and there are differences in genome size among the major subgroups of E. coli. In general, the genomes of natural isolates are larger than those of laboratory strains, largely because of the fact that laboratory strains were derived from the subgroup of E. coli with the smallest genomes.  相似文献   

14.
Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include human uropathogenic E. coli (UPEC) and avian pathogenic E. coli (APEC). Regardless of host of origin, ExPEC strains share many traits. It has been suggested that these commonalities may enable APEC to cause disease in humans. Here, we begin to test the hypothesis that certain APEC strains possess potential to cause human urinary tract infection through virulence genotyping of 1,000 APEC and UPEC strains, generation of the first complete genomic sequence of an APEC (APEC O1:K1:H7) strain, and comparison of this genome to all available human ExPEC genomic sequences. The genomes of APEC O1 and three human UPEC strains were found to be remarkably similar, with only 4.5% of APEC O1's genome not found in other sequenced ExPEC genomes. Also, use of multilocus sequence typing showed that some of the sequenced human ExPEC strains were more like APEC O1 than other human ExPEC strains. This work provides evidence that at least some human and avian ExPEC strains are highly similar to one another, and it supports the possibility that a food-borne link between some APEC and UPEC strains exists. Future studies are necessary to assess the ability of APEC to overcome the hurdles necessary for such a food-borne transmission, and epidemiological studies are required to confirm that such a phenomenon actually occurs.  相似文献   

15.
This study was designed to investigate the effect of monoassociation of germ-free piglets with Escherichia coli strains on the development of intestinal brush-border enzyme activities. Piglets were delivered by hysterectomy, reared for seven days under germ-free conditions and fed milk formula diet. One group was maintained germ-free, the other four groups were monoassociated on day eight with one of four E. coli strains: non-pathogenic O86 or O83 and G58-1, or pathogenic 933D. The development of brush-border digestive enzyme functions in the small intestine was evaluated after 15 days. Germ-free controls exhibited slower developmental declines of lactase, gamma-glutamyltranspeptidase and alkaline phosphatase, and delayed increases of sucrase and glucoamylase compared to conventionally grown animals. Association of germ-free piglets with the non-pathogenic E. coli strains O86 and O83 resulted in increased enterocyte differentiation along the length of the small intestine, accompanied by declining activities of lactase, gamma-glutamyltranspeptidase and alkaline phosphatase, and elevated activities of maturational markers such as sucrase and glucoamylase. Maturational changes also occurred along the villus-crypt axis, as revealed by histochemical localization of aminopeptidase N on the villi tips in piglets colonized with E. coli O83. Interestingly, colonization with the pathogenic E. coli strain 933D stimulated changes in the main differentiation enzyme markers lactase, sucrase and glucoamylase to an extent comparable with those produced by the non-pathogenic and probiotic E. coli strains. In conclusion, germ-free piglets represent a valuable tool to study the consequences of colonization of the immature sterile gut with defined strains of bacteria.  相似文献   

16.
A group of Escherichia coli isolates from nature were compared with one another and with laboratory strains of E. coli with respect to size distribution of chromosomal restriction endonuclease fragments and differences in nucleotide sequences in selected small portions of the genomes. The estimated frequency of base substitutions in nucleotide sequences in and near the trp operons of 26 of the 28 E. coli strains examined ranged from 0.008 to 0.066. Nucleotide sequences in or near lambda prophage homologs were significantly more variable than the sequences in or near trp, tnaA, and thyA genes. Thus, the lambda-homologous regions may have a significant horizontal component in their evolutionary histories, having undergone genetic exchange, whereas the trp, tnaA, and thyA regions may have solely vertical evolutionary histories. The relatedness of the E. coli strains in the genetic regions studied indicated that laboratory strains are not more closely related to one other than they are to isolates from nature. The isolates from natural populations did not form groups related either by host taxa or by geographical region of isolation.  相似文献   

17.
采用抑制差减杂交技术(Suppression subtractive hybridization,SSH)对禽致病性大肠杆菌E037株(血清型O78)与非致病菌株K-12MG1655以及同一O2血清型高致病菌株E058与低致病菌株E526进行基因组差异片段克隆与分析。从E037株中共检出17个特异性差异片段,E058株中共检出32个特异性差异片段。经同源分析,这些序列可分为4类:质粒相关序列、噬菌体相关序列、已知功能序列、未知功能序列。这些差异片段包含许多重要的大肠杆菌毒力相关基因,如大肠杆菌素、气杆菌素受体、铁基因簇等。49个片段中,14个片段与其它微生物基因组同源性较高。结果表明,大肠杆菌高致病株与低致病菌株或非致病菌株基因组间存在较多差异基因,其中包括毒力、毒力相关基因、代谢以及噬菌体等基因成分。  相似文献   

18.
以28株合肥地区禽源致病性大肠埃希菌为实验材料,采用K-B纸片琼脂扩散法检测禽源致病性大肠埃希菌的耐药情况。同时采用平板打孔法测定盐酸小檗碱、绿原酸、靛玉红和丹参酮ⅡA 4种中草药有效成分的抑菌活性。结果表明,28株禽源致病性大肠埃希菌对17种抗菌药物均呈现不同程度的耐药性,对β-内酰胺类、氨基糖苷类、四环素类和喹诺酮类抗菌药物的耐药率分别介于0%~92.86%、14.29%~50.00%、78.57%~100%和57.14%~71.43%。中草药有效成分盐酸小檗碱和丹参酮ⅡA对大肠埃希菌具有较好的抑制活性,抑菌率分别为92.86%(26/28)和89.29%(25/28)。  相似文献   

19.
【目的】旨在对从山东省某地区4个健康奶牛养殖场分离到的大肠埃希菌进行优势血清型、耐药特性、Ⅰ类整合子基因盒携带情况以及系统进化群分析。【方法】采集194份来自山东省某地区4个规模化奶牛场奶牛新鲜粪便样品,进行大肠埃希菌分离和鉴定,利用常用大肠埃希菌诊断血清进行血清型鉴定;利用10%的绵羊血平板检测溶血性;利用K-B法检测对14种常规抗菌药物的敏感性;利用聚合酶链式反应(PCR)检测革兰阴性菌常见的6大类24种耐药基因、Ⅰ类整合子基因盒结构并对目的条带测序分析;利用细菌多位点序列分型(Multilocus sequence typing,MLST)技术分析大肠埃希菌的ST型并使用eBURST v3软件分析菌株之间的克隆关系。【结果】从194份新鲜粪便样品中分离到171株大肠埃希菌,其中主要为致病性(19.9%)和侵袭性大肠埃希菌(17.0%),优势血清型分别为O128:K67(12/171)和O143:K7(12/171)。另外,具有溶血性的大肠埃希菌阳性率为9.4%(16/171);药敏试验结果显示多重耐药菌株的比率为22.2%,其中对氨苄西林耐药率最高为33.9%,四环素次之,为24.0%;PCR检测耐药基因和整合子结果显示,59.1%的菌株携带β-内酰胺类耐药基因blaTEM,59.1%的菌株携带氨基糖苷类耐药基因ant(2′),未检测到四环素耐药基因tetA和tetB;Ⅰ类整合子的阳性率为4.1%(7/171),dfrA12-aadA2-sul1为优势基因盒结构(4/171);MLST将大肠埃希菌分为8种ST型,其中,ST155(10/171)和ST58(45/171)形成一个克隆复合物且没有发现新的ST型。【结论】本研究证实,从该地区规模化健康奶牛场新鲜粪便中分离到的大肠埃希菌优势血清型为O128:K67和O143:K7;少部分大肠埃希菌具有溶血性;仅对氨苄西林、四环素等具有较高的耐药率;优势基因盒结构为dfrA12-aadA2-sul1;MLST分型显示不同奶牛场分离出亲缘关系较近的菌株,其分布具有多态性,血清型与ST型之间无相关性。本研究表明源自表观健康的奶牛的大肠埃希菌存在多重耐药现象,具有食品公共卫生安全隐患,该研究对于提升规模化奶牛场奶制品的安全生产与质量评估具有一定的理论指导意义。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号