首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
High levels of inbreeding are expected to cause a strong reduction in levels of genetic variability, effective recombination rates and in adaptation compared with related outcrossing populations. We examined patterns of DNA polymorphism at five nuclear loci and one chloroplast locus within and between four populations of the outcrossing plant Arabidopsis lyrata, a close relative of the highly self-fertilizing model species A. thaliana. The observed patterns are compared with species-wide polymorphism at orthologous loci, as well as within- and between-population patterns at other studied loci in A. thaliana. In addition to evidence for much higher average within-population diversity, species-wide levels of silent polymorphism are generally higher in A. lyrata than in A. thaliana, unlike the results from a previous study of the ADH locus. However, polymorphism is also low in the North American A. lyrata subspecies lyrata compared with the European subspecies petraea, suggesting either a population bottleneck in North American populations or recent admixture involving diverged European populations. Differentiation between the two subspecies is strong, although there are few fixed differences, suggesting that their isolation is recent. Estimates of intralocus recombination rates and analysis of haplotype structure in European A. lyrata populations indicate lower recombination than predicted based on the variability together with physical recombination rates estimated from A. thaliana. This may be due to strong population subdivision, or to recent departures from demographic equilibrium such as a bottleneck or population admixture. Alternatively, there may be consistently lower recombination rates in the outcrossing species. In contrast, estimates of recombination rates from species-wide samples of A. thaliana are close to the values expected assuming a high rate of self-fertilization. Complex population histories in both A. thaliana and A. lyrata complicate theoretical predictions and empirical tests of the effects of inbreeding on polymorphism and molecular evolution.  相似文献   

2.
Understanding the stability of the G matrix in natural populations is fundamental for predicting evolutionary trajectories; yet, the extent of its spatial variation and how this impacts responses to selection remain open questions. With a nested paternal half‐sib crossing design and plants grown in a field experiment, we examined differences in the genetic architecture of flowering time, floral display, and plant size among four Scandinavian populations of Arabidopsis lyrata. Using a multivariate Bayesian framework, we compared the size, shape, and orientation of G matrices and assessed their potential to facilitate or constrain trait evolution. Flowering time, floral display and rosette size varied among populations and significant additive genetic variation within populations indicated potential to evolve in response to selection. Yet, some characters, including flowering start and number of flowers, may not evolve independently because of genetic correlations. Using a multivariate framework, we found few differences in the genetic architecture of traits among populations. G matrices varied mostly in size rather than shape or orientation. Differences in multivariate responses to selection predicted from differences in G were small, suggesting overall matrix similarity and shared constraints to trait evolution among populations.  相似文献   

3.
Mable BK  Adam A 《Molecular ecology》2007,16(17):3565-3580
Arabidopsis lyrata is normally considered an obligately outcrossing species with a strong self-incompatibility system, but a shift in mating system towards inbreeding has been found in some North American populations (subspecies A. lyrata ssp. lyrata). This study provides a survey of the Great Lakes region of Canada to determine the extent of this mating system variation and how outcrossing rates are related to current population density, geographical distribution, and genetic diversity. Based on variation at microsatellite markers (progeny arrays to estimate multilocus outcrossing rates and population samples to estimate diversity measures) and controlled greenhouse pollinations, populations can be divided into two groups: (i) group A, consisting of individuals capable of setting selfed seed (including autogamous fruit set in the absence of pollinators), showing depressed outcrossing rates (T(m) = 0.2-0.6), heterozygosity (H(O) = 0.02-0.06) and genetic diversity (H(E) = 0.08-0.10); and (ii) group B, consisting of individuals that are predominantly self-incompatible (T(m) > 0.8), require pollinators for seeds set, and showing higher levels of heterozygosity (H(O) = 0.13-0.31) and diversity (H(E) = 0.19-0.410). Current population density is not related to the shift in mating system but does vary with latitude. Restricted gene flow among populations was evident among all but two populations (F(ST) = 0.11-0.8). Group A populations were more differentiated from one another (F(ST) = 0.78) than they were from group B populations (F(ST) = 0.59), with 41% of the variation partitioned within populations, 47% between populations, and 12% between groups. No significant relationship was found between genetic and geographical distance. Results are discussed in the context of possible postglacial expansion scenarios in relation to loss of self-incompatibility.  相似文献   

4.
5.
Genetic diversity is unusually high at loci in the S-locus region of the self-incompatible species of the flowering plant, Arabidopsis lyrata, not just in the S loci themselves, but also at two nearby loci. In a previous study of a single natural population from Iceland, we attributed this elevated polymorphism to linkage disequilibrium (LD) between variants at loci close to the S locus and the S alleles, which are maintained in the population by balancing selection. With the four S-flanking loci whose diversity we previously studied, we could not determine the extent of the region linked to the S loci in which neutral sites are affected. We also could not exclude the possibility of a population bottleneck, or of admixture, as causes of the LD. We have now studied four more distant loci flanking the S-locus region, and more populations, and we analyze the results using a theoretical model of the effect of balancing selection on diversity at linked neutral sites within and between different functional S-allelic classes. In the model, diversity is a function of the number of selectively maintained alleles and the recombination distances from the selectively maintained sites. We use the model to estimate the number of different functional S alleles, their turnover rate, and recombination rates between the S-locus region and other loci. Our estimates suggest that there is a small region of very low recombination surrounding the S-locus region.  相似文献   

6.
We describe analyses of almost full-length sequences (including both the kinase domain and the S-domain) of the putative SRK incompatibility gene of the self-incompatible plant Arabidopsis lyrata. In A. lyrata, the SRK S-domain controls the pistil recognition specificity, as in self-incompatible Brassica species. In alleles from plants derived from natural A. lyrata populations, nonsynonymous and synonymous site diversity values are very high in both domains; even in exons 3 to 7 of the kinase domain, which probably have no recognition functions, 39% of the amino acids are polymorphic. Within populations, diversity between alleles is high, as expected for an incompatibility locus, which should be under frequency-dependent selection within populations, whereas within the different putative allelic classes polymorphism is very low, as predicted from theoretical models when recombination is rare. Nonsynonymous site variability declines in the kinase domain with increasing distance from the S-domain border, although synonymous diversity remains high, and the introns are unalignable. A decline in nonsynonymous diversity is expected due to selective constraints in the kinase domain, in combination with recombination (allowing diversity to decrease at sites distant from those under balancing selection). However, it is unclear whether recombination occurs in the SRK locus, and interpretation of the observed diversity pattern is complicated by apparent gene conversion with a paralogous gene (or genes). Patterns of linkage disequilibrium in our SRK sequences do not support the conclusion that recombination occurs, which was suggested from previous analyses based on Brassica SLG sequences.  相似文献   

7.
Goss EM  Kreitman M  Bergelson J 《Genetics》2005,169(1):21-35
Species-level genetic diversity and recombination in bacterial pathogens of wild plant populations have been nearly unexplored. Pseudomonas viridiflava is a common natural bacterial pathogen of Arabidopsis thaliana, for which pathogen defense genes and mechanisms are becoming increasing well known. The genetic variation contained within a worldwide sample of P. viridiflava collected from wild populations of A. thaliana was investigated using five genomic sequence fragments totaling 2.3 kb. Two distinct and deeply diverged clades were found within the P. viridiflava sample and in close proximity in multiple populations, each genetically diverse with synonymous variation as high as 9.3% in one of these clades. Within clades, there is evidence of frequent recombination within and between each sequenced locus and little geographic differentiation. Isolates from both clades were also found in a small sample of other herbaceous species in Midwest populations, indicating a possibly broad host range for P. viridiflava. The high levels of genetic variation and recombination together with a lack of geographic differentiation in this pathogen distinguish it from other bacterial plant pathogens for which intraspecific variation has been examined.  相似文献   

8.
9.
Gos G  Wright SI 《Molecular ecology》2008,17(23):4953-4962
We examined patterns of nucleotide diversity at a genomic region containing two linked candidate disease resistance (NBS-LRR) genes in seven populations of the outcrossing plant Arabidopsis lyrata. In comparison with two adjacent control genes and neutral reference genes across the genome, the NBS-LRR genes exhibited elevated nonsynonymous variation and a large number of major-effect polymorphisms causing early stop codons and/or frameshift mutations. In contrast, analysis of synonymous diversity provided no evidence that the region was subject to long-term balancing selection or recent selective sweeps in any of the seven populations surveyed. Also in contrast with earlier surveys of one of these R genes, there was no evidence that the resistance genes or the major-effect mutations were subject to elevated differentiation between populations. We suggest that conditional neutrality in the absence of the corresponding pathogen, rather than long-term balancing selection or local adaptation, may in some circumstances be a significant cause of elevated functional polymorphism at R genes. In contrast with the R genes, analysis of diversity and differentiation at the flanking FERONIA locus showed high population divergence, suggesting local adaptation on this locus controlling male-female signalling during fertilization.  相似文献   

10.
The self-incompatibility (S-) locus region of plants in the Brassica family is a small genome region. In Arabidopsis lyrata, the S-genes, SRK and SCR, encode the functional female and pollen recognition proteins, which must be coadapted to maintain correct associations between the two component genes, and thus self-incompatibility (SI). Recombinants would be self-compatible and thus probably disadvantageous in self-incompatible species. Therefore, tight linkage between the two genes in incompatibility systems is predicted to evolve to avoid producing such recombinant haplotypes. The evolution of low recombination in S-locus regions has not been rigorously tested. To test whether these regions' per-nucleotide recombination rates differ from those elsewhere in the genome, and to investigate whether the A. lyrata S-loci have the predicted effect on diversity in their immediate genome region, we studied diversity in genes that are linked to the S-loci but are not involved in incompatibility and are not under balancing selection. Compared with other A. lyrata loci, genes linked to the S-loci have extraordinarily high polymorphism. Our estimated recombination in this region, from fitting a model of the effects of S-allele polymorphism on linked neutral sites, supports the hypothesis of locally suppressed recombination around the S-locus.  相似文献   

11.
He F  Kang D  Ren Y  Qu LJ  Zhen Y  Gu H 《Heredity》2007,99(4):423-431
Although extensive studies have been conducted on the genetic structure of Arabidopsis thaliana (A. thaliana) populations worldwide, the populations from China have never been studied. In this study, we collected 560 individuals from 19 natural populations of A. thaliana distributed in East China along the lower reaches of the Yangtze River, and two populations from northwest China (Xinjiang Province). We adopted two kinds of molecular marker, inter-simple sequence repeats (ISSRs) and random amplified polymorphic DNA (RAPDs) to investigate the genetic diversity within and among populations, and the correlation between the genetic and geographic distances. Thirteen ISSR primers produced 165 polymorphic bands (PPB) (96%) and 11 RAPD primers produced 162 polymorphic bands (98%) in about 560 individuals. The two marker systems generated similar patterns of genetic diversity in these natural populations. The AMOVA analysis indicated about 42-45% of the total genetic variation existed within populations, and found possible geographic structure. The Mantel test revealed a significant correlation between the geographic distance and the genetic distance of these populations in general. A close genetic relationship was found among four populations in the Jiangxi Province, and these always appeared clustered together as a monophyletic group in unweighted pair-group method with arithmetic averages dendrograms based on both ISSR and RAPD data sets. Based on the observation of recolonization and extinction of naturally distributed populations of A. thaliana, and the pattern of their genetic differentiation, the distribution of this species in China might be a result of natural dispersal under the strong influence of human activity.  相似文献   

12.
The perennial outcrossing Arabidopsis lyrata is becoming a plant model species for molecular ecology and evolution. However, its evolutionary history, and especially the impact of the climatic oscillations of the Pleistocene on its genetic diversity and population structure, is not well known. We analyzed the broad-scale population structure of the species based on microsatellite variation at 22 loci. A wide sample in Europe revealed that glaciations and postglacial colonization have caused high divergence and high variation in variability between populations. Colonization from Central Europe to Iceland and Scandinavia was associated with a strong decrease of genetic diversity from South to North. On the other hand, the Russian population included in our data set may originate from a different refugium probably located more to the East. These genome-wide patterns must be taken into account in studies aiming at elucidating the genetic basis of local adaptation. As shown by sequence data, most of the loci used in this study do not evolve like typical microsatellite loci and show variable levels of homoplasy: this mode of evolution makes these markers less suitable to investigate the between-continent divergence and more generally the worldwide evolution of the species. Finally, a strong negative correlation was detected between levels of within-population diversity and indices of differentiation such as F(ST). We discuss the causes of this correlation as well as the potential bias it induces on the quantification and interpretation of population structure.  相似文献   

13.
We studied local adaptation to contrasting environments using an organism that is emerging as a model for evolutionary plant biology-the outcrossing, perennial herb Arabidopsis lyrata subsp. petraea (Brassicaceae). With reciprocal transplant experiments, we found variation in cumulative fitness, indicating adaptive differentiation among populations. Nonlocal populations did not have significantly higher fitness than the local population. Experimental sites were located in Norway (alpine), Sweden (coastal), and Germany (continental). At all sites after one year, the local population had higher cumulative fitness, as quantified by survival combined with rosette area, than at least one of the nonlocal populations. At the Norwegian site, measurements were done for two additional years, and fitness differences persisted. The fitness components that contributed most to differences in cumulative fitness varied among sites. Relatively small rosette area combined with a large number of inflorescences produced by German plants may reflect differentiation in life history. The results of the current study demonstrate adaptive population differentiation in A. lyrata along a climatic gradient in Europe. The studied populations harbor considerable variation in several characters contributing to adaptive population differentiation. The wealth of genetic information available makes A. lyrata a highly attractive system also for examining the functional and genetic basis of local adaptation in plants.  相似文献   

14.
Colonization history, landscape structure, and environmental conditions may influence patterns of neutral genetic variation because of their effects on gene flow and reproductive mode. We compared variation at microsatellite loci within and among 26 Arabidopsis lyrata populations in two disjunct areas of its distribution in northern Europe (Norway and Sweden). The two areas probably share a common colonization history but differ in size (Norwegian range markedly larger than Swedish range), landscape structure (mountains vs. coast), and habitat conditions likely to affect patterns of gene flow and opportunities for sexual reproduction. Within-population genetic diversity was not related to latitude but was higher in Sweden than in Norway. Population differentiation was stronger among Norwegian than among Swedish populations (F(ST) = 0.23 vs. F(ST) = 0.18). The frequency of clonal propagation (proportion of identical multilocus genotypes) increased with decreasing population size, was higher in Norwegian than in Swedish populations, but was not related to altitude or substrate. Differences in genetic structure are discussed in relation to population characteristics and range size in the two areas. The results demonstrate that the possibility of clonal propagation should be considered when developing strategies for sampling and analyzing data in ecological and genetic studies of this emerging model species.  相似文献   

15.
The molecular genetic basis of adaptive variation is of fundamental importance for evolutionary dynamics, but is still poorly known. Only in very few cases has the relationship between genetic variation at the molecular level, phenotype and function been established in natural populations. We examined the functional significance and genetic basis of a polymorphism in production of leaf hairs, trichomes, in the perennial herb Arabidopsis lyrata. Earlier studies suggested that trichome production is subject to divergent selection. Here we show that the production of trichomes is correlated with reduced damage from insect herbivores in natural populations, and using statistical methods developed for medical genetics we document an association between loss of trichome production and mutations in the regulatory gene GLABROUS1. Sequence data suggest that independent mutations in this regulatory gene have provided the basis for parallel evolution of reduced resistance to insect herbivores in different populations of A. lyrata and in the closely related Arabidopsis thaliana. The results show that candidate genes identified in model organisms provide a valuable starting point for analysis of the genetic basis of phenotypic variation in natural populations.  相似文献   

16.
? Premise of the study: Plant populations that face new environments adapt and diverge simultaneously, and both processes leave footprints in their genetic diversity. Arabidopsis lyrata is an excellent species for studying these processes. Pairs of populations and subspecies of A. lyrata represent different stages of divergence. These populations are also known to be locally adapted and display various stages of emerging reproductive isolation. ? Methods: We used nucleotide diversity data from 19 loci to estimate divergence times and levels of diversity among nine A. lyrata populations. Traditional distance-based methods and model-based clustering analysis were used to supplement pairwise coalescence-based analysis of divergence. ? Key results: Estimated divergence times varied from 130000 generations between North American and European subspecies to 39000 generations between central European and Scandinavian populations. In concordance with previous studies, the highest level of diversity was found in Central Europe and the lowest in North America and a diverged Russian Karhum?ki population. Local adaptation among Northern and central European populations has emerged during the last 39000 generations. Populations that are reproductively isolated by prezygotic mechanisms have been separated for a longer time period of ~70000 generations but still have shared nucleotide polymorphism. ? Conclusions: In A. lyrata, reproductively isolated populations started to diverge ~70000 generations ago and more closely related, locally adapted populations have been separate lineages for ~39000 generations. However, based on the posterior distribution of divergence times, the processes leading to reproductive isolation and local adaptation are likely to temporally coincide.  相似文献   

17.
Nucleotide variation at the FAH1 and DFR gene regions was surveyed in four populations of Arabidopsis lyrata (two European A. l. petraea and two North American A. l. lyrata populations). In contrast to previous results, levels of variation were not consistently lower in A. l. lyrata than in A. l. petraea, and similar degrees of genetic differentiation were detected between and within subspecies. These observations and the significant genetic differentiation detected among populations suggest population substructure and no real subdivision between subspecies. For each gene studied, genotypic data were obtained, which allowed comparing nucleotide diversity within individuals (between sequences from the same individual) and within populations (between sequences from the same population). The generally lower level of variation within than among individuals detected in each population yielded a significant deviation from panmixia within populations. In three of the four populations studied, two highly divergent alleles were detected within populations at the highly variable DFR locus. This pattern and the significant excess of derived variants detected in most populations suggest that most variation segregating within populations results from rare migration events between relatively small and isolated populations exhibiting reduced panmixia.  相似文献   

18.
Differences in neutral diversity at different loci are predicted to arise due to differences in mutation rates and from the "hitchhiking" effects of natural selection. Consistent with hitchhiking models, Drosophila melanogaster chromosome regions with very low recombination have unusually low nucleotide diversity. We compared levels of diversity from five pericentromeric regions with regions of normal recombination in Arabidopsis lyrata, an outcrossing close relative of the highly selfing A. thaliana. In contrast with the accepted theoretical prediction, and the pattern in Drosophila, we found generally high diversity in pericentromeric genes, which is consistent with the observation in A. thaliana. Our data rule out balancing selection in the pericentromeric regions, suggesting that hitchhiking is more strongly reducing diversity in the chromosome arms than the pericentromere regions.  相似文献   

19.
Arabidopsis lyrata (Brassicaceae) is a close outcrossing relative of A. thaliana. We examine flowering time variation of northern and southern A. lyrata populations in controlled environmental conditions, in a common garden experiment with A. thaliana, and in the field. Southern populations of A. lyrata flowered earlier than northern ones in all environmental conditions. Individuals from southern populations were more likely to flower in short days (14 h light) than northern ones, and all populations had a higher probability of flowering and flowered more rapidly in long days (20 h). The interaction of population and day length significantly affected flowering probability, and flowering time in one of two comparisons. The common garden experiment demonstrated differences between populations in the response to seed cold treatment, but growth chamber experiments showed no vernalization effect after 4 wk of rosette cold treatment. In a field population in Norway, a high proportion of the plants flowered in each year of the study. The plants progressed to flowering more rapidly in the field and common garden than in the growth chamber. The genetic basis of these flowering time differences here can be further studied using A. thaliana genetic tools.  相似文献   

20.
The strength of plant‐herbivore interactions varies spatially and through plant ontogeny, which may result in variable selection on plant defense, both among populations and life‐history stages. To test whether populations have diverged in herbivore resistance at an early plant stage, we quantified oviposition preference and larval feeding by Plutella xylostella (L.) (Lepidoptera: Plutellidae) on young (5–6 weeks old) Arabidopsis lyrata (L.) O'Kane & Al‐Shehbaz (Brassicaceae) plants, originating from 12 natural populations, six from Sweden and six from Norway. Arabidopsis lyrata can be trichome‐producing or glabrous, with glabrous plants usually receiving more damage from insect herbivores in natural populations. We used the six populations polymorphic for trichome production to test whether resistance against P. xylostella differs between the glabrous and the trichome‐producing morph among young plants. There was considerable variation among populations in the number of eggs received and the proportion of leaf area consumed by P. xylostella, but not between regions (Sweden vs. Norway) or trichome morphs. Rosette size explained a significant portion of the variation in oviposition and larval feeding. The results demonstrate that among‐population variation in resistance to insect herbivory can be detected among very young individuals of the perennial herb A. lyrata. They further suggest that trichome densities are too low at this plant developmental stage to contribute to resistance, and that the observed among‐population variation in resistance is related to differences in other plant traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号