首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Expansion of trinucleotide repeats within genes is well known to cause pathological conditions in humans. Here we report a large number of genes containing simple sequence repeats (SSR) from the brain of channel catfish, of which a homologue of the RAD23B gene was found to include (CCA) trinucleotide repeats within its coding region. Because of the importance of the RAD23B gene in the nucleotide excision repair (NER) system, the catfish RAD23B locus was further characterized. The (ACC) repeats encode a polythreonine (T) tract within the catfish RAD23B gene that is absent from the previously cloned human and mouse genes. A survey of the allele variation at the locus indicated the existence of variable microsatellite repeats in the NER RAD23B gene, suggesting that the trinucleotide repeats are expanding or shrinking. The majority of individuals harbor 10 (ACC) repeats within the RAD23B gene, but alleles with 8 and 11 repeats were also detected. The (ACC) repeats are limited to only channel catfish and the closely related blue catfish, but are absent from flathead catfish and the cloned human and mouse genes, suggesting that the microsatellite invasion into the RAD23B gene is a recent event in evolution.  相似文献   

2.
The number of repeat in the microsatellite region (AATG)(5-14) of the human thyroid peroxidase gene (TOPX) was determined using an automated DNA analysis system with nano-scale engineered biomagnetite. Thermal melting curve analysis of DNA duplexes on biomagnetite indicated that shorter repeat sequences (less than 9 repeats) were easily discriminated. However, it was difficult to determine the number of repeats at more than nine. In order to improve the selectivity of this method for the longer repeats, a "double probe hybridization assay" was performed in which an intermediate probe was used to replace a target repeat sequence having more than 9 repeats with a shorter sequence possessing less than 9 repeats. Thermal probe melting curve analyses and Tm determination confirmed that the target with 10 repeats was converted to 5 repeats, 11 repeats converted to 4 and 12 to 3, respectively. Furthermore, rapid determination of repeat numbers was possible by measuring fluorescence intensities obtained by probe dissociation at 56 and 66 degrees C, and 40, 60 and 80 degrees C for signal normalization.  相似文献   

3.
We showed previously that mutations in methyl-directed mismatch repair of Escherichia coli reduced the occurrence of large deletions in (CTG.CAG)(175) repeats contained on plasmids. By contrast, other workers reported that mutations in mismatch repair increase the frequency of small-length changes in the shorter (CTG.CAG)(64). Using plasmids with a variety of lengths and purity of (CTG.CAG) repeats, we have resolved these apparently conflicting observations. We show that all lengths of (CTG.CAG) repeats are subject to small-length changes (eight repeats) in (CTG.CAG)(n) occur more readily in cells with active mismatch repair. The frequency of large deletions is proportional to the tract length; in our assays they become prominent in tracts greater than 100 repeats. Interruptions in repeat purity enhance the occurrence of large deletions. In addition, we observed a high level of incidence of deletions in (CTG.CAG) repeats for cultures passing repeatedly through stationary phase during long-term growth experiments of all strains (i.e. with active or inactive mismatch repair). These results agree with current theories on mismatch repair acting on DNA slippage events that occur in DNA triplet-repeats.  相似文献   

4.
(TG:CA)(n) repeats in human housekeeping genes   总被引:1,自引:0,他引:1  
The unravelling of human genome sequence gives a new opportunity to investigate the role of repetitive sequences in gene regulation. Among the various types of repetitive sequences, the dinucleotide (TG:CA)(n) repeats are one of the most abundant in human genome and exhibit polymorphism. Early on, it was observed that the (TG:CA)(n) repeats could modulate gene expression and has the propensity to undergo conformational transitions in in vivo conditions. Recent reports describe the role of polymorphic (TG:CA)(n) repeats in gene regulation in several genes. In this work, we have analysed the distribution of (TG:CA)(n) (n >or= 6) repeats in human 'housekeeping genes' on which recently released Gene Chip data is available. Our results indicate that (i). The number of short intragenic (TG:CA)(n) repeats is significantly higher than the number of long repeats (ii). the proportion of genes with (TG:CA)(n) repeats (n >or= 12 units) had lower mean expression levels compared to those without these repeats, (iii). the genes belonging to the functional class of 'signalling and communication' had a positive association with repeats in contrast to the genes belonging to the 'information' class that were negatively associated with repeats.  相似文献   

5.
Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms   总被引:133,自引:0,他引:133  
J L Weber 《Genomics》1990,7(4):524-530
Abundant human interspersed repetitive DNA sequences of the form (dC-dA)n.(dG-dT)n have been shown to exhibit length polymorphisms. Examination of over 100 human (dC-dA)n.(dG-dT)n sequences revealed that the sequences differed from each other both in numbers of repeats and in repeat sequence type. Using a set of precise classification rules, the sequences were divided into three categories: perfect repeat sequences without interruptions in the runs of CA or GT dinucleotides (64% of total), imperfect repeat sequences with one or more interruptions in the run of repeats (25%), and compound repeat sequences with adjacent tandem simple repeats of a different sequence (11%). Informativeness of (dC-dA)n.(dG-dT)n markers in the perfect sequence category was found to increase with increasing average numbers of repeats. PIC values ranged from 0 at about 10 or fewer repeats to above 0.8 for sequences with about 24 or more repeats. (dC-dA)n.(dG-dT)n polymorphisms in the imperfect sequence category showed lower informativeness than expected on the basis of the total numbers of repeats. The longest run of uninterrupted CA or GT repeats was found to be the best predictor of informativeness of (dC-dA)n.(dG-dT)n polymorphisms regardless of the repeat sequence category.  相似文献   

6.
Behura SK  Severson DW 《Gene》2012,504(2):226-232
We present a detailed genome-scale comparative analysis of simple sequence repeats within protein coding regions among 25 insect genomes. The repetitive sequences in the coding regions primarily represented single codon repeats and codon pair repeats. The CAG triplet is highly repetitive in the coding regions of insect genomes. It is frequently paired with the synonymous codon CAA to code for polyglutamine repeats. The codon pairs that are least repetitive code for polyalanine repeats. The frequency of hexanucleotide and dinucleotide motifs of codon pair repeats is significantly (p<0.001) different in the Drosophila species compared to the non-Drosophila species. However, the frequency of synonymous and non-synonymous codon pair repeats varies in a correlated manner (r(2)=0.79) among all the species. Results further show that perfect and imperfect repeats have significant association with the trinucleotide and hexanucleotide coding repeats in most of these insects. However, only select species show significant association between the numbers of perfect/imperfect hexamers and repeat coding for single amino acid/amino acid pair runs. Our data further suggests that genes containing simple sequence coding repeats may be under negative selection as they tend to be poorly conserved across species. The sequences of coding repeats of orthologous genes vary according to the known phylogeny among the species. In conclusion, the study shows that simple sequence coding repeats are important features of genome diversity among insects.  相似文献   

7.
Seven imperfect repeats of a 40-amino acid cysteine-rich sequence constitute the ligand binding domain of the low density lipoprotein (LDL) receptor. To assess the contribution of each repeat, three site-directed mutations were made individually in each repeat: 1) deletion of the repeat, 2) substitution of a conserved isoleucine with aspartic acid, and 3) substitution of a conserved aspartic acid with tyrosine. cDNAs containing these mutations were transfected into simian COS cells and assayed for their ability to bind LDL, which contains a 500-kDa protein ligand (apoB-100), and beta-migrating very low density lipoprotein (beta-VLDL), which contains multiple copies of a 33-kDa ligand (apoE). The results showed that binding of the two ligands required different combinations of repeats. LDL binding required repeats 3-7; deletion of any one of these repeats markedly reduced LDL binding. In contrast, beta-migrating very low density lipoprotein binding was insensitive to the loss of any single repeat with the important exception of repeat 5, whose loss reduced binding by 60%. The same effects were obtained when each of the repeats was altered by either of the two substitution mutations. The current findings suggest that a multiplicity of cysteine-rich repeats may allow a single protein to bind several different protein ligands by employing different combinations of repeats.  相似文献   

8.
The mycobacterial adhesin heparin-binding hemagglutinin (HBHA) contains several lysine-rich repeats at its carboxyl-terminal end. Using truncated recombinant HBHA forms and hybrid proteins containing HBHA repeats grafted onto the Escherichia coli maltose-binding protein (MBP), we found that these repeats are responsible for heparin binding. Immunofluorescence microscopy studies revealed that their deletion abrogates binding of HBHA to human pneumocytes. Conversely, when fused to MBP, the HBHA repeats confer pneumocyte adherence properties to the hybrid protein. Treatment of pneumocytes with glycosaminoglycan-degrading enzymes showed that HBHA binding depends on the presence of heparan sulfate chains on the cell surface. The epitope of a monoclonal antibody that inhibits mycobacterial adherence to epithelial cells was mapped within the lysine-rich repeats, confirming their involvement in mycobacterial adherence to epithelial cells. Surface plasmon resonance analyses showed that recombinant HBHA binds to immobilized heparin with fast association kinetics (k(a) = 5.62 (+/- 0.10) x 10(5) m(-1) s(-1)), whereas the dissociation kinetics were slower (k(d) = 0.015 (+/- 0.002) s(-1)), yielding a K(D) value of 26 nm. Similar analyses with grafted MBP indicated similar kinetic constants, indicating that the carboxyl-terminal repeats contain the entire heparin-binding site of HBHA. The molecular characterization of the interactions of HBHA with epithelial glycosaminoglycans should help to better understand mycobacterial adherence within the lungs and may ultimately lead to new approaches for therapy or immunoprophylaxis.  相似文献   

9.
Prompted by recent reports suggesting that interaction of filamin A (FLNa) with its binding partners is regulated by mechanical force, we examined mechanical properties of FLNa domains using magnetic tweezers. FLNa, an actin cross-linking protein, consists of two subunits that dimerize through a C-terminal self-association domain. Each subunit contains an N-terminal spectrin-related actin-binding domain followed by 24 immunoglobulinlike (Ig) repeats. The Ig repeats in the rod 1 segment (repeats 1–15) are arranged as a linear array, whereas rod 2 (repeats 16–23) is more compact due to interdomain interactions. In the rod 1 segment, repeats 9–15 augment F-actin binding to a much greater extent than do repeats 1–8. Here, we report that the three segments are unfolded at different forces under the same loading rate. Remarkably, we found that repeats 16–23 are susceptible to forces of ∼10 pN or even less, whereas the repeats in the rod 1 segment can withstand significantly higher forces. The differential force response of FLNa Ig domains has broad implications, since these domains not only support the tension of actin network but also interact with many transmembrane and signaling proteins, mostly in the rod 2 segment. In particular, our finding of unfolding of repeats 16–23 at ∼10 pN or less is consistent with the hypothesized force-sensing function of the rod 2 segment in FLNa.  相似文献   

10.
The tumor suppressor adenomatous polyposis coli (APC) plays a critical role in the turnover of cytosolic beta-catenin, the key effector of the canonical Wnt signaling pathway. APC contains seven 20 amino acid (20 aa) beta-catenin binding repeats that are required for beta-catenin turnover. We have determined the crystal structure of beta-catenin in complex with a phosphorylated APC fragment containing two 20 aa repeats. Surprisingly, one single phosphorylated 20 aa repeat, together with its flanking regions, covers the entire structural groove of beta-catenin and may thus compete for beta-catenin binding with all other beta-catenin armadillo repeat partners. Our biochemical studies show that phosphorylation of the APC 20 aa repeats increases the affinity of the repeats for beta-catenin by 300- to 500-fold and the phosphorylated 20 aa repeats prevent beta-catenin binding to Tcf. Our work suggests that the phosphorylation of the APC 20 aa repeats could be a critical switch for APC function.  相似文献   

11.
In addition to the three known beta(1) integrin recognition sites in the N-module of thrombospondin-1 (TSP1), we found that beta(1) integrins mediate cell adhesion to the type 1 and type 2 repeats. The type 1 repeats of TSP1 differ from typical integrin ligands in that recognition is pan-beta(1)-specific. Adhesion of cells that express one dominant beta(1) integrin on immobilized type 1 repeats is specifically inhibited by antagonists of that integrin, whereas adhesion of cells that express several beta(1) integrins is partially inhibited by each alpha-subunit-specific antagonist and completely inhibited by combining the antagonists. beta(1) integrins recognize both the second and third type 1 repeats, and each type 1 repeat shows pan-beta(1) specificity and divalent cation dependence for promoting cell adhesion. Adhesion to the type 2 repeats is less sensitive to alpha-subunit antagonists, but a beta(1) blocking antibody and two disintegrins inhibit adhesion to immobilized type 2 repeats. beta(1) integrin expression is necessary for cell adhesion to the type 1 or type 2 repeats, and beta(1) integrins bind in a divalent cation-dependent manner to a type 1 repeat affinity column. The widely used TSP1 function blocking antibody A4.1 binds to a site in the third type 2 repeat. A4.1 proximally inhibits beta(1) integrin-dependent adhesion to the type 2 repeats and indirectly inhibits integrin-dependent adhesion mediated by the TSP1 type 1 repeats. Although antibody A4.1 is also an antagonist of CD36 binding to TSP1, these data suggest that some biological activities of A4.1 result from antagonism of these novel beta(1) integrin binding sites.  相似文献   

12.
We report the results of a comprehensive search of Drosophila melanogaster DNA sequences in GenBank for di-, tri-, and tetranucleotide repeats of more than four repeat units, and a DNA library screen for dinucleotide repeats. Dinucleotide repeats are more abundant (66%) than tri- (30%) or tetranucleotide (4%) repeats. We estimate that 1917 dinucleotide repeats with 10 or more repeat units are present in the euchromatic D. melanogaster genome and, on average, they occur once every 60 kb. Relative to many other animals, dinucleotide repeats in D. melanogaster are short. Tri- and tetranucleotide repeats have even fewer repeat units on average than dinucleotide repeats. Our WorldWide Web site (http://www.bio.cornell.edu/genetics/aquadro/aquadro.html) posts the complete list of 1298 microsatellites (≥ five repeat units) identified from the GenBank search. We also summarize assay conditions for 70 D. melanogaster microsatellites characterized in previous studies and an additional 56 newly characterized markers.  相似文献   

13.
The complete genome of the yeast Saccharomyces cerevisiae was investigated for intrachromosomal duplications at the level of nucleotide sequences. The analysis was performed by looking for long approximate repeats (from 30 to 3,885 bp) present on each of the chromosomes. We show that direct and inverted repeats exhibit very different characteristics: the two copies of direct repeats are more similar and longer than those of inverted repeats. Furthermore, contrary to the inverted repeats, a large majority of direct repeats appear to be closely spaced. The distance (delta) between the two copies is generally smaller than 1 kb. Further analysis of these "close direct repeats" shows a negative correlation between delta and the percentage of identity between the two copies, and a positive correlation between delta and repeat length. Moreover, contrary to the other categories of repeats, close direct repeats are mostly located within coding sequences (CDSs). We propose two hypotheses in order to interpret these observations: first, the deletion/conversion rate is negatively correlated with delta; second, there exists an active duplication mechanism which continuously creates close direct repeats, the other intrachromosomal repeats being the result, by chromosomal rearrangements of these "primary repeats."  相似文献   

14.
The choline-binding protein LytB, an N-acetylglucosaminidase of Streptococcus pneumoniae, is the key enzyme for daughter cell separation and is believed to play a critical pathogenic role, facilitating bacterial spreading during infection. Because of these peculiarities LytB is a putative vaccine target. To determine the extent of LytB polymorphism, the lytB alleles from seven typical, clinical pneumococcal isolates of various serotypes and from 13 additional streptococci of the mitis group (12 atypical pneumococci and the Streptococcus mitis type strain) were sequenced. Sequence alignment showed that the main differences among alleles were differences in the number of repeats (range, 12 to 18) characteristic of choline-binding proteins. These differences were located in the region corresponding to repeats 11 to 17. Typical pneumococcal strains contained either 14, 16, or 18 repeats, whereas all of the atypical isolates except strains 1283 and 782 (which had 14 and 16 repeats, respectively) and the S. mitis type strain had only 12 repeats; atypical isolate 10546 turned out to be a DeltalytB mutant. We also found that there are two major types of alternating repeats in lytB, which encode 21 and 23 amino acids. Choline-binding proteins are linked to the choline-containing cell wall substrate through choline residues at the interface of two consecutive choline-binding repeats that create a choline-binding site. The observation that all strains contained an even number of repeats suggests that the duplication events that gave rise to the choline-binding repeats of LytB involved two repeats simultaneously, an observation that is in keeping with previous crystallographic data. Typical pneumococcal isolates usually grew as diplococci, indicating that an active LytB enzyme was present. In contrast, most atypical isolates formed long chains of cells that did not disperse after addition of purified LytB, suggesting that in these strains chains were produced through mechanisms unrelated to LytB.  相似文献   

15.
16.
Mishima M  Shida T  Yabuki K  Kato K  Sekiguchi J  Kojima C 《Biochemistry》2005,44(30):10153-10163
Bacillus subtilis CwlC is a cell wall lytic N-acetylmuramoyl-l-alanine amidase that plays an important role in mother-cell lysis during sporulation. The enzyme consists of an N-terminal catalytic domain with C-terminal tandem repeats. The repeats [repeat 1 (residues 184-219) and repeat 2 (residues 220-255)] are termed CwlCr. We report on the solution structure of CwlCr as determined by multidimensional NMR, including the use of 36 (h3)J(NC)'-derived hydrogen bond restraints and 64 residual (1)D(NH) dipolar couplings. Two tandem repeats fold into a pseudo-2-fold symmetric single-domain structure consisting of a betaalphabetabetaalphabeta-fold containing numerous contacts between the repeats. Hydrophobic residues important for structural integrity are conserved between the repeats, and are located symmetrically. We also present NMR analysis of the circularly permuted repeat mutant of CwlCr. Secondary structure content from the chemical shifts and hydrogen bonds derived from (h3)J(NC)' show that the mutant folds into a structure similar to that of the wild type, suggesting that the repeats are exchangeable. This implies that conserved hydrophobic residues are crucial for maintaining the folding of the repeats. While monitoring the chemical shift perturbations following the addition of digested soluble peptidoglycan fragments, we identified two peptidoglycan interaction sites of CwlCr at the edges of the protein symmetrically, and they are located approximately 28 A from each other.  相似文献   

17.
Subfamily relationships and clustering of rabbit C repeats   总被引:5,自引:1,他引:4  
C repeats constitute the predominant family of short interspersed repeats (SINEs) in the rabbit genome. Determination of the nucleotide sequence 5' to rabbit zeta-globin genes reveals clusters of C repeats, and analysis of these and other sequenced regions of rabbit chromosomes shows that the C repeats have a strong tendency to insert within or in close proximity to other C repeats. An alignment of 44 members of the C repeat family shows that they are composites of different sequences, including a tRNA-like sequence, a conserved central core, a stretch of repeating CT dinucleotides, and an A-rich tract. Cladograms generated by both parsimony and cluster analysis subdivide the C repeats into at least three distinct subfamilies. Nucleotides at sites diagnostic for subfamilies appear to have changed in a punctuated and progressive manner during evolution, indicating that a limited number of progenitors have given rise to new repeats in waves of dispersion. C repeats that insert into preexisting C repeats belong to subfamilies that are proposed to have been propagated more recently; hence, these data support the model of dispersion in successive waves. The divergence among the oldest group of C repeats is greater than that observed for the analogous Alu repeats in humans, indicating that rabbit C repeats have been propagating longer than human Alu repeats. The improved consensus sequence for these repeats is similar to that of the predominant artiodactyl SINE in both the tRNA-like region and a central region. Because members of different subfamilies cross-hybridize very poorly, hybridization data with representatives of each subfamily provide a new minimal estimate, 234,000, for the copy number of C repeats in the rabbit haploid genome, although it is likely that the actual value is closer to 1 million.  相似文献   

18.
The low density lipoprotein receptor-related protein (LRP) is a scavenger receptor that binds several ligands including the activated form of the pan-proteinase inhibitor alpha(2)-macroglobulin (alpha(2)M*) and amyloid precursor protein, two ligands genetically linked to Alzheimer's disease. To delineate the contribution of LRP to this disease, it will be necessary to identify the sites on this receptor which are responsible for recognizing these and other ligands to assist in the development of specific inhibitors. Structurally, LRP contains four clusters of cysteine-rich repeats, yet studies thus far suggest that only two of these clusters (clusters II and IV) bind ligands. Identifying binding sites within LRP for certain ligands, such as alpha(2)M*, has proven to be difficult. To accomplish this, we mapped the binding site on LRP for two inhibitors of alpha(2)M* uptake, monoclonal antibody 8G1 and an amino-terminal fragment of receptor-associated protein (RAP D1D2). Surprisingly, the inhibitors recognized different clusters of ligand binding repeats: 8G1 bound to repeats within cluster I, whereas the RAP fragment bound to repeats within cluster II. A recombinant LRP mini-receptor containing the repeats from cluster I along with three ligand binding repeats from cluster II was effective in mediating the internalization of (125)I-labeled alpha(2)M*. Together, these studies indicate that ligand binding repeats from both cluster I and II cooperate to generate a high affinity binding site for alpha(2)M*, and they suggest a strategy for developing specific inhibitors to block alpha(2)M* binding to LRP by identifying molecules capable of binding repeats in cluster I.  相似文献   

19.
20.
DNA trinucleotide repeats, particularly CXG, are common within the human genome. However, expansion of trinucleotide repeats is associated with a number of disorders, including Huntington disease, spinobulbar muscular atrophy and spinocerebellar ataxia. In these cases, the repeat length is known to correlate with decreased age of onset and disease severity. Repeat expansion of (CAG)n, (CTG)n and (CGG)n trinucleotides may be related to the increased stability of alternative DNA hairpin structures consisting of CXG-CXG triads with X-X mismatches. Small-molecule ligands that selectively bound to CAG repeats could provide an important probe for determining repeat length and an important tool for investigating the in vivo repeat extension mechanism. Here we report that napthyridine-azaquinolone (NA, 1) is a ligand for CAG repeats and can be used as a diagnostic tool for determining repeat length. We show by NMR spectroscopy that binding of NA to CAG repeats induces the extrusion of a cytidine nucleotide from the DNA helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号